
A Pattern-Based Architecture for Dynamically Adapting Business Processes

Mohamed Lamine Berkane1 Lionel Seinturier2 Mahmoud Boufaida1

1 LIRE Laboratory
Mentouri University of Constantine, Algeria

{ml.berkane,mboufaida}@umc.edu.dz

2LIFL-INRIA ADAM
University of Lille, 59655 Villeneuve d’Ascq, France

Lionel.Seinturier@lifl.fr

Abstract— The need to adapt a business process in applications
has been a topic of interest in the recent years. Several
approaches offer solutions to it. But, a limitation of most
existing ones is the tight coupling of the adaptation logic with
the execution one inside the engine implementation. In
addition, they use the adaptation of business process only in
the implementation phase (at runtime). To address these
problems, we propose an architecture to develop a business
process adaptation system. This architecture introduces
modularity with an approach based on design patterns. We use
some patterns to separate the adaptation logic and the
functional one, and to address the adaptation at both the
design phase and the implementation one. We show the
feasibility of the proposed approach through the TRAP/BPEL
framework.

Keywords-Business Process; Design pattern; Abstraction
Layers; Adaptation logic.

I. INTRODUCTION

Web services have evolved as a means to integrate
processes and applications at an inter-enterprise level [17].
Several Web services can be combined to compose a new
system. This last one can be seen as a composite Web
service, which usually implements a business process.

A business process describes a sequence of tasks. Each
task represents a coherent set of activities that fulfill a
specific functionality. Tasks can be delegated to services and
may require human interaction. Most business process
languages assume that the tasks are executed in a static
context. However, business process environments are often
dynamic. For example, services can become unavailable,
unexpected faults may occur or participating partners in the
business process may not be known upfront, before some
tasks are actually executed. In these situations, it is important
to adapt a business process's behavior at run time in response
to changing requirements and environmental conditions.

Recently, various approaches have proposed to support
the dynamic business process adaptation: AO4BPEL
(Aspect-Oriented for Business Process Execution Language)
[1][2][16], VxBPEL [3], TRAP/BPEL (Transparent
Reflective Aspect Programming/Business Process Execution
Language) [4], CEVICHE (Complex EVent processIng for
Context-adaptive processes in pervasive and Heterogeneous
Environments) [5], MASC (Manageable and Adaptable
Service Compositions) [6], DYNAMO (Dynamic

Monitoring) [7], MVC (Model-View-Controller) [15].
However, most of these approaches do not treat changes at
the design phase, and focus on run-time adaptation in terms
of process instances. In addition to this, the current lack of
reusable adaptation expertise can be leveraged from one
adaptation system to another further exacerbates the
problem.

In this paper, we present a pattern-based architecture for
designing the adaptation system of business process. In our
architecture, the system is designed in a modular way based
on design patterns [8][9][10][12]. These patterns offer
flexible solutions to common system development problems
[12]. They express solutions of a known and recurrent
problem in a particular context. Some of these patterns are
used to specify the components of the adaptation systems.
These components are: monitoring, decision-making, and
reconfiguration [9][10]. Monitoring enables an adaptation
system to aware the bussines process and detect conditions
warranting reconfiguration, decision-making determines
what set of monitored conditions should trigger a specific
reconfiguration response, and reconfiguration enables an
adaptation system to change the bussines process in order to
fulfill the business requirements. Based on design patterns,
our architecture supports the design of the adaptation system
in four levels: the requirement layer, the functional layer, the
logical layer and technical one. These abstraction layers are
ordered hierarchically starting with (very abstract) high
layers and leading to (very concrete) low layers. Each
abstraction layer provides concepts for representation of the
adaptation information, which is specific for each
development phase. During the transition from a higher layer
to a more concrete layer, the model information is enriched.

The rest of this paper is organized as follows: Section 2
presents some of the related work, Section 3 presents the
proposed architecture and shows how it is realized using
patterns; in Section 4, we use a case study to demonstrate the
feasibility of our architecture through the TRAP/BPEL
framework, and Section 5 concludes and discusses some
future work.

II. RELATED WORK

This section overviews selected efforts conducted by
researchers to facilitate the development of dynamically
adapting business process system.

29Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

Adaptation and patterns: Ramirez and Cheng [8][9][10]
presented several patterns for developing adaptive systems.
These patterns are classified into three key elements of
adaptive systems: monitoring, decision-making, and
reconfiguration. The authors do not offer an approach to use
these patterns. Beside, these patterns are generic; they can be
used in adaptive systems as the multi-agent systems, network
applications and information systems. In our case, we use
some of these patterns to define aspects which are relevant
for running the business process.

Gomaa et al. [14][19] proposed some patterns to specify
the dynamic behavior of software architectures
(master/slave, centralized, server/client, and decentralized
architectures). These patterns are helpful to the developers
implementing dynamically adaptation systems. Moreover,
these approaches support only some kinds of software
architectures, and the proposed patterns are specific to these
architectures.

The GoF (Gang of Four) patterns [12] are the most
popular and widely used in the designed system, and also are
used in the abstract level. However, these patterns do not
provide a solution to the adaptation problems. But, we use
some of these patterns, to identify objects of the business
process adaptation system at a high level of abstraction.

Adaptation and business process: Charfi et al. [16]
presented a plug-in based architecture for self-adaptive
processes that uses AO4BPEL [1]. Each plug-in has two
types of Aspects: the monitoring Aspects that will check the
system to observe when an adaptation is needed and the
adaptation Aspects that will handle the situations detected by
the monitoring Aspects. Yet, this approach supports only two
kinds of components (Aspects) to adapt the business process.
However, this approach defines the adaption logic at run
time, while in our approach, the adaption logic is defined
both at design-time and at runtime. In addition, our approach
defines three components to separate the functional logic
from the adaptive one. This makes our approach more
modular.

Koning et al. [3] presented a language, called VxBPEL.
They extended the BPEL language to add new elements like
VariationPoint and Variant to capture variability in a service-
based system. The first element specifies the places where
the process can be adapted, and the second define the
alternative steps of the process that can be used. This
approach defines the adaptive logic both at design-time and
at runtime. Yet this approach defines a new language to
support the adaptation, and extends an existing engine to
support VxBPEL language. In our case we use the standard
BPEL, and we keep the known process engine.

The work which is closer to our proposal is the one
presented in [15]. The authors present a framework based on
the Model-View-Controller (MVC) pattern to support the
adaptation of BPEL processes in a dynamic and modular
way. In this framework, a workflow process is designed as a
template, where the tasks can be specified in an abstract
level. Concrete implementations of the tasks, modeled as
aspects, are then selected from a library according to policy-
based adaptation logic. However, this approach uses the

pattern notion (MVC) to support the adaptation of business
processes, while in our approach, we use the pattern (MDR)
to develop the adaptation system of business process. This
makes our approach more generic.

Hermosillo et al. [5] present CEVICHE, a framework
that combines Complex Event Processing (CEP) and Aspect
Oriented Programming (AOP) to support dynamically
adaptable business processes. The adaptation logic is defined
as aspects (reconfiguration component), and adaptation
situations are specified by CEP rules (monitoring
component). However, the decision- making is not specified
as component in this framework. It is integrate into the
defined aspects.

Xiao et al. [18] propose a constraint-based framework for
supporting dynamic business process adaptation. In this
framework, process adaptations are performed in a modular
way based on process fragments. Process fragments are
standalone fragments of processes that can be reused across
multiple processes. This approach separates between the
functional logic and the adaptive one by using the process
fragments. However, this framework presents the adaptation
only at run-time; in addition it cannot apply changes to living
process instances. When new process schemas are
(re)generated, only new process instances will be created
according to the new process schemas.

III. A LAYER-BASED ARCHITECTURAL MODEL FOR

BUSINESS PROCESS ADAPTATION

In this section, we present a pattern-based architecture
that permits the design of adaptation systems in a dynamic
and modular way. This architecture is composed of four
layers: the requirement layer, the functional layer, the logical
layer, and the technical one. Each layer contains three
components (except requirement level): monitoring,
decision-making, and reconfiguration. These three
components will be refined in three layers. The starting point
is the requirement layer which is a set of requirements for a
behavior of the adaptation system. These requirements can
have different forms, for example the form of a textual
documentation or a collection of Use Cases. Secondly, the
functional layer provides the definition of the adaptation
system’s interfaces with business process. Thirdly, the
logical layer provides an architectural view of the system by
partitioning it into logical communicating components. It
defines the total behavior of the system. Lastly, the technical
layer represents the lowest level of abstraction. It focuses on
aspects relevant for running the business process. This
architecture can provide an appropriate level of abstraction to
describe dynamic change in a business process, such as the
use of components, rather than at the algorithmic level
(Figure 2). In the proposed architecture, we focus on the
functional, logical and technical layers.

A. Requirement Layer

The proposed approach imposes a clear separation of
concerns between functional and adaptation requirements.
The adaptation requirements are concerned with
understanding how a system may either make a transition

30Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

between satisfying different functional requirements
depending on context, or continue to satisfy the same
functional requirements in the face of changing context.
Hence, the adaptation requirements are intimately related to,
and derived from, the functional requirements. These
requirements can have different forms, for example the form
of a textual documentation or a collection of Use Cases.

B. Functional Layer

In this layer, we provide the main functions of our
adaptation system. It comprises the definition of its
interfaces with business processes. Our adaptation system
contains three main functions: monitoring, decision-making,
and reconfiguration; and also two interfaces: to monitor and
to reconfigure the business process. These functions can be
seen as components, which communicate between them to
adapt a business process's behavior in response to changing
requirements and environmental conditions.

C. Logical Layer

In this layer, we refine the adaptation system presented in
the previous sub-section. It defines three components
specified by the functional level: monitoring, decision-
making, and reconfiguration. In addition, there are two
relationships: one between monitoring and decision-making,
and the second between decision-making and
reconfiguration, as shown in Figure 3. The logical
components can be obtained as the combination of sub-
components (objects) with respect to the dependencies
between them. In this level, we use the GoF design patterns
[12] to model the components and the sub-components.
These patterns were chosen because they define the abstract
concepts of adaptation (such as different strategies of
adaptation defined by “Strategy” pattern).

The first component is the monitoring. The main
objective of monitoring component is to enable an adaptation
system to observe business process and environmental
conditions that may warrant reconfiguration. To monitor the
business process in the logical layer, we use the Observer
pattern [12], which uses Observer and Subject objects. The
Observer object collects the information about the business
process and its environment, and the subject object is used to
represent any component that needs to perform monitoring in
business process. This last object defines the detection
conditions to specify the conditions that may warrant
reconfiguration (Figure 1). When a detection condition is
detected, the subject objects notifies the observer objects,
which in turn notifies the corresponding decision-making
component.

The first relationship between monitoring component and
decision-making one is defined to permit the interactions
between the objects defined in the first component and the
objects defined in the second one. We can have multiple
interactions between the objects defined in these
components. An object of the monitoring component can
communicate with multiple objects of the decisions making
component. Thus, an object of decision-making component
may receive several messages from objects of the monitoring
component. To carry the number of interaction between

these two types of objects, it becomes necessary to define an
intermediate object that manages these interactions. The
'Mediator' pattern [12] responds in a good way to this
situation. By applying this pattern, the monitoring and the
decision-making components can be evolving independently.

Figure 1. Monitoring Component in the logical layer

The second component (Decision-making) is the most
important in the proposed architecture. The main objective of
decision-making component is to determine when and how
to reconfigure a business process in response to monitoring
information. In this component, we define a family of
algorithms. These one leverage a knowledge repository that
associates specific monitoring scenarios with series of
reconfiguration instructions. To define these algorithms, we
use the ‘Strategy’ pattern [12]; this one creates a set of
algorithms defined in the objects. Applying this pattern
separates the functional logic from the decision-making one,
thus clustering the set of reconfiguration responses for
distinct events.

The second relationship between decision-making
component and reconfiguration one is similar to the
relationship between monitoring component and decision-
making one, unless it manages the interactions between the
objects of decision-making component and the objects of the
reconfiguration one.

The last component (Reconfiguration) specifies in detail
the actions defined in the algorithms of decision-making
component. In this component, we use the ‘Bridge’ pattern
[12] to separate between the algorithms (Abstraction) and the
reconfiguration instructions (Implementor). In this pattern,
we specify two kinds of objects: the Abstraction, and the
Implementor. By applying this pattern, we can extend the
Abstraction and the Implementor hierarchies independently.

D. Technical layer

This layer defines the aspects relevant for running the
adaptation system. This layer also explains how the process
adaptation is realized. Thereby, we use the design patterns
defined for developing dynamically adaptation systems

31Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

[8][9][10]. These patterns were chosen because they use the
platform-independent models to represent the adaptation
solution.

A business process executes a series of activities in a
sequence. It can be designed to show the sequence of service
invocation. A Web Service is one of many types of services
that a process can invoke. In general, the Web services are
distributed application components that are externally
available, and each Web service provides an interface that
can be used to exchange the required information with
business processes. In the monitoring component of this
layer, we use the sensor factory pattern [8][9]; this pattern
may be used when components (Web services) are
distributed and each component (Web service) provides an
interface that can be probed for the required information. In
this pattern, a ‘SimpleSensor’ object can be used to sensor
the component that needs to be monitored in business
process. It replaces the Observer object of the ‘Observer’
pattern. In addition the methods 'Attach' and 'Detach' of
‘ConcreteSubject' of Observer pattern were realized by
'SensorFactory', 'ResourceManager' and 'Registry' objects.
The first object manages the addition and the removal of
sensors in the business process, and the Clients interact with
this object in order to gain access to a sensor. The second
object determines if an existing sensor can be shared with
one or more clients, and also, determines if the business
process has enough resources to deploy a new sensor. The
last object is responsible for tracking deployed sensors across
the business process.

In the first relationship between monitoring component
and decision-making one, we use the ‘Content-based
Routing’ pattern [8][10]. This pattern should be applied
when multiple clients require access to the same monitoring
information. In our case, may be multiple monitoring
components need access to the same decision-making
component.

In the logical layer, we have used the strategy pattern to
define a family of algorithms for decision-making
components. In the technical layer, we use a ‘Case-based
Reasoning‘pattern [8][10] to select the specific
reconfigurations, and show how the reconfigurations can be
executed at run time. The ‘Case-based Reasoning’ pattern
can be applied when runtime scenarios that require
reconfiguration can be reliably identified. The important
objects of this pattern are: ‘Trigger’, ‘Inference Engine’,
‘Decision’, and ‘Fixed Rules’. The ‘Trigger’ object contains
relevant information about what caused the adaptation
request. It should at least provide information about the error
source, and the type of error observed. The ‘Inference
Engine’ object is responsible for applying a set of ‘Rules’ to
produce an action in the form of a ‘Decision’. The ‘Decision’
object represents a reconfiguration plan that will yield the
desired behavior in the system. The ‘Fixed Rules’ object
contains a collection of ‘Rules’ that guide the ‘Inference
Engine’ in producing a ‘Decision’. These ‘Fixed Rules’
replace the strategy objects of the ‘Strategy’ pattern.

The second relationship between decision-making
component and reconfiguration one is specified by the
‘Divide and Conquer’ pattern [8][10][20]. This pattern

avoids potential business process inconsistencies, because
the business process may require applying multiple
reconfigurations in succession. The ‘Divide and Conquer’
pattern decomposes a complex reconfiguration into simpler
reconfigurations, and it determines dependency relations
between different reconfigurations. The ‘Divide-and-
Conquer’ strategy is employed in many complex algorithms.
With this strategy, a problem is solved by splitting it into a
number of smaller sub-problems, solving them
independently, and merging the sub-solutions into a solution
for the whole problem. Conceptually, this pattern follows a
straightforward approach. One task splits the problem, then
forks new tasks to compute the sub-problems, waits until the
sub-problems are computed, and then joins with the subtasks
to merge the results.

The reconfiguration component uses two kinds of
patterns ‘Component Insertion’ and ‘Component Removal’
[8][10]. In our case, we insert and remove the web service.
For example, ‘Component Insertion’ pattern can be used to
safely insert a new component (web service) at run time. The
important objects of this pattern are: ‘Adaptation Driver’,
‘Change Manager’, ‘Reconfiguration Plan’, and
‘Reconfiguration Rules’. The first object is responsible for
ensuring that incoming Client requests are queued for further
processing. The second object provides support for loading
and unloading Components (web services) and their
interconnections. The third object stores the specific
sequence of instructions for reconfiguring the system at run
time. This object replaces the ‘Abstraction’ object of the
‘Bridge’ pattern. The last object contains rules and
instructions for specifying how basic reconfiguration
operations are carried out in system. Some basic
reconfiguration operations include Component insertion,
removal, and swapping. This object replaces the
‘Implementor’ object of the ‘Bridge’ pattern.

IV. A CASE STUDY:”TRAP/BPEL FRAMEWORK”

In this section, a case study is used to demonstrate the
feasibility of our approach. For this case, we have selected
the TRAP/BPEL framework [4][13]. In our paper, we focus
on an architectural approach not because the TRAP/BPEL
framework is uninteresting or less promising, but we argue
that the architectural level shows how the adaptation system
components of this framework are separated and generality
deals with the challenges posed. TRAP/BPEL is a
framework that adds the autonomic behavior into existing
BPEL processes. It aims to make an aggregate web service
continue its function even after one or more of its constituent
Web services have failed, and also adds the autonomic
behavior to BPEL processes by using a generic proxy as an
indirection layer to interact with the partner services.
The generic proxy has a standard interface and works for all
partner services of one or more adapt-ready BPEL processes.
A recovery policy is used in the proxy to dictate the
adaptation behavior for each monitored service [4]. This
generic proxy can be reused for any BPEL processes.
Therefore, it is possible to provide a common autonomic
behavior to a set of services. Furthermore, an adapt-ready

32Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

process monitors the behavior of Web service partners and
tries to tolerate their failure by forwarding the failed request
to its generic proxy, which in turn will find an equivalent
service to substitute the failed one [4].

The main components of this framework are: adapt-ready
process and generic proxy. The first one represents the
monitoring component, and the second specifies in both the
decision-making and the reconfiguration components (Figure
4 (a)).

In the monitoring component of the logical layer, we use
the ‘Observer’ pattern to specify the adapt-ready process.
This process (Observer object) monitors the behavior of Web
service partners (Subject object). If one of the partner
services fails (Detection condition) then the adapt-ready
process forwards the failed request to its proxy. The proxy is
generated specifically for this adapt-ready process and
provides the same port types as those of the monitored Web
services. This port is the mediator (Mediator object) between
the adapt-ready process and the generic proxy. In addition,
the generic proxy can provide behavior either common to all
adapt-ready BPEL processes or specific to each monitored
invocation using some high level policies. It may take one of
the following actions according to the policy: invoke the
service being recommended in the policy; find and invoke
another service to substitute for the monitored service, or
retry the invocation of the monitored service in the event of
its failure. These three policies are considered as the different
strategies (of ‘Strategy’ pattern) of decision-making
component. The 'Bridge' pattern is responsible for the
management of the policies (Abstraction object); it
concretizes the actions defined in the policies (Implementor
object). In this framework, there is not a mediator between
decision-making component and reconfiguration one,
because the proxy plays two roles at the same time (Figure 4
(b)).

In the technical layer, the TRAP/BPEL framework needs
to incorporate some generic hooks (sensors of ‘Sensor
Factory’ pattern) at sensitive joinpoints in the BPEL process
(i.e., the invoke instructions). These joinpoints are points in
the execution path of the program at which adaptation code
can be introduced at run time. The operations and
input/output variables of the proxy are the same as those of
the monitored invocations. When more than one service is
monitored within a BPEL process, the interface for the
specific proxy is an aggregation of all the interfaces of the
monitored Web services; this situation is specified by
‘Content-based Routing’ pattern. This last one defines an
architecture (many-to-one) that gathers data from the
different web services (one or more adapt-ready BPEL
processes (multiple monitoring components)) and
distributes it to the specific proxy (one decision-making
component).

The proxy uses ‘Case-based Reasoning’ pattern to
specify the behavior of decision-making component in the
technical layer. This proxy (Inference Engine object) checks
all the intercepted invocations (Trigger object) and tries to
match these invocations with the specified policies (Fixed
Rules object). If it finds a policy for that invocation, the

proxy behaves accordingly to that, it selects one of three
actions (Rule object); otherwise it follows its default
behavior (Figure 4 (c)).

We use the ‘Component Insertion’ pattern to define the
behavior of reconfiguration component. This pattern inserts
a new web service (i.e. invoke a new web service). In the
generic proxy, we cannot establish the relationship between
decision-making component and reconfiguration one
because it defines the behavior of two components
(decision-making and reconfiguration) in one component.

Our Pattern-Based Architecture approach has several
advantages over a framework-oriented approach (like
TRAP/BPEL, AO4BPEL, CHEVICHE, etc) at developing
dynamically adapting business processes. The design
patterns provide general models that need to be instantiated
and customized before they are implemented. Since models
operate at a higher-level of abstraction than frameworks,
they impose fewer initial constraints upon the system being
developed. In addition, with our design pattern approach,
developers select only those adaptation mechanisms their
application will require. In contrast, adaptation-oriented
frameworks provide infrastructure to perform the adaptation
tasks for a wide range of applications; the overall
infrastructure is needed for the adaptive application, even if
not all the features are needed or used.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented a pattern-based
architecture for designing the adaptation system of business
processes. The proposed architecture is composed of four
layers: the requirement layer, the functional layer, the logical
layer, and the technical one. Then, in each layer, we defined
three components: monitoring, decision-making, and
reconfiguration. Finally, in each component, and for each
layer, we use patterns to facilitate the reuse of adaptation
expertise. These patterns separate the adaptation logic from
the functional one. This separation of concerns facilitates the
reuse of adaptation designs across multiple adaptation
systems.

In the future, we will try to propose a hybrid approach
that allows the use of the various adaptation components
(monitoring, decision-making, and reconfiguration) of the
different adaptation approaches (like AO4BPEL, CEVICHE,
etc).

REFERENCES

[1] A. Charfi and M. Mezini. “Aspect-oriented web service
composition with AO4BPEL”. In Proceedings of the 2nd
European Conference on Web Services (ECOWS), volume
3250 of LNCS, pp. 168–182. Springer, September 2004.

[2] A. Charfi, B. Schmeling, A. Heizenreder, and M. Mezini.
“Reliable, secure, and transacted web service compositions
with ao4bpel”. In Proceedings of the 4th IEEE European
Conference on Web Services(ECOWS), December 2006.

[3] M. Koning, C.-a. Sun, M. Sinnema, and P. Avgeriou,
“Vxbpel:Supporting variability for web services in bpel,” Inf.
Softw.Technol., vol. 51, no. 2, pp. 258–269, 2009.

33Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

[4] O. Ezenwoye, S. Sadjadi, “TRAP/BPEL: A Framework for
Dynamic Adaptation of Composite Services”, Tech. Rep.
FIU-SCIS-2006-06-02, School of Computing and Information
Sciences, Florida International University, 2006.

[5] G. Hermosillo, L. Seinturier, L. Duchien, “Using Complex
Event Processing for Dynamic Business Process Adaptation”
in Proceedings of the 7th IEEE 2010 International Conference
on Services Computing (SCC 2010), Miami, Florida : United
States, 2010.

[6] A. Erradi, V. Tosic, and P. Maheshwari. “Masc - .netbased
middleware for adaptive composite web services”. In ICWS
International Conference on Web Services, pages 727–734.
IEEE Computer Society, 2007.

[7] L. Baresi and S.Guinea. “Dynamo and self-healing bpel
compositions”. In ICSE COMPANION ’07 : Companion to
the proceedings of the 29th International Conference on
Software Engineering, pages 69–70, Washington, DC, USA,
2007. IEEE Computer Society, 2007.

[8] A. J. Ramirez. Design patterns for developing dynamically
adaptive systems. Master's thesis, Michigan State University,
East Lansing, MI 48823, 2008.

[9] A. J. Ramirez and B. H. C. Cheng. “Developing and applying
design patterns for dynamically adaptive systems”. In 6th
IEEE International Conference on Autonomic Computing,
ICAC ’09 Barcelona, Spain, 2009.

[10] A. J. Ramirez and B. H. C. Cheng. “Developing and applying
design patterns for dynamically adaptive systems”. In 5th
International Workshop on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS'10, Cape
Town, South Africa, May, 2010.

[11] A. Campetelli, M. Feilkas, M. Fritzsche, A. Harhurin, J.
Hartmann, M. Hermannsdorfer, F. Holzl, S. Merenda, D.
Ratiu, B. Schatz, and W. Schwitzer. “Model-based
development – motivation and mission statement of
workpackage zp-ap 1”. Technical report, Technische
Universität München, 2009.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. “Design
Patterns: Elements of Reusable Object-Oriented Software”.
Addison-Wesley Professional, 1995.

[13] F. Baligand “Une Approche Déclarative pour la Gestion de la
Qualité de Service dans les Compositions de Services “,
Doctorate’thesis l’Ecole des Mines de Paris, 2008.

[14] H. Gomaa and M. Hussein. “Software reconfiguration
patterns for dynamic evolution of software architectures“. In
WICSA’04: Proceedings of the Fourth Working IEEE/IFIP
Conference on Software Architecture, page 79, Washington,
DC, USA, 2004.

[15] K. Geebelen, E. Kulikowski, E. Truyen and W. Joosen “A
MVC Framework for Policy-Based Adaptation of Workflow
Processes: A Case Study On Confidentiality” In 2010 IEEE
International Conference on Web Services, 2010.

[16] A. Charfi, T. Dinkelaker, and M. Mezini, “A Plug-in
Architecture for Self-Adaptive Web Service Compositions”,
in the Proceedings of IEEE International Conference on Web
Services (ICWS’09), pp. 35- 42, 2009.

[17] M. Little, Transactions and web services, Communications of
the ACM 46 (10) (2003) 49–54, 2003.

[18] Z. Xiao, D. Cao, C. You and H. Mei,”Towards a Constraint-
based Framework for Dynamic Business Process Adaptation”
In 2011 IEEE International Conference on Services
Computing, 2011.

[19] H. Gomaa “Pattern-based Software Design and Adaptation“.
In PATTERNS 2011: Proceedings of the Third International
Conferences on Pervasive Patterns and Applications, page 90-
95, Roma, Italy, 2011.

[20] G. Mattson Timoth, A. Sanders Beverly, L. Massingill Berna.
« Patterns for Parallel Programming ». Addison-Wesley
Professional, 2004.

Figure 2. Overview of the proposed architecture

34Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

Figure 3. Representation of the logical layer

Figure 4. TRAP/BPEL framework in three layers

35Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

