
On A Type-2 Fuzzy Clustering Algorithm 
 

 

Leehter Yao and Kuei-Sung Weng 
Dept. of Electrical Engineering 

National Taipei University of Technology 
Taipei, Taiwan 

e-mail: ltyao@ntut.edu.tw; gsweng@mail.nihs.tp.edu.tw 
 

 
 

Abstract—A Type-2 fuzzy clustering algoritm that integreates 
Type-2 fuzzy sets with Gustafson-Kessel algorithm is proposed 
in this paper. The proposed Type-2 Gustafson-Kessel 
algorithm (T2GKA) is essentially a combination of 
probabilistic and possibilistic clustering schemes. It will be 
shown that the T2GKA is less susceptive to noise than the 
Type-1 GKA. The T2GKA ignores the inlier and outlier 
interruptions. The clustering results show the robustness of the 
proposed T2GKA since a reasonable amount of noise data does 
not affect its clustering performance. A drawback of the 
conventional GKA is that it can only find clusters of 
approximately equal volume. To overcome this difficulty, this 
work uses an algorithm called The Directed Evaluation 
Ellipsoid Cluster Volume (DEECV) to effectively evaluate the 
proper ellipsoid volume. The proposed T2GKA is essentially a 
DEECV based learning algorithm integrated with T2GKA. 
The experimental results show that the T2GKA can learn 
suitable sized cluster volume along with a varying dataset 
structure volume. 

Keywords-ellipsoids; probabilistic; possibilistic; fuzzy c-
means; Gustafson-Kessel algorithm; Type-2 fuzzy clustering 

I.  INTRODUCTION 

Clustering shows powerful capabilities to determine a 
finite number of clusters for partitioning a dataset. Hruschka 
et al. [1] proposed a survey of evolutionary algorithms for 
clustering, we can see the clustering area profile by focusing 
more on those topics that have received more importance in 
the literature. Based on the partition-based concepts, the 
fuzzy clustering algorithm can be classified into probabilistic 
fuzzy clustering and possibilistic fuzzy clustering. The fuzzy 
c-means (FCM) algorithm proposed by Bezdek [2] is a 
widely used and efficient clustering method for clustering 
and classification. Because FCM employs the Euclidean 
norm to measure dissimilarity, it inherently imposes a 
spheroid onto the clusters regardless of the actual data 
distribution. In [3] and [4], Gustafson and Kessel proposed 
the G-K algorithm (GKA) using an adaptive distance norm 
based on the cluster center and data point covariance 
matrices to measure dissimilarity.  Because the distance 
norm employed in the GKA is in the Mahalanobis norm 
form, GKA can be considered as utilizing ellipsoids to 
cluster prototype data points. However, GKA assumes fixed 

ellipsoid volumes before iteratively calculating the cluster 
centers. 

FCM and GKA are probabilistic fuzzy clustering 
approaches. In a noise environment, the probabilistic fuzzy 
clustering will force noise to belong to one or more clusters, 
therefore seriously influencing the main dataset structure. To 
relieve the probabilistic clustering drawbacks, Krishnapuram 
and Keller proposed a possibilistic fuzzy clustering called the 
Possibilistic c-means (PCM) [5-6]. The possibilistic fuzzy 
clustering can evaluate a datum to a cluster depending only 
on the distance of the datum to that cluster, but not on its 
distance to other clusters. The possibilistic fuzzy clustering 
can alleviate the noise influence, but it is very sensitive to 
initialization, sometimes generating coincident clusters. 

To avoid the various FCM and PCM problems, Pal et al. 
proposed a new model called the possibilistic fuzzy c-means 
(PFCM) model [7]. The PFCM is a hybridization of the 
PCM and FCM models. The PFCM solves the noise 
sensitivity defect of FCM and overcomes the coincident 
clusters problem of PCM. However, the PFCM model has 
four parameters that must be learned. For an uncertain 
environment how to search for the best four parameters is 
difficult. All aforementioned fuzzy clustering methods have 
membership values called Type-1 membership values. In a 
real application domain, the prototype data may have many 
uncertain factors. Owing to the Type-1 fuzzy sets, their 
membership functions are crisp and they cannot directly 
model the uncertainties. On the other hand, the Type-2 
membership functions are fuzzy, and they can appropriately 
model the uncertainties. 

The Type-2 fuzzy set concept was introduced by Zadeh 
[8]. The advances of the Type-2 fuzzy sets and systems [9] 
are largely attributed to their three-dimensional membership 
function to handle more uncertainties in real application 
problems. Recent researches [10-13] have shown that the 
uncertainty in fuzzy systems can be captured with Type-2 
fuzzy sets. In [14], the interval Type-2 fuzzy set was 
incorporated into the FCM to observe the effect of managing 
uncertainty from the two fuzzifiers. Type-2 fuzzy sets have 
been used to manage the uncertainties in various domains 
where the performance of Type-1 fuzzy sets is not 
satisfactory. For instance, [15-17] used the Type-2 fuzzy set 
for handling uncertainty in pattern recognition. Zarandi et al. 
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[18] presented a systematic Type-2 fuzzy expert system for 
diagnosing human brain tumors. 

When clustering methods are combined with Type-2 
fuzzy sets the prototype data can be clustered more properly 
and accurately. We extend the Type-1 membership values to 
Type-2 by assigning a possibilistic-membership function to 
each Type-1 membership value. The possibility theory, 
introduced by Zadeh [19] appears as a mathematical 
counterpart of probability theory that deals with uncertainty 
using fuzzy sets. The Type-2 membership values are 
obtained by taking the difference between each Type-2 
membership function area with the corresponding Type-1 
membership value. In this paper we use the unbounded 
normal distributions Gaussian function as the secondary 
membership function [20-21]. 

Using the aforementioned cencepts we combined 
probabilistic and possibilistic methods to build Type-2 fuzzy 
sets. We present a Type-2 GKA (T2GKA) that is an 
extension of the conventional GKA. The membership values 
for each prototype datum are extended as Type-2 fuzzy 
memberships by assigning a membership grade to the Type-
1 memberships. The higher the membership value for a 
prototype datum, the larger the prototype datum contribution 
possesses in determining the cluster center location. The 
experimental results show that the T2GKA was less 
susceptible to noise than the Type-1 GKA. 

To overcome the T2GKA’s inability to determine 
appropriate ellipsoid size, a Directed Evaluation Ellipsoid 
Cluster Volume (DEECV) scheme is proposed in this paper, 
so that the proper cluster volume can be directly evaluated 
instead of each cluster using equal cluster volume in the 
clustering learning. The Mahalanobis norm inducing matrix 
determinant is utilized in this paper to measure the ellipsoid 
size [22, 23]. The DEECV is developed to intelligently 
estimate the proper ellipsoid size value. With the proper 
ellipsoid size value determined by the proposed DEECV, the 
learning efficiency can be further improved. The proposed 
T2GKA is essentially a DEECV based learning algorithm 
integrated with T2GKA. 

II. COMBINED PROBABILISTIC AND 
POSSIBILISTIC TO BUILD TYPE-2 FUZZY SET 

We focus on providing a Type-2 fuzzy set model to avoid 
uncertain outliers affecting the clustering learning results. 
We explain how to build the Type-2 fuzzy sets based on the 
following concept. For every prototype data point, the 
ordered set of memberships to each of the clusters 

{ }1, , cµ µ…  spans a c-dimensional space. Sets of specific 

membership values in this space are represented as points. 
The possibility distribution transform of the Type-1 
probability distribution on unbounded normal distributions 
Gaussian function around the Type-1 membership value. For 
each given point, the possibilistic type membership value 
indicates the strength of the attribution to any cluster 
independent from the rest. Figure 1 shows that two points x1 
and x2 have the same Type-1 membership value but have 
different possibility values. 

 

 
Figure 1. The points have the same membership value but have different 
possibility values 

The idea in building Type-2 fuzzy sets is based simply on 
the fact that, for the same Type-1 membership value, the 
secondary membership function should make the larger 
possibility value more than the smaller possibility value. The 
secondary membership function based on the competitive 
learning theory proposed here originates from the rival-
penalized competitive learning (RPCL) in [24]. The basic 
idea of RPCL is that, for each input, the winner unit is 
modified to adapt to the input and its rival is delearned using 
a smaller learning rate, so, RPCL rewards the winner and 
punishes the rival. A Type-2 fuzzy set is defined as an object 
�A  which has the following form: 
� { }, , ( )AA u t ξ≡ i , (1) 

where ( )Aξ i  is an unbounded normal distributions Gaussian 
function representing the secondary membership function of 

the element ( , ), , ( ) [0,1]Au t u ξ∈ ∈U i in �A . We set the Type-
1 membership value and Type-2 membership value relation 
as following equations: 

max( ( ))Au u ξ= × i , (2) 

( )At u ξ= × i , (3) 

where u represents the primary membership value and t 
represents the Type-2 membership value. The ( )Aξ i  is an 
unbounded normal distribution Gaussian function 
representing the secondary membership function: 

2
1

( ) exp
2A

a bξ
σ
− = −  

 
i . (4) 

Under the aforementioned concepts, reducing the Type-2 
fuzzy sets involves complicated operations. We use the 
input/output data points xk, k =1…N, set as the possibility 
value, pik as the unbounded normal distribution Gaussian 
function standard deviation, σ and the ( 1)ikp −  denotes the 
distance between pik to the central unbounded normal 
distribution Gaussian function, then design the secondary 

membership function 
21

0.5 ( )ik

ik

p

pe
−

− ×
. 

The confidence intervals for varying possibilistic values 
pik built around the same prototype datum xik with 
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membership value µik are nested. A unimodal numerical 
possibility distribution may also be viewed as a nested set of 
confidence intervals. The unbounded normal distribution 
Gaussian function’s confidence intervals are 2σ and have a 
95% confidence level.  For example, the Type-1 membership 
value 0.5µ = , has a secondary membership function with 
different possibility values as shown in Fig. 2. 

The Type-2 membership values can be obtained using the 
following equation; 

2
11

2 ,
ik

ik

p

p
ik ik A ik ikt t eµ ξ µ

 −
− ×  

 = × ⇒ = ×  (5) 

where tik (µik) denotes the Type-2(1) memberships, pik 
denotes the membership degrees for one datum resembling 
the possibility of its being a member of the corresponding 
cluster. For example, for the Type-1 membership 
value 0.5µ = , the following evaluations process interprets 
that Type-2 fuzzy sets evaluate their secondary membership 
values with different possibility values. The prototype data 
points xk, k =1,…,N, have Type-1 membership value 

0.5ikµ =  and possibility value 1.0ikp =  then the Type-2 
membership values 0.5ikt = are obtained using (5). For the 

same Type-1 membership value 0.5ikµ = , and possibility 

value 0.1ikp =  we obtain the Type-2 membership values as 

1.2884 018 0ikt e= − ≅ . 
We know that in our design the secondary membership 

function, for the same Type-1 membership value, a larger 
possibility value can make the Type-1 membership value 
larger than the smaller possibility value does. Using the 
aforementioned concepts, we combined the probability and 
possibility membership values and propose the Type-2 
Gustafson-Kessel Algorithm (T2GKA). 

III.  THE TYPE-2 G-K ALGORITHM (T2GKA): 

To overcome the drawback of the GK algorithm, it is 
used to find only clusters of approximately equal volumes. In 
this paper an algorithm called The Directed Evaluation 
Ellipsoid Cluster Volume (DEECV) is proposed to 
effectively evaluate the proper ellipsoid volume. The 
proposed T2GKA is essentially a DEECV based learning 
algorithm integrated with T2GKA. 

 

 

Figure 2. The secondary membership function with the different possibility 
values 

A. The Type-2 G-K Algorithm (T2GKA): 

Based on the prototype data points xk, k =1,…,N, given 
the random initial Type-1 fuzzy partition matrix (0) (0)=U T , 
T2GKA is to learn the Type-2 fuzzy partition matrix T, the 
coordinates of all cluster centers V and the norm inducing 
matrix Ai by minimizing , i = 1,…, c 

( )2 i
1 1 1

1 1

( ) ( )

( 1),

c N c
m

T GKA ik i i
i k i

N c

k ik
k i

J t

t

ω ρ

γ

= = =

= =

= + −

+ −

∑∑ ∑

∑ ∑

i

2
ikAT,V, A D A

 (6) 

where ikt  has the same meaning of membership and 
constraints as FCM. The distance between the k-th prototype 
data point and the i-th cluster center is defined as the 
Mahalanobis norm: 

1/2(( ) ( )) .T= − −
iikA k i i k iD x v A x v

 
(7) 

For the i-th cluster, the ellipsoid φi(·) is defined as 
( ) ( ) ( )T

iφ = − − =i i ix x v A x v 1 , i =1,…, c.   (8) 

Since the volume of φi(·) is inversely proportional to the 
determinant of Ai, det(Ai) is thus utilized as a measure of the 
ellipsoid volume for T2GKA. If the determinant of Ai is 
given as ρi, Ai is constrained by 

det(Ai) = ρi,  ρi > 0, i = 1,…, c. (9) 

The optimization in (T,V,A) can be solved using 
differentiations as  follows: 

( )
1

1det 1, , ,n
i i i i i cρ −= =  A F F …  (10) 

( ) ( )( )
( )

N m T

k 1
i N m

k 1

.
ik k i k i

ik

t x v x v

t

=

=

− −
= ∑

∑
F  (11) 

To avoid the covariance matrix being singular in the 
iterative process, a scaled identity matrix is added to the 
covariance matrix, i.e., 

1
(1- ) det( ) n

i iκ κ= + 0F F F I,  (12) 

where κ ∈[0,1] is a tuning factor with a small value and F0 is 
the whole data set covariance matrix with fixed value. The 
coordinate of each cluster center as well as the membership 
element in the partition matrix can be updated using the 
following equations: 

( )
( )

1

1

,

mN

ikk
mN

ikk

t

t

=

=

=
∑
∑

k
i

x
v  (13) 

12 ( 1)

1

,1 ;1 .

m
c

ik
j

t i c k N

−−

=

  
  = ≤ ≤ ≤ ≤
     

∑ i

i

ikA

jkA

D

D
   (14) 
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For each given point, the possibilistic type membership 
value, indicating the strength of the attribution to any cluster, 
is independent from the rest. We calculate the possibilistic 
type membership value simultaneously using 

1

( 1)

1
.

1

ik

m

i

p

ε

−

=
 

+   
 

i

2
ikAD

 (15) 

We determine the reasonable number of εi by computing 

1

1

N
m
ik

k
i N

m
ik

k

t
K

t
ε =

=

=
∑

∑

i

2
ikAD

, (16) 

usually K=1 is chosen. For each given point, using the 
possibilistic type membership value, the Type-2 membership 
values can be updated using equation (5). 

B. The Directed Evaluation Ellipsoid Cluster Volume 
(DEECV) 

Without knowing the prototype data point distribution 
range a priori, a tentative value ρa is first assigned to every 
parameter, ρi, i = 1,…, c. With ρi = ρa, i = 1,…, c, T2GKA is 

applied to calculate the tentative ellipsoid ˆ
iφ  with center ̂ iv , 

the covariance matrix ̂iF , and the norm inducing matrix̂iA , 
i = 1,…, c. Denote Bi as the set of data points belonging to 

the cluster corresponding tôiφ  and i
jx  as the j-th data point 

belonging to Bi. Let ˆ ix  be the data point with the largest 

Mahalanobis distance ˆiL  among all data points in Bi, i.e. 

ˆ
ˆ ˆ )

iB

Argmax(
∈

= −
i i
j

i i
j i A

x

x x v  (17) 

and 
ˆ

ˆ ˆ )
i

i
B

L max(
∈

= −
i

ij

i
j i Ax

x v , (18) 

where ˆ
iA

i denotes the Mahalanobis norm with the norm 

inducing matrixˆ
iA  as in (7). According to (7) and (10), 

1/ 1ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( det( )) ( ) .T n
a iLρ − =i i

i i i ix - v F F x - v  (19) 

It is thus obvious that if the initialization process 
appropriately adjusts the initial ellipsoid volumes so that the 
farthest data point ̂ix  with the largest Mahalanobis norm is 
right on the initialized ellipsoid, all of the ellipsoid volumes 
will be scaled to the range of solutions. As shown in (8), the 
data points on the ellipsoids have a Mahalanobis distance of 

1. Divide ˆ
iL  at both sides of (19), 

1/ 1ˆ ˆˆ ˆ ˆ ˆ( ) ( det( )) ( ) 1.
ˆ

T na

n
iL

ρ − =i i
i i i ix - v F F x - v  (20) 

Therefore, the appropriate initial volume for the i-th 
ellipsoid leading to the result that all data points are included 
by the ellipsoid with tentative value ρa can thus be defined as: 

_ ˆ
a

i initial n
iL

ρρ = ,  i = 1,…, c. (21) 

It is worth noting that if ̂ ix is an outlier for the cluster 

corresponding tô iφ , ˆ
iL  will be unreasonably large. This 

results in an inaccurate initial ellipsoid volume ρi according 
to (21). For the data points with too much noise, an outlier 
detection scheme is required to determine the outliers and 
filter them out before applying the directed initialization. Let 

id  be the average Mahalanobis distance among all data 
points belonging to Bi, then 

ˆ
1

ˆ

,

iB

j
i

i

d
B

=

−
=
∑

i

i
j i A

x v

 (22) 

where iB  denotes the number of data points in Bi. For all 

data points in Bi, the farthest data point and its maximum 
Mahalanobis distance can be respectively determined using 
(17) and (18). Removing the outliers affects the clustering 
learning results. With a predetermined threshold γ, any data 
point ix  belonging to the i-th cluster and its possibility 

membership value ikP  is larger than a predetermined 

threshold possibility membership valueikP α≥ (in this paper, 
we set 0.1α =  ), satisfies the following criterion: 

ˆ
ˆ

id
γ

−
≥i

i
i A

x v
 (23) 

is considered as an outlier and can be removed from Bi. The 
outlier detection scheme, as shown in (22) and (23), is 
recursively applied to every cluster of data points until no 
outlier has been detected. After filtering out the outliers in 
every cluster, the accuracy of calculating proper ellipsoid 
volume according to (21) for T2GKA’s directed evaluation 
can be greatly improved. 

IV. COMPUTER SIMULATIONS 

We used the following computational conditions for all 
datasets: 1. The termination tolerance 0.000001ε = , the 

iikAD for the FCM, FCMPCM, and PFCM is the Euclidean 

norm. 2. The 
iikAD for the GK and T2GKA is the 

Mahalanobis norm. 3. The number of c clusters c is 7 for 
7cluster. 4.  c is 5 for 5 same-circle and sinusoidal sets. 5. c 
is 2 for all other datasets. 
Example 1: The artificial 2-dimensional datasets X400 and 
X550 are designed. The X400 is a mixture of two 2-variate 

normal distributions with mean vectors 
5.0

6.0

 
 
 

 and 
5.0

12.0

 
 
 

. 

Each cluster has 200 points, while X550 is an augmented 
version of X400 with an additional 150 points uniformly 
distributed over [ ] [ ]0,15 0,11× . For data set X400 the 

clustering results in Table I show that the terminal centroids 
learned by all five algorithms produce good centroids. 
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When we cluster dataset X550, we hope that the 150 noise 
points can be ignored and the cluster center will be found 
closer to the true centroids Vtrue. From Table I, we can see 
that all five algorithms clustered the dataset X550 terminal 
centroids. Because PCM is very sensitive to initialization and 
it sometimes generates coincident clusters, we utilized the 
FCM clustering results to initialize PCM. The other four 
clustering methods ran the algorithm directly. To make a 
rough assessment of how each method accounted for inliers 

and outliers, we estimated 2

A true AE = −V V , where A denotes 

FCM, FCMPCM, PFCM, GK, and T2GKA. The 
EFCM=0.4173, EFCMPCM=0.0001, EPFCM=0.3714 (a=1, b=0.1, 
m=2, η=2), EPFCM=0.1699 (a=1, b=1, m=2, η=2), 
EGKA=0.4825, and ET2GKA=0.0066. The T2GKA clustering 
results with the proper cluster volumes for the datasets X550 
are shown in Fig. 3. We compared the five clustering 
method’s EA values, the EFCMPCM value is smaller than that in 
other methods, but its membership values are independent of 
the other clusters. We cannot depend on the membership 
values to classify the data points belonging to which cluster. 
Except for the EFCMPCM, the ET2GKA value is smaller than that 
in other methods. The clustering results show the robustness 
of the proposed T2GKA because a reasonable amount of 
noise data does not affect its clustering performance. 
Example 2: To verify that the proposed method can accord 
the prototype dataset structure to learn the proper cluster 
centers, 5 same-circles were designed with each cluster 
containing 300 prototype data points. The dataset 5 same-
circle is a mixture of two 2-variate normal distributions with 

mean vectors
0.0

3.0

 
 
 

,
5.0

3.0

 
 
 

,
0.0

3.0

 
 − 

,
5.0

3.0

 
 − 

, and
2.5

0.0

 
 
 

. 

The T2GKA clustered results with the proper clusters centers 
for the 5 same-circle datasets are shown in Fig. 4. For the 5 
same-circle datasets, the EFCM=0.0042, EFCMPCM=0.0003, 
EPFCM=0.0039 (a=1, b=0.1, m=2, η=2), EPFCM=12.2009 (a=1, 
b=1, m=2, η=2), EGKA=0.0036, and ET2GKA=0.0026. We 
compared the five clustering method’s EA values. Except for 
the EFCMPCM, the ET2GKA value is smaller than that in other 
methods. The clustering results show the robustness of the 
proposed T2GKA because a reasonable amount of noise data 
does not affect its clustering performance. 
Example 3:  To verify that the proposed method can accord 
the prototype dataset structure to learn the proper cluster 
volumes, 2 artificial datasets named 7cluster and sinusoidal 
were designed. There are 700 and 200 prototype data points 
in the 7cluster and sinusoidal datasets, respectively. There 
are 700 prototype data points in the 7cluster datasets 
clustered into 7 clusters with different sizes and orientations. 
Each cluster contains 100 prototype data points. The 7cluster 
dataset is a mixture of two 2-variate distributions with 
varying deviation, its mean vectors 

are
5.0

1.0

 
 
 

,
1.0

5.0

 
 
 

,
1.0

1.0

 
 
 

,
5.0

5.0

 
 
 

,
2.0

2.0

 
 − 

,
2.0

2.0

− 
 
 

, and
4.5

3.0

 
 
 

. 

The prototype data points in the dataset sinusoidal are 
generated by 4 2 3

2 1 110 0 001x sin( . x )x ε−= + , where 

[ ]1 0 100x ,∈  and 0 25Normal( , )ε ∼  is a normally 

distributed random noise. The T2GKA clustered results with 
the proper clusters volumes for the 7cluster and sinusoidal 
datasets are shown in Figs. 5 and 6, respectively. The 
proposed T2GKA is essentially a DEECV based learning 
algorithm integrated with the T2GKA. The experimental 
results show that the T2GKA can learn suitable sized cluster 
volume along with dataset varying structure volume. 
 
TABLE I. THE TERMINAL CENTROIDS LEARNED BY FCM, FCMPCM, PFCM, 
GK, AND T2GKA IN THE DATASETS X400 AND X550, EXAMPLE 1 

Clustering 
Algorithm 

Data sets 

X400 (centroid) X550 (centroid) 

x1 x2 x1 x2 

FCM: m=2 
4.9794    5.9531 5.5711    5.4143 
4.9407    12.0593 5.1885    11.6395 

FCMPCM: η=2η=2η=2η=2 
5.0017    6.0094 5.0076    6.0091 
4.9973    12.0102 4.9968    12.0103 

PFCM: a=1,  b=1, 
m=2, ηηηη=2 

4.9843    5.9746 5.3716    5.7308 
4.9566    12.0506 5.1281    11.6642 

PFCM: a=1, 
b=0.1, m=2, ηηηη=2 

4.9800    5.9558 5.5410    5.4604 
4.9427    12.0582 5.1804    11.6445 

GKA: m=2 
4.9782    5.9538 5.1064    5.4443 
4.9397    12.0568 5.5502    11.4151 

T2GKA: m=2 
5.0048    6.0239 5.0137    5.9593 
5.0097    12.0837 4.9743    12.1031 

 
Figure 3. The T2GKA clustering results with the proper clusters volumes 

for the dataset X550, Example 1 

-2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

x1

x2

 
Figure 4. Clustering results using 5 ellipsoids for the prototype data points 

in the dataset 5samecircle, Example 2 
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Figure 5. Clustering results using 7 ellipsoids for the prototype data points in 
the dataset 7cluster, Example 3 

 
Figure 6. Clustering results using 5 ellipsoids for the prototype data points in 
the dataset sinusoidal, Example 3 

V. CONCLUSIONS 

This paper presented an efficient combined probabilistic 
and possibilistic method for building Type-2 fuzzy sets. 
Utilizing this concept we presented a Type-2 GKA (T2GKA) 
that is an extension of the conventional GKA. The 
experimental results showed that the T2GKA was less 
susceptible to noise than the Type-1 GKA. The clustering 
results showed the robustness of the proposed T2GKA 
because a reasonable amount of noise data does not affect its 
clustering performance. 

The DEECV is proposed to effectively evaluate proper 
ellipsoid volume. The proposed T2GKA is essentially a 
DEECV-based learning algorithm integrated with T2GKA. 
The experimental results showed that the T2GKA can learn 
suitable sized clusters volume along with varying dataset 
structure volume. 
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