PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

On A Type-2 Fuzzy Clustering Algorithm

Leehter Yao and Kuei-Sung Weng

Dept. of Electrical Engineering
National Taipei University of Technology
Taipei, Taiwan
e-mail: ltyao@ntut.edu.tw; gsweng@mail.nihs.tp.edu.

Abstract—A Type-2 fuzzy clustering algoritm that integreates
Type-2 fuzzy sets with Gustafson-Kessel algorithnsiproposed
in this paper. The proposed Type-2 Gustafson-Kessel
algorithm (T2GKA) is essentially a combination of
probabilistic and possibilistic clustering schemeslt will be
shown that the T2GKA is less susceptive to noise ah the
Type-1 GKA. The T2GKA ignores the inlier and outlie
interruptions. The clustering results show the robstness of the
proposed T2GKA since a reasonable amount of noiseth does
not affect its clustering performance. A drawback 6 the
conventional GKA is that it can only find clusters of
approximately equal volume. To overcome this diffialty, this
work uses an algorithm called The Directed Evaluatin
Ellipsoid Cluster Volume (DEECV) to effectively evduate the
proper ellipsoid volume. The proposed T2GKA is essgially a
DEECV based learning algorithm integrated with T2GKA.
The experimental results show that the T2GKA can lkern
suitable sized cluster volume along with a varyingdataset
structure volume.

Keywords-ellipsoids; probabilistic; posshilistic; fuzzy c-
means; Gustafson-Kessel algorithm; Type-2 fuzzy clustering

l. INTRODUCTION

Clustering shows powerful capabilities to determine
finite number of clusters for partitioning a dataséruschka
et al. [1] proposed a survey of evolutionary altjorns for
clustering, we can see the clustering area prbfiléocusing
more on those topics that have received more irapogt in
the literature. Based on the partition-based cascee
fuzzy clustering algorithm can be classified intol@bilistic
fuzzy clustering and possibilistic fuzzy clusterifidne fuzzy

ellipsoid volumes before iteratively calculatingeticluster
centers.

FCM and GKA are probabilistic fuzzy -clustering
approaches. In a noise environment, the probabiliszzy
clustering will force noise to belong to one or maetusters,
therefore seriously influencing the main datasetcstire. To
relieve the probabilistic clustering drawbacks,dknapuram
and Keller proposed a possibilistic fuzzy clustgrialled the
Possibilistic c-means (PCM) [5-6]. The possibilistuzzy
clustering can evaluate a datum to a cluster depegrahly
on the distance of the datum to that cluster, lmitam its
distance to other clusters. The possibilistic fughystering
can alleviate the noise influence, but it is veepstive to
initialization, sometimes generating coincidentstius.

To avoid the various FCM and PCM problems, Pal.et a
proposed a new model called the possibilistic fuzrgeans
(PFCM) model [7]. The PFCM is a hybridization ofeth
PCM and FCM models. The PFCM solves the noise
sensitivity defect of FCM and overcomes the coieotd
clusters problem of PCM. However, the PFCM model ha
four parameters that must be learned. For an aicert
environment how to search for the best four parameis
difficult. All aforementioned fuzzy clustering mettts have
membership values called Type-1 membership valuesa.
real application domain, the prototype data mayehaany
uncertain factors. Owing to the Type-1 fuzzy selwir
membership functions are crisp and they cannotcttijre
model the uncertainties. On the other hand, thee®p
membership functions are fuzzy, and they can apiatety
model the uncertainties.

The Type-2 fuzzy set concept was introduced by Hade

c-means (FCM) algorithm proposed by Bezdek [2] is d8]. The advances of the Type-2 fuzzy sets andesyst[9]

widely used and efficient clustering method forsthring

are largely attributed to their three-dimensionanmbership

and classification. Because FCM employs the Euatide function to handle more uncertainties in real agpion

norm to measure dissimilarity, it inherently impssa
spheroid onto the clusters regardless of the actiadh
distribution. In [3] and [4], Gustafson and Kespebposed
the G-K algorithm (GKA) using an adaptive distamz®m

problems. Recent researches [10-13] have shownthieat
uncertainty in fuzzy systems can be captured wigpet2
fuzzy sets. In [14], the interval Type-2 fuzzy sehs
incorporated into the FCM to observe the effeanahaging

based on the cluster center and data point cowaian uncertainty from the two fuzzifiers. Type-2 fuzzgts have

matrices to measure dissimilarity. Because theawnie

been used to manage the uncertainties in variousiths

norm employed in the GKA is in the Mahalanobis normwhere the performance of Type-1 fuzzy sets is not

form, GKA can be considered as utilizing ellipsoitts
cluster prototype data points. However, GKA assufixesl
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satisfactory. For instance, [15-17] used the Tygaz2y set
for handling uncertainty in pattern recognitionratadi et al.
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[18] presented a systematic Type-2 fuzzy expertesysor

diagnosing human brain tumors. x; possibility value pis smaller
When clustering methods are combined with Type-2

fuzzy sets the prototype data can be clustered progerly

and accurately. We extend the Type-1 membershipesab

Type-2 by assigning a possibilistic-membership fiomcto

each Type-1 membership value. The possibility theor

introduced by Zadeh[19] appears as a mathematical C

counterpart of probability theory that deals wittcertainty

using fuzzy sets. The Type-2 membership values are A

obtained by taking the difference between each Type

membership function area with the correspondingetyp

membership value. In this paper we use the unbalnde

normal distributions Gaussian function as the sdéapn

memb_erShip function [20‘2.1]- _ Figure 1. The points have the same membership ‘aitieave different
Using the aforementioned cencepts we combine@ossibility values
probabilistic and possibilistic methods to buildp&y2 fuzzy The idea in building Type-2 fuzzy sets is basedogimn

sets. We present a Type-2 GKA (T2GKA) that is anthe fact that, for the same Type-1 membership vetlue
extension of the conventional GKA. The membershilues secondary membership function should make the darge
for each prototype datum are extended as Type-2yfuz possibility value more than the smaller possibiigyue. The
memberships by assigning a membership grade tdyihe- secondary membership function based on the coriveetit
1 memberships. The higher the membership valueafor learning theory proposed here originates from tival-r
prototype datum, the larger the prototype datuntrdmrtion  penalized competitive learning (RPCL) [B4]. The basic
possesses in determining the cluster center lotafilie idea of RPCL is that, for each input, the winneit us
experimental results show that the T2GKA was lessnodified to adapt to the input and its rival isedehed using
susceptible to noise than the Type-1 GKA. a smaller learning rate, so, RPCL rewards the wiramel

To overcome the T2GKA's inability to determine punishes the rival. A Type-2 fuzzy set is definedha object
appropriate ellipsoid size, a Directed Evaluatidiipgoid A which has the following form:
Cluster Volume (DEECV) scheme is proposed in tlaisgp, Z\={<u L& (.»} )
so that the proper cluster volume can be directbiuated T RoA '
instead of each cluster using equal cluster voluméhe . o .
clustering learning. The Mahalanobis norm inducingtrix ~ WNere<a(+) is an unbounded normal distributions Gaussian
determinant is utilized in this paper to measueedtlipsoid ~ function representing the secondary membershiptitmof
size [22, 23]. The DEECV is developed to intellitfgn the elemeni(u,t),u]U,&, ()0[0,1]in A. We set the Type-

estimate the proper ellipsoid size value. With greper 1 mempership value and Type-2 membership valugioela
ellipsoid size value determined by the proposed O¥8he ;¢ following equations:

learning efficiency can be further improved. Thegwosed _ .

T2GKA is essentially a DEECV based learning aldponit U= uxmax(c, ¢)). @)

integrated with T2GKA. t=ux&,(v) ©)
A ’

Il.  COMBINED PROBABILISTIC AND where u represents the primary membership value &and
POSSIBILISTIC TO BUILD TYPE-2 FUZZY SET represents the Type-2 membership value. Fhe) is an

We focus on providing a Type-2 fuzzy set modeMoid  ynpounded normal distribution  Gaussian  function

uncertain outliers affecting the clustering leagniresults.  representing the secondary membership function:
We explain how to build the Type-2 fuzzy sets basedhe

2
following concept. For every prototype data poitie {A(-):exp—l(a—_bj . (4)
ordered set of memberships to each of the clusters 2\ o

{4,....1i} spans ac-dimensional space. Sets of specific  nger the aforementioned concepts, reducing the®Ryp
membership values in this space are representgmiats. fuzzy sets involves complicated operations. We thee
The possibility distribution transform of the Type- input/output data pointg,, k =1...N, set as the possibility
probability distribution on unbounded normal distions  value, px as the unbounded normal distribution Gaussian
Gaussian functqon around thge Type-1 membershipev_&lor function standard deviations and the(p, —1) denotes the
each given point, the possibilistic type membersvdjue  gistance betweerpy to the central unbounded normal

indicates the strength of the attribution to anus®r gisyripution Gaussian function, then design theosdary
independent from the rest. Figure 1 shows thatpgeiats X, oLy

and x, have the same Type-1 membership value but haVﬁ]embership functiore Pi

different possibility values. The confidence intervals for varying possibilistialues
px built around the same prototype datury with
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membership valueyy, are nested. A unimodal numerical A. The Type-2 G-K Algorithm (T2GKA):

poss_ibility di_stribution may also be viewed as ated_se_t of Based on the prototype data poirisk =1,...,N given
confidence intervals. The unbounded normal distidou . 40 initial Type-1 fuzzy partition matix® =T © |

Gaussian function’s confidence intervals aceahd have a . o
95% confidence level. For example, the Type-1 nmenstip T2GKA Is 10 learn the Type-2 fuzzy partition ma_tffx th_e
coordinates of all cluster centévsand the norm inducing

vglue/l=0.5,_ h_a_ls a secondary membgrshlp function W'thmatrixAi by minimizing ,i = 1,..., ¢
different possibility values as shown in Fig. 2.

C N C
The Type-2 membership values can be obtained tséng J TV.A) = tY™D2. +> wlAl-o0
following equation; racka(TV/A) ;;('k) ikA .Z:;' ,(|A|| Pi)

(6)

1[971] NS
t, = xE =t = xe (5) +Zyk(ztik -1,
where ty (t4) denotes the Type-2(1) membershifs, k==
denotes the membership degrees for one datum résgmb where t, has the same meaning of membership and

the possibility of its being a member of the cqp®®ling  ng4raints as FCM. The distance betweerkttreprototype

cluster. For example, for the Type-1 membershibya noint and thé-th cluster center is defined as the

valuex=0.5, the following evaluations process interpretsyanalanobis norm:

that Type-2 fuzzy sets evaluate their secondary loeeship D = ZVITA (% —v )2 7
values with different possibility values. The priyfe data o = (O V) A G =) (")
points X, k =1,..,N have Type-1 membership valué pqr thei-th cluster, the ellipsoidy(-) is defined as

M, =0.5 qnd possibility valuep, :.1.0 the_n the Type-2 @(x)=(x-v,) A(x-v)=1,i=1,...,c. ©)
membership valueg, =0.5are obtained using (5). For the
same Type-1 membership valyg = 0.5, and possibility Since the volume ofy(+) is inversely proportional to the

| _ btain th bershi | determinant ofy;, det@) is thus utilized as a measure of the
value p, =0.1 we obtain the Type-2 membership values as;jipsoid volume for T2GKA. If the determinant @, is

t, =1.2884- 0181 (. given asg, A is constrained by

We know that in our design the secondary membership detA)=0, g>0,i=1,...,c. (9)
function, for the same Type-1 membership valuearger
possibility value can make the Type-1 membershilueva The optimization in T,V,A) can be solved using

larger than the smaller possibility value does.ngsthe (ifferentiations as follows:

aforementioned concepts, we combined the probgalailid _ Yoo
possibility membership values and propose the Wype- A =[Adet(F)]"F™ i=1.¢, (10)
Gustafson-Kessel Algorithm (T2GKA) N
m T
ll. THE TYPE-2 G-K ALGORITHM (T2GKA): E = 2 ia(t)" O ) (5= v) (1)
: .
To overcome the drawback of the GK algorithm, it is ZN_ ()"
used to find only clusters of approximately equalmes. In k=L
this paper an algorithm called The Directed Evatuat To avoid the covariance matrix being singular ie th

Ellipsoid Cluster Volume (DEECV) is proposed to jterative process, a scaled identity matrix is adte the
effectively evaluate the proper ellipsoid volumeheT covariance matrix, i.e.,

proposed T2GKA is essentially a DEECV based legrnin yj/
algorithm integrated with T2GKA. Fi =@-k)F +kdetf, ) 1, (12)
. wherex [[0,1] is a tuning factor with a small value afRglis
2 05 7@? the whole data set covariance matrix with fixeduealThe
3 08 71\ "\ coordinate of each cluster center as well as thalyeeship
g/ / \ N~ element in the partition matrix can be updated gigime
2. / / \ AN —p-01 following equations:
% 2:2 // / \\ \\ —p:oa N N m «
K] Vv / \ N p=0.5 k=1\ 1K k
§ 0.2 / \ ——p=1.0 Vi = N m (13)
& 01
0 — N~ Zk=l(tik)
0 0.2 04 0.6 08 1
Type-1 membership values g {£=0.5) Z(m—l) -1
C leA| )
ty = J<i<c;1<k < N. 14)
Figure 2. The secondary membership function wiéhdifferent possibility = DikAe
values
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For each given point, the possibilistic type mersbigr
value, indicating the strength of the attributiorany cluster,
is independent from the rest. We calculate the ipitistic
type membership value simultaneously using

_ 1
pik - 1 -

2 \(mD
1+ 7D”<A "
&

We determine the reasonable numbes; bfy computing

(15)

(16)

usually K=1 is chosen. For each given point, using the

possibilistic type membership value, the Type-2 tnership
values can be updated using equation (5).

B. The Directed Evaluation Ellipsoid Cluster Volume
(DEECV)

Without knowing the prototype data point distrilouti
range a priori, a tentative valyg is first assigned to every
parameterg,i=1,...,c.Withp =p,i=1,...,c,T2GKA is

applied to calculate the tentative eIIipsﬁpwith centerv, ,

the covariance matri1lFAi , and the norm inducing matrﬁg ,

i =1,..., c.DenoteB; as the set of data points belonging to ||xi -V, "A

the cluster corresponding &pand xij as the-th data point

belonging toB;. Let X' be the data point with the largest

Mahalanobis distancéi among all data points B, i.e.

2= ArX?Dr:axﬂx; -9, ||A) (17)
and L = rx\?%x(”x} -V "A ), (18)

where

inducing matrixA as in (7). According to (7) and (10),
()A(i -Oi )T (pa det(lfi ))Un 'Ei_l ()zi -Oi )= |:| :

It is thus obvious that if the initialization prase
appropriately adjusts the initial ellipsoid volurress that the

(19)

farthest data poink' with the largest Mahalanobis norm is

right on the initialized ellipsoid, all of the gikoid volumes
will be scaled to the range of solutions. As shaw(B), the

data points on the ellipsoids have a Mahalanolsitadce of
1. Divide L; at both sides of (19),
(X -9)7 (Grdet )" & -9,)=1. (20)

Therefore, the appropriate initial volume for th¢h
ellipsoid leading to the result that all data psiate included

by the ellipsoid with tentative valyg can thus be defined as:

Copyright (c) IARIA, 2012.  ISBN: 978-1-61208-221-9

A denotes the Mahalanobis norm with the norm

=P =y,

P _initial = I:,: reer G (21)

It is worth noting that ifx' is an outlier for the cluster
corresponding tqﬁl, I:i will be unreasonably large. This

results in an inaccurate initial ellipsoid volumeaccording
to (21). For the data points with too much noise oatlier
detection scheme is required to determine the evatland
filter them out before applying the directed ifidation. Let

& be the average Mahalanobis distance among all data
points belonging t®;, then
L]

P -
_ Z;"Xi Vi”;\
d ==L

I8

(22)

Where|3| denotes the number of data pointsBin For all

data points inB;, the farthest data point and its maximum
Mahalanobis distance can be respectively determirsauly
(17) and (18). Removing the outliers affects thestdring
learning results. With a predetermined threshgldny data

point x' belonging to thei-th cluster and its possibility
membership valueR, is larger than a predetermined
threshold possibility membership valgg= a (in this paper,
we setg =0.1), satisfies the following criterion:

Ay (23)

d

is considered as an outlier and can be removed Boifhe

outlier detection scheme, as shown in (22) and, (&3)
recursively applied to every cluster of data poinitsil no

outlier has been detected. After filtering out thdliers in

every cluster, the accuracy of calculating propépseid

volume according to (21) for T2GKA's directed e\ation

can be greatly improved.

IV. COMPUTER SIMULATIONS

We used the following computational conditions &br
datasets: 1. The termination tolerange 0.00000:, the
D,, for the FCM, FCMPCM, and PFCM is the Euclidean

norm. 2. The D,, for the GK and T2GKA is the

Mahalanobis norm. 3. The number oftlustersc is 7 for
7cluster.4. cis 5 for 5 same-circle and sinusoidal setx 5.
is 2 for all other datasets.

Example 1: The artificial 2-dimensional datasetggiand
Xsso are designed. The % is a mixture of two 2-variate

o . 5.0 5.0
normal distributions with mean vectors and .
6.0 12.0

Each cluster has 200 points, whilgsXis an augmented
version of X400 with an additional 150 points unifdy

distributed over[0,15x[ 0,11 . For data set X%, the

clustering results in Table | show that the termaentroids
learned by all five algorithms produce good cenisoi
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When we cluster datasetz% we hope that the 150 noise
points can be ignored and the cluster center veillfdund
closer to the true centroidé,,.. From Table I, we can see
that all five algorithms clustered the datasetyXerminal
centroids. Because PCM is very sensitive to irdgion and
it sometimes generates coincident clusters, wézedilthe
FCM clustering results to initialize PCM. The otheur
clustering methods ran the algorithm directly. Take a
rough assessment of how each method accountedlifensi

and outliers, we estimaté) = |V,,, -V ,|*, whereA denotes

FCM, FCMPCM, PFCM, GK, and T2GKA. The
EFCM:O-41731 EFCMPCMZO.OOOI, EPFCM:OS714 6:1, b:O.l,
m=2, 7=2), Eprcy=0.1699 &=1, b=1, m=2, 7=2),
Ecka=0.4825, andEr,cka=0.0066. The T2GKA clustering
results with the proper cluster volumes for theadats X5,
are shown in Fig. 3. We compared the five clustgerin
method’sE, values, th&Ecypcmvalue is smaller than that in
other methods, but its membership values are inutbgre of
the other clusters. We cannot depend on the mehipers
values to classify the data points belonging tocwldluster.
Except for theErcmpem the Eragravalue is smaller than that
in other methods. The clustering results show tibeistness
of the proposed T2GKA because a reasonable amdunt
noise data does not affect its clustering perfogaan

Example 2: To verify that the proposed method can accord

the prototype dataset structure to learn the prahester
centers, 5 same-circles were designed with eachtetlu
containing 300 prototype data points. The datasearbe-
circle is a mixture of two 2-variate normal distritons with

Eo.o} {5.0} ( o.oj [5.0} {2.5]
mean vector . , . , and .

3.0) {3.0) \-3.0) (-3.0 0.0

The T2GKA clustered results with the proper clustEnters
for the 5 same-circle datasets are shown in Fifod.the 5
same-circle datasets, thErcy=0.0042, Ercppen=0.0003,
Eprcpy=0.0039 6=1,b=0.1,m=2, n=2), Eprc)=12.2009 =1,
b:]., m=2, IFZ), EGKA:O-OOSGu andETZGKA:0.00ZG. We
compared the five clustering methodEs values. Except for
the Ercmpem the Eracka Value is smaller than that in other
methods. The clustering results show the robustogske
proposed T2GKA because a reasonable amount of datae
does not affect its clustering performance.

Example 3: To verify that the proposed method can accord 3l

the prototype dataset structure to learn the prajhester
volumes, 2 artificial datasets named 7cluster andssidal
were designed. There are 700 and 200 prototypepidétés
in the 7cluster and sinusoidal datasets, respégtidnere
are 700 prototype data points in the 7cluster étdas
clustered into 7 clusters with different sizes andntations.
Each cluster contains 100 prototype data pointe. 7idiuster
dataset is a mixture of two 2-variate distributiongth
varying deviation, its mean vectors

5.0) (1.0) (1.0) (5.0 2.0 -2.0 4.5
are H ’ H H ’ ’ an .
1.0) \5.0) \1.0) | 5.0) | -2.0 2.0 3.0
The prototype data points in the dataset sinusoatel
generated by x, =10"sin(0.002{ )¥+& , where

x 0[0,100 and &~Normal(025) is a normally

Copyright (c) IARIA, 2012.  ISBN: 978-1-61208-221-9

distributed random noise. The T2GKA clustered ttsswith
the proper clusters volumes for the 7cluster andssiidal
datasets are shown in Figs. 5 and 6, respectivihe
proposed T2GKA is essentially a DEECV based legrnin
algorithm integrated with the T2GKA. The experinant
results show that the T2GKA can learn suitabledsdaster
volume along with dataset varying structure volume.

TABLE |. THE TERMINAL CENTROIDSLEARNEDBY FCM, FCMPCM,PFCM,
GK, AND T2GKA IN THE DATASETS X 400 AND Xss0, EXAMPLE 1

Data sets
Clustering ) ]
Algorithm X400 (centroid) X550 (centroid)
X1 X2 X1 X2
L 4.9794 5.953! 55711 5.414:
FCM: m=2 4.9407 | 12.0593 | 5.1885 | 11.6395
5.0017 | 6.0094 | 5.0076 6.0091
FCMPCM: n=2 4.9973 | 12.0102 | 4.9968 | 12.0103
PFCM: a=1, b=1,| 4.9843 | 5.9746 5.3716 5.7308
m=2,n=2 4.9566 | 12.0506 | 5.1281 | 11.6642
PFCM: a=1, 4.9800 5.9558 5.5410 5.4604
b=0.1, m=2n=2 | 4.9427 | 12.0582 | 5.1804 11.6445
49782 | 5.9538 5.1064 5.4443
GKA: m=2
4.9397 | 12.0568 | 5.5502 | 11.4151
0]
5.0048 | 6.0239 5.0137 5.9593
T2GKA: m=2
5.0097 | 12.0837 | 4.9743 | 12.1031

*2

Figure 3. The T2GKA clustering results with the geoclusters volumes
for the dataset 2%, Example 1

Figure 4. Clustering results using 5 ellipsoidstfa prototype data points
in the dataseisamecircle, Example 2
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(4]

(5]

(6]

(7]

(8]

[9]
Figure 5. Clustering results using 7 ellipsoidstfa prototype data points in

the datasetcluster, Example 3 [10]

140

120 [ll]
100
80

[12]

B0
o0
il [ 1 3]

1}

20

@ [14]
il L L L L L L
=20 1] 20 40 B0 80 100 120
x1 [15]
Figure 6. Clustering results using 5 ellipsoidstf@ prototype data points in
the dataset sinusoidal, Example 3 [16]

V. CONCLUSIONS

This paper presented an efficient combined prolsaioil
and possibilistic method for building Type-2 fuzszgts.
Utilizing this concept we presented a Type-2 GKRGKA)
that is an extension of the conventional GKA. The
experimental results showed that the T2GKA was less
susceptible to noise than the Type-1 GKA. The ehirst
results showed the robustness of the proposed T2GKHAS!
because a reasonable amount of noise data doeffewitits
clustering performance.

The DEECV is proposed to effectively evaluate prope
ellipsoid volume. The proposed T2GKA is essentialy
DEECV-based learning algorithm integrated with T2GK
The experimental results showed that the T2GKA leam
suitable sized clusters volume along with varyirajadet
structure volume.
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