
Development of Graphical User Interfaces based on User Interface Patterns

Stefan Wendler, Danny Ammon, Teodora Kikova, Ilka Philippow
Software Systems / Process Informatics Department

Ilmenau University of Technology
Ilmenau, Germany

{stefan.wendler, danny.ammon, teodora.kikova, ilka.philippow}@tu-ilmenau.de

Abstract — This paper addresses the research concerning
possibilities for reducing the effort of adapting graphical user
interfaces to requirements of individual customers. User
interface patterns are promising artifacts for improvements in
this regard. The details of graphical user interface
transformations from user interface patterns into executable
interface code are considered. We describe how reuse and
automation within user interface transformation steps can be
established. For this purpose, formal descriptions of user
interface patterns are necessary. Today, however, most user
interface patterns exist only in a verbal or graphical form of
description. We use XML-based user interface description
languages like UIML and UsiXML for the specification of user
interface patterns. We experimentally investigated and
analyzed strengths and weaknesses of two transformation
approaches which were built on different software patterns. As
a result, we show that formal user interface patterns can be
transformed into executable interfaces, and that they assist in
raising effectiveness and efficiency of the development process
of a GUI system. Finally, we developed suggestions on how to
apply these positive effects of user interface patterns for the
development of pattern-based graphical user interfaces.

Keywords — graphical user interface; model driven software
development; user interface patterns; UIML; UsiXML

I. INTRODUCTION
Interactive systems. Interactive systems demand for a

fast and efficient development of their graphical user
interface (GUI), as well as its adaption to changing
requirements throughout the software life cycle. In this
paper, e-shops serve as a representative of these interactive
systems. Currently, they are a fundamental asset of modern
e-commerce business models. In many cases, such systems
are offered as standard software, which allows several
customization options after installation. In this context, they
are differentiated into the application kernel and a GUI
system.

The application kernel software architecture relies on
well-proven and, partially, self-developed software patterns.
Thus, it offers a consistent structure with defined and
differentiated types of system elements. This has a positive
effect on the understanding of the modular functional
structures as well as their modification options.

Limited customizability of GUIs. Contrary to the
application kernel, the customization of the GUI is possible
only with rather high efforts. An important reason is that
software patterns do not cover all aspects needed for GUIs.

These patterns have been commonly applied for GUIs [1][2]
but in most cases they are limited to functional and control
related aspects [3]. The visual and interactive components of
the GUI are not supported by software patterns yet.
Furthermore, the reuse of GUI components, e.g., layout,
navigation structures, choice of user interface controls (UI-
Controls) and type of interaction, is only sparsely supported
by current methods and tools. For each project with its
varying context, those potentially reusable entities have to be
implemented and customized anew leading to high efforts.

 Moreover, the functional range of standard software
does not allow a comprehensive customization of its GUI
system. The GUI requirements are very customer-specific. In
this regard, the customers want to apply the functionality of
the standard software in their individual work processes
along with customized dialogs. However, due to the
characteristics of standard software, only basic variants or
standard GUIs can be offered. So far, combinations of
components of the application architecture with a GUI are
too versatile for a customizable standard product.

UIPs. We propose an approach to this problem through
the deployment of User Interface Patterns (UIPs). These
patterns offer well-proven solutions for GUI designs [4],
which embody a high quality of usability [5]. So far, UIPs
have not been considered as source code artifacts, in contrast
to software patterns. Current UIPs and their compilations
mostly reside on an informal level of description [6].

A. Objectives
In this paper we show that formal UIPs can assist in

raising effectiveness and efficiency of the development
process of a GUI system. For a start, we describe, from a
theoretical point of view, how reuse and automation within
GUI transformation steps can be established by the
deployment of UIPs. On the basis of formal UIPs, we discuss
the possibilities of transformations into executable GUIs. For
this purpose, two different transformation approaches have
been experimentally investigated. These approaches will be
assessed facing two different GUI dialogs. As a result, we
develop suggestions, how the positive effects of UIPs for the
development of GUIs can be applied. Finally, influences
resulting from the use of UIPs in the development process
are discussed.

B. Structure of the Paper
In Section II, state of the art and related work are

presented and assessed according to our objectives. The
theoretical influences of UIPs on the development process

57Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

for GUIs are elaborated in Section III. Subsequently, Section
IV presents our two approaches for the transformation of
formal UIPs into source code. The findings of Sections III
and IV are summarized in Section V. Finally, our
conclusions and future research options are presented in
Section VI.

II. RELATED WORK

A. GUI Development Process and Model Transformations
Abstract GUI development model. The specification

and development of GUI systems remains a challenge. To
discuss the activities and potentials of UIPs independently
from specific software development processes and
requirement models, we refer to a generic model concept. In
reference [7], the common steps of a GUI development
process are elaborated. To master the complexity that occurs
when deriving GUI specifications from requirement models,
Ludolph proposes four model layers and corresponding
transformations built on each other. Three of them, being
relevant in our context, are depicted in Figure 1.

Legend

Essential
Model

User
Model

Relationships Objects Tasks Use Cases

User
Interface

Relationships Objects Operations Task Tree User Scenarios

Windows Views UI-Controls Interactions Layout

Platform
Guidelines

Models of Human
Perception and Behavior

Graphic
Guidelines

Metaphor

Transformation Derivation Transformation Tools
Figure 1. Model transformations in the GUI development process based

on [7]

Essential model. By the essential model, all functional
requirements and their structures are described. This
information constitutes the core of the specification which is
necessary for the development of the application kernel.
Examples for respective artifacts are use cases, domain
models and the specification of tasks or functional
decompositions. These domain-specific requirements are
abstracted from realization technology and thus from the
GUI system [7]. Consequently, a GUI specification must be
established to bridge the information gap between
requirements and a GUI system.

User model. A first step in the direction of GUI
specification is prepared by the user model. With this model
the domain-specific information of the essential model is
picked up and enhanced by so-called metaphors. They
symbolize generic combinations of actions and suitable tools,
which represent interactions with a GUI. Examples of
metaphors would be indexes, catalogues, help wizards or
table filters. The principal action performed by these

examples is a search for objects, accompanied by the varying
functionality embodied by the respective metaphor.

The tasks of the essential model have to be refined and
structured in task trees. For each task of a certain refinement
stage, metaphors are assigned, which will guide the GUI
design for this part of the process. In the same manner, use
cases can be supplemented with these new elements in their
sequences to describe user scenarios.

User interface. This model is used for establishing the
actual GUI specification. Through the three parts rough
layout, interaction design and detailed design [7], the
appearance and behavior of the GUI system are concretized.
The aim is to set up a suitable mapping between the elements
of the user model and views, windows, as well as UI-
Controls of the user interface. For the metaphors chosen
before, graphical representations are now to be developed.
The objects to be displayed, their attributes and the relations
between them are represented by views. Subsequently, the
views are arranged in windows according to the activities of
the user scenarios, or alternatively to the structure of the
more detailed task trees. In these steps, there are often
alternatives which are influenced by style guides or the used
GUI library and especially by the provided UI-Controls. At
the same time, generic interaction patterns are applied as
transformation tools which also have an impact on the choice
of UI-Controls.

Conclusion. Model transformations as stated by Ludolph
show a detailed account of relevant model elements for the
GUI specification. However, the occurring transformations
are carried out manually. Besides that, no automation and
only few options for reuse are mentioned.

B. UIP Definition and Types
Current research has been discussing patterns and

especially User Interface Patterns (UIPs) for a longer period
[8][9][6]. A UIP is defined as a universal and reusable
solution for common interaction and visual structures of
GUIs. UIPs are distinguished between two types:

Descriptive UIPs. Primarily, UIPs are provided by
means of verbal and graphical descriptions. In this context,
UIPs are commonly specified following a scheme similar to
the one used for design patterns [10]. Reference [11]
proposes a specialized language for UIPs and [6] shows its
detailed sections. The verbal descriptions mainly serve for
pure specification purposes and solely fulfill an
informational function for the GUI developer. Being a
guideline in this manner, they provide templates, points of
variability and sketched examples for GUI elements. These
UIPs named as descriptive UIPs [6] are informal. With their
application, a developer receives aid when specifying a GUI,
as he is able to express and hence operationalize usability
requirements with UIPs. However, these informal patterns
still have to be implemented manually.

UIP-Libraries. UIP libraries such as [12], [13] and [14]
provide numerous examples for descriptive UIPs. Based on
the presented categories, conceptions about possible UIP
hierarchies and their collaborations can be imagined.

Formal UIPs. Rarely, generative UIPs [6] are presented.
In contrast to descriptive UIPs, they feature a machine-

58Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

readable form and are regarded as formal UIPs accordingly.
Frequently, the formal format constitutes of a graphic
notation, e.g., UML [8]. The formal UIPs are of great
importance since they can be used within development
environments, especially for automated transformations to
certain GUI-implementations.

C. Formalization of UIPs
In order to permit the processing of descriptive UIPs,

they have to be converted to formal UIPs. Possible means for
this step can be provided by formal languages applied for
specifying GUIs. These languages, however, have been
designed for the specification of certain GUIs and were not
intended for a pattern-based approach. Until now, there is no
specialized language available for formalizing UIPs.

UsiXML and UIML. In our prior work, an extensive
investigation on formal GUI specification languages and
their applicability for UIPs was conducted. Intentionally the
XML-based languages UsiXML [15] and UIML [16] were
developed for specifying a GUI independently from
technology and platform specifics. However, such languages
may be applicable for UIPs since they offer elements like
templates (UIML) and abstract as well as concrete models
(UsiXML). Moreover, both have been developed further for
a long period of time. Thus, the languages have reached a
high maturity level.

IDEALXML. For efficient development environments
tools are necessary that facilitate formal specifications of
UIPs with regard to language definitions and rules. A
widespread tool concept for UsiXML is presented with
IDEALXML [6]. By using the various models defined by
UsiXML, many aspects of a GUI and additionally the
applied domain model of the application kernel are included
in the specification. As a result, a detailed and
comprehensive XML specification for the GUI is created.
Many aspects of the user model from [7] are already
included. However, it is not mentioned how UIPs are being
expressed in models such as the „abstract user interface
model“ (AUIM) [6] as reusable patterns or an hierarchy of
these and consequently transformed to the „concrete user
interface model“ (CUIM) [6].Furthermore, it has to be
questioned, how a formal specification on the basis of
UsiXML can be used for processing by code generators or
other tools of a development environment.

D. GUI-Generators
Besides the formal specification of GUIs system concepts

and frameworks exist which are able to generate complete
GUI applications based on a partly specification of the
application kernel. As representatives Naked Objects [17]
and JANUS [18] can be mentioned. Both rely on an object-
oriented domain model which has to be a part of the
application kernel. Based on the information provided by this
model, standard dialogs are being generated with appropriate
UI-Controls for the respective tasks. For instance, in order to
generate an object editor for entities like product or
customer, certain text fields, lists or date pickers are selected
as UI-Controls which match the domain data types of the
selected domain object for editing.

In contrast to IDEALXML, which enables the extensive
modeling of the GUI, GUI-generators may generate
executable GUI code but they lack such a broad
informational basis. Therefore, GUI-generators possess two
essential weaknesses:

Limited functionality. The information for generating
the GUI is restricted to a domain model and previously
determined dialog templates along with their UI-Controls.
Hence, their applicability is limited to operations and
relations of single domain objects. When multiple and
differing domain objects do play a role in complex user
scenarios [7], the generators can no longer provide suitable
dialogs for the GUI application. Moreover, extensive
interaction flows require hierarchical decisions, which have
to be realized, e. g., by using wizard dialogs. In this situation,
GUI generators cannot be applied as well. The connection
between dialogs and superordinate interaction design still has
to be implemented manually.

Uniform visuals. A further weakness is related to the
visual GUI design. Each dialog created by generators is
based on the same template for the GUI-design. Solely the
contents which are derived from the application kernel are
variable. Both layout and possible interactions are fixed in
order to permit the automatic generation. The uniformity and
its corresponding usability have been criticized for Naked
Objects [19]. Assuming the best case, the information for
GUI design is founded on established UIPs and possesses
their accepted usability for certain tasks. Nevertheless, the
generated dialogs look very similar and there is no option to
select or change the UIPs incorporated in the GUI design.

III. INFLUENCE OF UIPS ON GUI-TRANSFORMATIONS

A. GUI Customization of Standard Software
On the basis of the customization of GUIs for standard

software and the model transformations described in Section
II.A the theoretical influences of UIPs are now considered.

EShop standard software fulfils the functional
requirements of a multitude of users at the same time.
Therefore, these systems share a well-defined essential
model that specifies their functional range and has many
commonalities along existing installations. Standard software
implements the essential model through different
components of the application kernel as shown in Figure 2.
Each installation consists of a configuration for the
application kernel which includes many already available
and little custom components in most cases. In this context,
the User Interface acts as a compositional layer that
combines Core and Custom Services together with suitable
dialogs for the user.

Individual GUIs for eShops. Concerning eShops, the
visual design of the GUI is of special relevance since the
user interface is defined as a major product feature that
differentiates the competitors on the market. Hence, the
needs of customers and users are vitally important in order to
provide them with the suitable individual dialogs. In this
regard, the proportions of components related to the whole
system are symbolized by their size in Figure 2. In
comparison to the Custom Components of the application

59Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

kernel the Custom Dialogs represent the greater part of the
User Interface and the customization accordingly. Along
with the customization of the application kernel there is a
high demand for an easy and vast adaptability of the GUI.

cmp Customizing

Application Kernel

Core Components Custom
Components

User Interface

Core Dialogs Custom Dialogs

Core Services Custom Services

Essential Model

User Model

«call»
«call»

«call»

Figure 2. Components for the customization of standard software

Moreover, the customization of the GUI system is
needed, as elements of the essential model tend to be very
specific after extensive customization or maintenance
processes. Thus, the standard user model as well as the user
interface can no longer be used for the customized services.
In this case, models have to be developed from scratch and
after this, a suitable solution for the GUI has to be
implemented.

Usability. The development of GUIs is caught in a field
of tension between an efficient design and an easy but
extensive customization. High budgets for the emerging
efforts have to be planned. Additional efforts are needed for
important non-functional requirements such as high usability
and uniformity in interaction concepts and an eased learning
curve during the customization process of GUIs. For
realizing these requirements, extensive style guides and
corresponding user interface models often need to be
developed prior to the manual adaption of the GUI. These
specifications will quickly lose their validity as soon as the
GUI-framework and essential functions of the application
kernel change.

B. Model Aspects of UIPs
With the aid of UIPs the time-consuming process of GUI

development and customizing can be increased in efficiency.
To prove this statement, the influences of UIPs on the
common model transformations from Section II.A are
examined in the next step. In Section III.C potentials for
improvements are derived from these influences.

Metaphors and UIPs. Metaphors act as the sole
transformation tool between essential model and user model.
Since they lack visual appearances as well as concrete
interactions, the mapping of metaphors to the elements of the

essential model is very demanding. Metaphors will not be
visualized by GUI sketches prior to the transformation of the
user model.

Since UIPs are defined more extensively and concrete,
they can be applied as a transformation tool instead of using
metaphors. Descriptive UIPs feature a pattern-like
description scheme that is provided in the catalogues in [12]
and [13], for example. Thus, they offer much more
information as well as assessments which can inspire the
GUI specification. In addition, descriptive UIPs do already
possess visual designs that may be exemplary, or in the
worst-case, abstract.

With the user model, operations on objects have to be
specified. The metaphors do not provide enough hints for
this step. In contrast, UIPs are definitely clearer concerning
these operations because they group UI-Controls according
to their tasks and do operationalize them in this way.
Interaction designs and appropriate visuals are presented
along with UIPs. These aspects would have to be defined by
oneself using only the metaphor.

When UIPs are used in place of metaphors for
formalization, these new entities can be integrated in the
tools for specifications. Concerning UsiXML, UIPs could
describe the AUIM. Task-Trees are already present in
UsiXML, so this concept of specification partly follows the
modeling concepts in [7] and thus may be generically
applicable.

User model and UIPs. With regard to the user model,
the numerous modeling steps no longer need to be performed
with the introduction of UIPs. Instead, it is sufficient to
derive the tasks from the use cases within the essential model
and allocate UIPs for these. Detailed task-trees no longer
have to be created since UIPs already contain these
operations within their interaction design. Interactions can
already be specified in formal UIPs, and later this
information can directly be used for parts of the presentation
control of views or windows. As a result, an extensive user
scenario also is obsolete, as it was originally needed for
deriving the more detailed task-tree. Now it is sufficient to
lay emphasis on expressing the features of UIPs and their
connection to the tasks defined by the essential model. The
objects are also represented within the UIPs in an abstract
way. With the aid of placeholders for certain domain data
types adaptable views for object data can already be prepared
in formal UIPs. Finally, much of the afore-mentioned
information of the user model now will be explicitly or
implicitly provided by completely specified UIPs.

User interface and UIPs. UIPs provide the following
information for the user interface: Layout and interaction of
the GUI will be described by a composition of a hierarchy of
UIPs that is settled on the level of views and windows. When
creating the UIP-hierarchy, a prior categorization is helpful
which features the distinction between relationship, object
and task related UIPs. This eases the mapping to the
corresponding model entities.

For interactions, the originally applied Models of Human
Perception and Behavior from Figure 1 are no longer
explicitly needed since they are implicitly incorporated in the
interaction designs of the UIPs. In this context, suitable types

60Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

of UI-Controls are already determined by UIPs.
Nevertheless, a complete and concrete GUI-design will not
be provided by UIPs since the number and contents of UI-
Controls depend on the context and have to be specified by
the developer with parameters accordingly. In the same way
Platform and Graphic Guidelines act as essential policies to
adapt the UIPs to the available GUI-framework and its
available UI-Controls.

Conclusion. We explained that UIPs might cover most
parts of the user model as well as numerous aspects of the
user interface. By using UIPs in the modeling process, these
specification contents can be compiled based on the
respective context without actually performing the two
transformations from Figure 1 explicitly. Basically, the
transformation to the target platform remains as depicted in
Figure 3.

Legend

Essential
Model Relationships Objects Tasks Use Cases

User
Interface Windows Views UI-Controls Interactions Layout

Platform
Guidelines

Graphic
Guidelines

Transformation Derivation Transformation Tools

User Interface Patterns

Figure 3. GUI transformations with the aid of UIPs and automation

C. Potentials of UIPs for Improvements
In this section, the potentials of UIPs related to the GUI

development process are summarized from a theoretical
perspective. The implications resulting from the application
of UIPs in experimental transformations are presented in
Section IV.

Reuse. By means of UIPs the transformational gap
between essential model and user interface can be bridged
more easily since reuse will be enhanced significantly.
Thereby UIPs are not the starting point of model
transformations; they rather serve as a medium for
conducting needed information for the transformations. The
information originally included in the user model and parts
of the user interface are now extracted from the selection and
composition of UIPs.

Layout and interaction of windows as well as the
interaction paradigm of many parts of the GUI can be
determined by a single UIP configuration on a high level in
hierarchy. This superordinate GUI design can be inherited by
a number of single dialogs without the need for deciding
about these aspects for each dialog in particular.

Many interaction designs can be derived from initial
thoughts about GUI design for the most important use cases
and their corresponding tasks. When a first UIP
configuration has been created, the realization of the Graphic
and Platform Guidelines therein can be adopted for other
UIP-applications since the target platform is the same for
each dialog of a system. Especially when user scenarios
overlap, meaning they partly use the same views or windows
as well as object data, UIPs enable a high grade of reuse. UIP

assignments, already established for other tasks, can be
reused with the appropriate changes. eShops tend to use
many application components together although they offer
them by different dialogs as illustrated in Figure 2 UIPs can
contribute to a higher level of reuse in this context.
Depending on the possible mapping between application
kernel components and UIP-hierarchy, new dialogs can be
formed by combining the views of certain services which are
determined by their assigned UIPs.

Reuse and usability. Besides reuse, UIPs assure multiple
non-functional requirements. As proven solutions for GUI
designs their essential function is to enable a high usability
by the application of best-practices. In this context, they
facilitate the adherence of style guides by means of their
hierarchical composition.

Technically independent essential model. It is a
common goal to keep elements of the essential model free or
abstract from technical issues. Following this way, the
essential model has no reference to the GUI specification.
Therefore, it is not subject to changes related to new
requirements which the user may incorporate for the GUI
during the lifecycle of the system. User preferences often
tend to change in terms of the visuals and interactions of the
GUI. Concerning use cases, this rule is elaborated in [20]
and [21]. Technical aspects and in particular the GUI
specification are addressed in separate models such as user
model and user interface according to [7]. After changes,
these models have to be kept consistent what results in high
efforts. For instance, a new or modified step within a use
case scenario has to be considered in the corresponding user
scenario, too.

By assigning UIPs to elements of the essential model,
explicit user models and the prior checking of consistency
between these models both become obsolete. Instead, user
models will be created dynamically as well as implicitly by
an actual configuration of UIPs and essential model
mapping. A technical transformation to the source code of
the GUI that relies on the concrete appearances of the UIPs
remains as shown in Figure 3. By modeling assignments
between UIP and task or between UIP and object, the
number of UI-Controls, the hierarchy and layout of UIPs,
sufficient structured information on the GUI system is
provided. Subsequently, a generator will be able to compile
the GUI suited for the chosen target platform. These
theoretical influences enable an increased independence from
the technical infrastructure since the generator can be
supplied with an appropriate configuration to instantiate the
UIPs compatible to the target platform and its specifics.

Modular structuring of windows and views. Common
to software patterns, UIPs reside on different model
hierarchies. Dialog navigation, frame and detailed layout of a
dialog can be characterized by separate UIPs. The views of a
window can be structured by different UIPs on varying
hierarchy levels. In this way, a modular structure of dialogs
is enabled. In addition, versatile combinations, adaptability
and extensibility of building blocks of a GUI will be
promoted.

61Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

IV. EXPERIMENTAL APPLICATION OF UIPS IN GUI-
MODEL-TRANSFORMATIONS

Up to now there have been no reports about experiences
in the practical application of formal UIPs. The particular
steps to be performed for a model-to-code-transformation
and the shape as well as the outline of a formalization of
UIPs have to be examined in detail. In order to gain further
insights about UIPs, they have been experimentally applied
by two different prototypes. Similar to the probing of
software patterns, selected UIPs were instantiated for simple
example dialogs. These are illustrated in Figure 4.

Figure 4. Example dialogs used for prototypes

On the one hand, the examples consisted of a view fixed
in shape that contained the UIP „Main Navigation“ [12] on
the upper part. On the other hand, the lower part shows two
variants for a view whose visuals are dependent on the input
of the user. Thereby, the UIP „Advanced Search“ [12] was
applied. This UIP demands for a complex presentation
control and is characteristic for eShops. Depending on the
choice of the user, the view and interactions are altered. The
search criteria can be changed, deleted and added as depicted
in Figure 4 by two variants. Both example dialogs should
have been realized by formalized UIPs and one prototype.

A. Generation at Design Time
Scope. Firstly, generating code for the GUI based on

previously specified UIPs was probed. In general, the
possibility to generate an executable GUI with the aid of
UIPs had to be proven. The UIPs had to be completely
defined at design time. Testing of the prototype had to be
conducted after the GUI system was fully generated.

Approach. Foremost, the simple UIP Main Navigation
was realized. This informally specified UIP was formalized
after a language for formalization had been chosen. By
means of a self developed generator, a model-to-code-
transformation was performed to create an executable dialog.
Subsequently, the complete GUI system was started without
any manual adaptions to the code.

Choice of formalization language. A comparative study
of UIML and UsiXML was conducted.

Regarding the structure of a GUI-specification, UsiXML
proposes numerous models in order to separate the different
information concerns domain objects, tasks and user
interface. Not all the models were mandatory in terms of the
example because no explicit essential model was given. On
the contrary, UIML operates with few sections within one
XML-document. This is because the UIML format was
easier to handle and learn with respect to the simple
example.

According to UI-Controls, UsiXML defines precisely
which types of UI-Controls are available and what properties
they can possess. An additional mapping model would have
to be created in order to assign these elements to the entities
of the target platform. In contrast, with UIML and its peer-
section this mapping can easily be specified. The mapping to
the GUI-framework can be altered afterwards without the
need for changing the already defined UIPs. Moreover,
UIML offers a more flexible definition of UI-Controls since
custom UI-Controls can be declared in the structure-section
as well as their properties in the style-section [22]. In
addition, UIML provides templates for integration and reuse
of already defined UIPs in other UIP formalizations.

Concerning layout, UsiXML uses special language
elements to set up a GridBagLayout. UIML offers two
variants: Firstly, it is possible to use containers as structuring
elements along with their properties. The containers have
information attached that governs the arrangement of their
constituent parts. Secondly, UIML provides special tags that
are committed for layout definition. UIML has a more
flexible solution by defining layouts with containers that can
be nested arbitrarily.

Related to behavior, both languages define own
constructs. Nevertheless, complex behavior is difficult to
master without clear guidelines for both. Concerning the
examples, the behavior was limited to the technical
presentation control within a view.

Choice of UIML. We decided to apply UIML for the
example dialogs. Firstly, UIML is more compact in structure
and enables a higher flexibility for shaping the formalization.
Secondly, many of the language elements and models from
UsiXML were not actually needed for the UIP „Main
Navigation“. Thirdly, even the „Advanced Search“ example
could not profit from the vast language range of UsiXML
since all possible variants for search criteria could not have
been formalized. At least UIML offered the possibility to
rely on templates in order to define all possible lines of
search criteria composed of simple UIPs. UsiXML turned
out to be too complex for these simple UIPs. In addition, it
was not clear whether UsiXML permits the reuse of already
specified UIPs.

Realization of „Main Navigation“. Java Swing was
chosen as target platform. For the peer-section we decided to
map the elements of „Main Navigation“ to horizontal
JButtons instead of tabs. In the formalization the mandatory
parameters for number, order and naming of UI-Controls
were specified. As result, the UIP was described concretely.
The architecture was structured following the MVC-pattern
[1]. The sections of UIML were assigned to components like
in Figure 5.

62Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

cmp Generator architecture

UIML Document
<structure>

<style>

<behavior>

<content>

Generator Tool

Parser Java Code
Generator

GUI-System

Model

View

Dialog Controller

UI-Controls

EventListener

Constructor
«trace»

«trace»

«trace»

«trace»

«derive»

«use»

«use»

Figure 5. Architecture applied for code generation

 Structure and style were processed within the object
declarations (UI-Controls) of the View and its constructor.
Based on the behavior-section, EventListeners were
generated acting as presentation controllers. For the Model
the content-section was assigned. Hence, the UIP “Main
Navigation” formalized with UIML was transformed to
source code.

Realization of „Advanced Search“. Even by using the
UIML templates, this complex dialog could not be realized
by a generation at design time. It was not possible to
instantiate the formalized UIPs that were depending on the
choice of attributes at runtime.

Results. The prototype primarily was intended to prove
feasibility. This is because we chose a simple architecture
and did not incorporate a Dialog Controller for controlling
the flow of dialogs. The control was restricted to the scope of
the UI-Controls of the respective UIP. Thus, the behavior
only covered simple actions like the deactivation of UI-
Controls or changing the text of a label. Complex decisions
during the interaction process like the further processing of
input data and the navigation control amongst dialogs could
not be implemented. A corresponding superordinate control
could have been realized through a UIP-hierarchy in
combination with appropriate guidelines for the
formalization of control information. Despite the simplicity
of the prototype, the following insights could be gathered:

Informal UIPs could be converted to formal UIPs by
using UIML as a formal language. There was the need to
define certain guidelines for this initial step. The layout of
the example was specified by using containers for the main
window and their properties. As a result, the UI-Controls
were arranged according to these presets. Nested containers
and complex layouts have not yet been used for the
experiment in this way. The style also was described
concretely within the UIML-document as well as the number
and order of UI-Controls. The mapping of a formal UIP to a
software pattern was simply performed by the scheme in
Figure 5.

Concerning the example Advanced Search, only fixed
variants or a default choice of criteria could have been
formalized. The generator could have created static GUIs
accordingly without realizing the actual dynamics of this
particular UIP.

B. Generation at Runtime
Scope. The dynamic dialog Advanced Search could not

be realized by the first approach. Thus, a solution had to be
found that enables the instantiation of UIPs at runtime.
Thereby, it was of importance to keep the platform
independency of the UIML specification. The formal UIPs
had to be processed directly during runtime without binding
them to a certain GUI-framework.

Approach. Since the Advanced Search UIP was very
versatile and could not be formalized with all its variants, the
layout of the dialogs was fragmented. By the means of a
superordinate UIP the framing layout of the view was
specified in a fixed manner at design time. In detail, the
headline, labels and the three-column structure of the view
appropriate to a table with the rows of search criteria were
defined.

The mandatory but unknown parameters that determine
the current choice of criteria and UIPs had to be processed at
runtime. Accordingly, a software pattern had to be chosen
that is able to instantiate UIP representations along with their
behavior. This pattern had to act similarly to the builder
design pattern [10] which enables the creation and
configuration of complex aggregates. In [23] a suitable
software pattern was described which is explained shortly
and illustrated in Figure 6:
cmp VUI

GUI
Framework

Virtual User
Interface

DialogApplication
Kernel

EventListener

WidgetBuilder

«call»

«use»

«use»«call»

Figure 6. Virtual user interface architecture derived from [23]

Quasar VUI. The Virtual User Interface (VUI) of
Quasar (quality software architecture) follows the intention
of programming dialogs in a generic way. This means that
the dialog and its events are implemented via the technical
independent, abstract interfaces WidgetBuilder and
EventListener rather than using certain interfaces and objects
of a GUI-framework directly. By means of this concept, the
GUI-framework is interchangeable without affecting existing
dialog implementations. Solely the component Virtual User
Interface (VUI) depends on technological changes. Upon
such changes, its interfaces would have to be re-
implemented. By using the interface WidgetBuilder, a dialog
dynamically can adapt its view at runtime. For instance, the
Dialog delegates the VUI to create and configure a new
window containing certain UI-Controls. The VUI notifies the
Dialog via the interface EventListener when events have
been induced by UI-Controls. Both interfaces have to be
standardized for a GUI system of a certain domain in order
to enable the reuse of reoccurring functionality such as the
building of views and association of UI-Controls with events

63Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

without regarding the certain technology or platform
specifics being used.

VUI for UIPs. The concept, the VUI is based on, can be
adapted to the requirements of the UIP Advanced Search.
The idea is to instantiate complete view components with
UIP definitions besides simple UI-Controls. The Dialog is
implemented by using generic interfaces which enable the
instantiation of UIPs, changing their layout and their
association with events. In Figure 7 our refinement of the
original VUI is presented.

The VUI for UIPs is based on our previously described
generator solution. Each possible variation of UI-Controls
matching the attributes of the domain objects for Advanced
Search has been formalized before. Hence, the rows of the
dialog were visualized by different UIPs. Concerning the
formal UIPs, the proper implementations for the chosen
GUI-framework were generated as stated in Section IV.A.
The previously mentioned generator was integrated in the
component UIP Implementations. These implementations of
UIPs located within VUI are based on the interfaces and
objects of the GUI-framework. In analogy to the UI-Controls
already implemented in the GUI-framework, the available
UIP instances were provided via the interface UIPBuilder
and could be positioned with certain parameters.
cmp VUI UIPs

GUI
Framework

UI-Creation

API-Events

Virtual User
Interface

Dialog

Formal UIPs

UIPBuilder

ViewEvent

Application
Kernel

ViewData
Style
Data

Logical
View

Dialog
Controller

DialogEvents

Model

DialogData

StyleDefinition

Technical
View

UIP
Implementations

Observer

«use»

«call»

«call»

«use»
«call»

«use»

«use»

«call»

«use»

«call»

«use»

«use»

«trace»

«use»

Figure 7. Virtual user interface architecture for UIPs

The VUI builds the view or a complete window as
requested by the Logical View. Furthermore, the VUI
provides information about the current composition and the
layout of the Dialog. This information can be used by the
Logical View for parameters to adapt the current view by
delegating the VUI respectively. The Dialog coordinates the
structuring of the view with the component Logical View and
implements the application specific control in the Dialog
Controller as well as dialog data in the Model.

Initially, events are reported to the VUI via API-Events.
The VUI only forwards relevant events to the Logical View.
When the respective event is only related to properties of a
UI-Control or a UIP instance, it is directly processed by the
Logical View which delegates the VUI when necessary. If the
Logical View cannot process the particular event on its own,
it will be forwarded to the Dialog Controller. For instance,
this occurs when the user presses the button Search and a

new view with the search results has to be loaded. The
Dialog Controller collects the search criteria via the interface
ViewData and sends an appropriate query to the Application
Kernel. The result of the query will be stored as dialog data
in the Model.

Results. For realizing Advanced Search with UIPs, a
complex architecture had to be invented. Details like the
connection of UIP instances to the Dialog data model as well
as the automation potentials of the Dialog Controller could
not be investigated extensively, yet.

The UIPs had to be specified in a concrete manner like in
Section IV.A. The prototype was not mature enough to
handle abstract UIP specifications. The style of the UI-
Controls was also described concretely, so the control of
style by a component of the VUI, as depicted in Figure 7, has
not yet been realized.

Through the VUI, the versatile combinations of Advanced
Search could be realized according to the example at
runtime. The VUI constitutes of a component-oriented
structure related to the software categories of Quasar [24].
Accordingly, it possesses its virtues like the division of
application and technology, separation of concerns and
encapsulation by interfaces. Despite its challenging
complexity, a flexible and maintainable architecture for
dynamic GUI systems has been created.

V. DISCUSSION
The theoretical reflection of the influence UIPs have on

GUI transformations and the results of our experimental
prototypes led us to the following findings.

A. Formalization of UIPs
Reflection of results. By experimentally probing the

model-to-code-transformation of formal UIPs, we came to
the conclusion that the generation of a GUI is not the
complicated part of the process. Instead, the formalization
and the occurring options in this step lead to the main
problem. Primarily, the preconditions to benefit from the
positive influences of the UIPs on the GUI development
process have to be established by the formalization:

The generator solution was well suited for stereotype and
statically defined UIML contents. In this context, layout,
number and order as well as style of UIPs have been
specified concretely. This led us to a static solution that can
be applied at design time. But the UIP Advanced Search
could not be realized by following this approach.

Parameters for UIPs. In order to overcome this static
solution, a parameterization of formal UIPs has to be
considered. Via parameters the number, order, ID, layout and
style of UI-Controls within UIPs specifications have to be
determined to provide a more flexible solution. Especially
the number and order of UI-Controls have to be abstractly
specified in the first place. In this way UIPs will be kept
applicable for varying contexts. In place of a concrete
declaration of style for each UIP, a global style template has
to be kept in mind. By using this template, dialogs could be
created with uniform visuals and deviations are avoided. For
this purpose, the VUI incorporated the Style Data
component. It is intended to configure the visuals of UIP

64Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

instances and UI-Controls globally. The configuration is
used for the instantiation of these entities by the Technical
View. Consequently, style information from single UIP
specifications could be avoided and the UIPs would receive a
more universal format.

B. Generation at Design Time
In principle, complex UIPs or UIP-hierarchies can be

realized with the generation at design time. The easiest cases
are elementary or invariant UIPs like calendar, fixed forms
or message windows. These examples can be generated with
ease since they do not need parameters besides a data model.
For UIPs, which require parameters such as hierarchical UIP
structures, an additional transformation is needed prior to the
generation of source code:

Transformation of abstract UIPs. Firstly, the UIP is
abstractly specified along with all parameter declarations
needed and placeholders for nested UIPs. Subsequently,
these parameters have to be specified via a context model
which adapts the UIP to a certain application. Based on the
abstract UIP specification and the context model, a model-to-
model-transformation is performed in order to generate
concrete UIP specifications like they were used in our
examples. In this state all required information is available
for the generation of the GUI system. The described model-
to-code-transformation can be performed as a follow-up step.
It has to be examined whether a suitable format is given to
realize this approach, by means of UsiXML or IDEALXML
and their models AUIM and CUIM.

C. Generation at Runtime
Regarding the UIP Advanced Search, it is clear that a

large gap has to be bridged between the essential model and
the user interface. A use case which demands for such
dynamic UIPs hides a whole variety of different GUI-
designs. Consequently, one static user interface cannot
always be established for the elements of the essential model.
However, even for these dynamic GUIs UIPs can serve as
media to enable reuse of numerous aspects directly by
generation along with a composition at runtime. The
combined application of both our approaches can provide a
feasible solution. Concerning the example from Figure 4, the
previously generated layouts actually were reused for the
Advanced Search window and the views of search criteria.
By instantiation of matching UIPs, even the interactions
respectively the presentation control was reused as well.

Generation of dialogs. As shown with our example, the
current VUI is capable of the instantiation and composition
of single parts of a certain Logical View. The generation of
complete Logical Views on the basis of formal UIPs and
their hierarchy could possibly be realized with the VUI
architecture. The model describing the Logical View has to
refer to the standardized interfaces of the VUI and a common
UIP catalog. To formally specify the UIPs to be used in this
environment, only UIML currently seems to be suitable.
Firstly, an analysis of the required and reused elementary
UIPs as well as the relevant UI-Controls has to be conducted
in order to populate the basic level in the hierarchy of UIPs.
Next, these UIPs have to be formalized with UIML along

with their required data types and invariant behavior that acts
as a basis for presentation control within the VUI.
Furthermore, the interaction and layout within the Logical
View have to be specified using UIML as well. This is
because UIML already offers templates that can be
parameterized and thus used for the composition of several
UIP-documents into one master document establishing a UIP
of higher level. Concerning UsiXML, one dialog can only be
specified by a single AUIM respective CUIM document.

To complete the Dialog, meaning Dialog Controller and
Model, relevant information on tasks and data objects has to
be incorporated into a formal model. The research on the
collaboration between adaptable UIPs and these logical
aspects has just begun.

D. Limitations through the Application of UIPs
Individualization. Using UIPs instead of time-

consuming manual transformations, a compromise is being
contracted: A full individualization of the GUI is not
possible with UIPs since the customizing is conducted within
the limits of available and formalized UIPs. The UIPs can
embody a further building block of standard software.
Customization will be facilitated by defined parameters and
automation.

Metamodels. The application of UIPs demands for clear
guidelines for modeling of the essential model which result
in a second limitation. The rules for this model need to
define stereotype element types and their delimitations. The
definition of the essential model is governed by a metamodel
in the best case. Based on the metamodel, the elements can
be defined uniformly and as stereotypes. For instance, it will
be defined what types and refinements of tasks, domain
objects and domain data types do exist in order to assign
them homogenously to certain UIP categories. This concept
is essential for the proposal of suitable UIPs for the partly
automated development of GUI systems. The proposing
system needs to work in two ways: On the one hand, the GUI
developer asks for a suitable selection of UIPs for a certain
part of the essential model at design time. On the other hand,
users need to be provided with suitable UIPs in dynamic
dialogs at runtime based on their current inputs. The
mechanisms can only work if a uniform essential model with
clear defined abstractions derived from fixed guidelines is
available as fundamental information.

VI. CONCLUSION AND FUTURE WORK

A. Conclusion
We theoretically and experimentally elaborated that UIPs

do have numerous positive influences on the GUI
development process. UIPs integrate well in the common
GUI transformations. Therefore, our findings are not
restricted to the domain of eShops but rather can be adapted
to other standard software such as enterprise resource
planning systems. Even for individual software systems,
UIPs can be of interest in case that numerous GUI aspects
are similar and their reuse appears reasonable.

Currently, adaptability and reuse of UIPs is limited to
their invariant formalizations. UIP compositions could only

65Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

be created by manual implementation. We pointed to the
limitations of current UIP specification format options and
presented architectural solutions for their practical
application. Above all, the upstream transformation of the
abstract UIP description into UsiXML or UIML is worth to
be considered since one could use their strength in concretely
specifying user interfaces. Afterwards, the generation of
GUIs based on this information would pose a minor issue.

B. Future Work
Formalization. For future work, we primarily see the

research in formalizing UIPs. An important goal is to enable
UIPs to act as real patterns that are adaptable to various
contexts. The synthesis of a UIP-description model is the
next step to determine properties and parameters of UIPs
exactly and independently from GUI specification languages.
Consequently, it can be more accurately assessed whether
UIML or UsiXML are able to express the description model
and thus UIPs completely. The independence from the
platform can be achieved by both languages. However, it
was not possible to specify context independent UIPs besides
invariant or concrete UIPs. In this regard, the composition of
UIPs, to form structured and modular specifications, remains
unsolved, too.

Paradigm. Another open issue exists in the field of
interaction paradigms [7] and the applicability of UIPs. With
respect to the procedural paradigm, processes are defined
which exactly define the single steps of a use case scenario.
To provide a matching user interface for this case, additional
information needs to be included in the formalization of
UIPs. For instance, the process or task structures have to be
specified by UIPs on a high level of hierarchy. These UIPs
possess little visual content, maybe a framing layout for
windows, and mainly act as entities for controlling the
application flow. The Dialog Controller from Figure 5 and
Figure 7 could be based on such a UIP. In this paper, no
information for these components was integrated in the
formal UIPs. So these components had to be implemented
manually. For example, the Dialog Controller opens a new
window with search results for the Advanced Search,
controls the further navigation and delegates the structuring
of the next or previous windows. In this context, our VUI
solution is a compromise between automation and the reuse
of elementary and invariant UIPs through manual
configuration of the Dialog Controller and the delegated
Logical View. A full automation needs further research.

REFERENCES
[1] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad and

M. Stahl, A System of Patterns, New York: Wiley, 1996.
[2] M. Fowler. Patterns of Enterprise Application Architecture,

Addison-Wesley, Boston, 2003.
[3] M. Haft, B. Olleck, “Komponentenbasierte Client-

Architektur,” in Informatik Spektrum, 30(3), 2007, pp. 143-
158, doi: 10.1007/s00287-007-0153-9

[4] M. van Welie, G. C. van der Veer, A. Eliëns, “Patterns as
Tools for User Interface Design,”. in Tools for Working with
Guidelines, Springer, London, Eds.: Ch. Farenc, J.
Vanderdonckt, 2000, pp. 313-324.

[5] M. J. Mahemoff, L. J. Johnston, “Pattern languages for
usability: an investigation of alternative approaches,” Proc.
Computer Human Interaction, pp.25-30, 15-17 July 1998, doi:
10.1109/APCHI.1998.704138

[6] J. Vanderdonckt and F.M. Simarro, “Generative pattern-based
Design of User Interfaces,” Proc. 1st International Workshop
on Pattern-Driven Engineering of Interactive Computing
Systems (PEICS '10), ACM, June 2012, pp. 12-19, doi:
10.1145/1824749.1824753.

[7] M. Ludolph, “Model-based User Interface Design: Successive
Transformations of a Task/Object Model,” in User Interface
Design: Bridging the Gap from User Requirements to Design,
CRC Press, Boca Raton, Ed.: L.E. Wood, 1998, pp. 81-108.

[8] N. J. Nunes, “Representing User-Interface Patterns in UML,”
in International Conference on Object-Oriented Information
Systems (OOIS 2003), LNCS 2817, D. Konstantas, M.
Léonard, Y. Pigneur, S. Patel, Eds. Heidelberg: Springer,
2003, pp. 142–151, doi: 10.1007/978-3-540-45242-3_14.

[9] A. Dearden and J. Finlay, “Pattern Languages in HCI; A
critical Review,” Human-Computer Interaction, 21, 2006.

[10] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design
Patterns: Elements of Reusable Object-oriented Software,
Reading: Addison-Wesley, 1995.

[11] S. Fincher, J. Finlay, S. Greene, L. Jones, P. Matchen, J.
Thomas, and P. J. Molina, “Perspectives on HCI Patterns:
Concepts and Tools (Introducing PLML),” Ext. Proc.
Computer-Human Interaction (CHI’2003). Workshop Report,
ACM Press, 2003, pp. 1044–1045.

[12] M. van Welie, “A pattern library for interaction design,”
http://www.welie.com 10.05.2012.

[13] Open UI Pattern Library, http://www.patternry.com
10.05.2012.

[14] A. Toxboe, “User Interface Design Pattern Library,”
http://www.ui-patterns.com 10.05.2012.

[15] J. Vanderdonckt, Q. Limbourg, B. Michotte, L. Bouillon, D.
Trevisan, and M. Florins, “UsiXML: a User Interface
Description Language for Specifying multimodal User
Interfaces,” Proc. W3C Workshop on Multimodal Interaction
(WMI'2004), 19-20 July 2004.

[16] M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M.
Williams, and J. E. Shuster, “UIML: An Appliance-
Independent XML User Interface Language,” Proc. Eighth
International World Wide Web Conference (WWW’8),
Elsevier Science Pub., May 1999.

[17] R. Pawson and R. Matthews, Naked Objects, Chichester: John
Wiley & Sons, 2002.

[18] H. Balzert, “From OOA to GUIs: The Janus system,” IEEE
Software, 8(9), February 1996, pp. 43-47.

[19] L. Constantine, “The Emperor Has No Clothes: Naked
Objects Meet the Interface”, http://www.foruse.com/articles
10.05.2012.

[20] D. Kulak, E. Guiney, Use Cases: Requirements in Context,
New York: Addison-Wesley, ACM Press, 2000.

[21] K. Bittner, I. Spence, Use Case Modeling, New York:
Addison-Wesley, 2003

[22] UIML 4.0 specification, http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=uiml 10.05.2012.

[23] E. Denert, J. Siedersleben, „Wie baut man Informations-
systeme? Überlegungen zur Standardarchitektur,“. in
Informatik Spektrum, 23(4), 2000, pp. 247-257

[24] J. Siedersleben, Moderne Softwarearchitektur - Umsichtig
planen, robust bauen mit Quasar, 1st ed. 2004, corrected
reprint, Heidelberg: dpunkt, 2006

66Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

