
Pattern Innovation for Architecture Diagnostics
in Services Computing

Alfred Zimmermann
Reutlingen University, Faculty of Informatics

Architecture Reference Lab of the
SOA Innovation Lab, Germany

alfred.zimmermann@reutlingen-university.de

René Reiners
Fraunhofer FIT

User-Centered Ubiquitous Computing
Sankt Augustin, Germany
rene.reiners@fit.fraunhofer.de

N.N. email

Abstract – Assessing the maturity of service-oriented enterprise
software architectures is a problem since the current practice
has been developed rather intuitively, providing only a sparse
and rarely validated metamodel. In preliminary research, we
have developed an original pattern language for supporting
repetitive enterprise system architecture assessments. The aim
is the evaluation and optimization of these kinds of
architectures. For this purpose, we extended base frameworks
like the Capability Maturity Model Integration and The Open
Group Architecture Framework. Since we apply a pattern
catalogue for the assessment of enterprise system architectures,
we see ourselves confronted with the problem that patterns are
traditionally derived after long experience by an expert group
of pattern authors. In our view, this may lead to a decelerated
reuse of available knowledge. Our approach intends to
integrate available knowledge from services computing and
software architects directly from the beginning of the pattern
development process. Over time, these ideas are iteratively
developed towards validated patterns by feeding back the
insights of pattern applications. This allows the early
integration of new findings and concepts into the pattern
catalogue at an early stage whereas already existing patterns
are continuously refined. In this work, we propose both, a clear
maturity framework background for the developed
architecture assessment patterns, and an early integration of
new ideas as pattern candidates within a pattern innovation
and evolution process.

Keywords – service-oriented systems; architecture maturity
framework; assessment patterns; pattern evolution.

I. INTRODUCTION
Innovation oriented companies have introduced services

computing systems to assist in closing the gap between
business and information technology and thus enabling
business opportunities for service and emerging cloud
computing paradigms in the context of novel enterprise
architecture management approaches. One of the main
problems is that until today the transparency of this
innovation change to system architectures based on services
and cloud computing in information technology is blurred.
Our approach investigates the ability of heterogeneous
enterprise services systems [1] and integrates system
architecture elements from convergent architecture methods,

technologies and related software patterns, as in [2], [3], and
[4] with evaluation methods for service-oriented enterprise
systems [5].

The SOA Innovation Lab - an innovation network of
industry leaders in Germany and Europe - investigates the
practical use of vendor platforms in a service-oriented and
cloud-computing context. For this purpose we have
researched a suitable set of architecture assessment
instruments for services computing, leveraging and
extending the Capability Maturity Model Integration
(CMMI) [6] and the Open Group Architecture Framework
(TOGAF) [7]. This set extends our previous work and
consists of ESARC - our Enterprise-Services-Architecture-
Reference-Model [8] and [9], an associated ESA-
Architecture-Maturity-Framework [1] and [8], and an ESA-
Pattern-Language [10] for supporting architecture evaluation
and optimization.

Our research explores the novel hypothesis to relevantly
support a major effort of software architects during
architecture assessments of service-oriented systems:
1. CMMI [6] is well known as a suitable basic maturity

framework to assess software processes. Nevertheless
the metamodel of CMMI can be transformed to enable
quality assessments for software architectures.

2. The idea of software patterns can consistently be applied
and extended in service-oriented architecture
assessments for capability diagnostics of service-
oriented architectures. The collected architecture
assessment patterns could be iteratively improved within
our original pattern evolution process.
We are reporting in this research paper about our current

research step to combine our previous evaluated architecture
assessment metamodel with a newly introduced community-
oriented pattern evolution process. In Section II we present
related and preliminary work concerning service-oriented
architectures and frameworks. Additionally, we present
current findings on architecture maturity assessment. Section
III gives a brief introduction to software patterns as best
practices for application and software design also providing
background information about the approach, a pattern’s
intention, structure and the combination of patterns. The
application of architecture patterns as test cases for the

17Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

maturity assessment of software architectures is shown in
Section IV together with the derived SOA maturity model
integration SOAMMI and results from a first practical
validation process. We explain the pattern innovation process
that is combined with the currently existing pattern catalogue
providing collaborative means for the early integration of
new concepts and their evaluation during a project’s lifetime.
Finally, we conclude in Section V on the current state and
provide an outlook on future work and directions.

II. ARCHITECTURE MATURITY AND ITS ASSESSMENT
The Open Group Architecture Framework (TOGAF) [7]

as the current standard for enterprise architecture provides
the basic blueprint and structure for our enterprise software
architecture domains of service-oriented enterprise systems,
as in the ESARC reference model [9]: Architecture
Governance, Architecture Management, Business &
Information Reference Architecture, Information Systems
Architecture, Technology Architecture, Operation
Architecture, Security Architecture, and Cloud Services
Architecture.

SOA is the computing paradigm that utilizes services as
fundamental flexible and interoperable building blocks for
both structuring the business and for developing applications.
SOA promotes a business-oriented architecture style as
promoted in [11] and [3]), based on best of breed technology
of context agnostic business services that are delivered by
applications in a business-focused granularity. To provide
dynamic composition of services within a worldwide
environment SOA uses a set of XML-based standards. A
main innovation introduced by SOA is that business
processes are not only modeled, but also combined services
are executed from different orchestrated services.

In recent work, we have transformed the Capability
Maturity Model Integration into a specific framework for
architecture assessments of service-oriented enterprise
systems. For this reason, we have combined CMMI with
current SOA frameworks and maturity models. We used
TOGAF and ideas related to the business and information
architecture from [12] as a basic structure for enterprise
architecture spanning all relevant levels of service-oriented
enterprise systems. In contrast to the Enterprise Architecture
Project in [12] we are focussing on standardized structures
form TOGAF [7] and extend these in our ESARC
Architecture Reference Model, as in [8] and [9], with
currently researched new additional architectural views:
Operation Architecture, Security Architecture, and Cloud
Services Architecture.

The Architecture Capability Maturity Model (ACMM)
framework, which is included in TOGAF [7], was originally
developed by the US Department of Commerce. The goal of
ACMM assessments is to enhance enterprise architectures by
identifying quantitative weak areas and to show an
improvement path for the identified gaps of the assessed
architecture. The ACMM framework consists of six maturity
levels and nine specific architecture elements, which are
ranked for each maturity level, and are deviant from the
understanding of maturity levels in CMMI.

Inaganti and Aravamudan [13] describe the following
multidimensional aspects in their SOA Maturity Model:
scope of SOA adoption, SOA maturity level to express
architecture capabilities, SOA expansion stages, SOA return
on investment, and SOA cost effectiveness and feasibility.
The scope of SOA adoption in an enterprise is differentiated
by the following levels: intra department or ad hoc adoption,
inter departmental adoption on business unit level, cross
business unit adoption, and the enterprise level, including the
SOA adoption within the entire supply chain. The SOA
maturity levels are related to CMMI, but used differently,
applying five ascending levels to express enhanced
architectural capabilities: level 1 for initial services, level 2
for architected services, level 3 for business services, level 4
for measured business services, and level 5 for optimized
business services.

Sonic [14] distinguishes five maturity levels of a SOA,
and associates them in analogy to a simplified metamodel of
CMMI with key goals and key practices. Key goals and key
practices are the reference points in the SOA maturity
assessment.

ORACLE [15] considers in their SOA Maturity Model a
loose correlation with CMMI five different maturity levels:
opportunistic, systematic, enterprise, measured,
industrialized and associates them with strategic goals and
tactical plans for implementing SOA. Additionally, the
following capabilities of a SOA are referenced with each
maturity level: Infrastructure, Architecture, Information &
Analytics, Operations, Project Execution, Finance &
Portfolios, People & Organization, and Governance.

A. The SOAMMI Framework
The aim of the SOAMMI – SOA Maturity Model

Integration - framework [1] is to provide an integral
framework to assess architectures of service-oriented
enterprise systems and to accord with a sound metamodel
approach. The previously mentioned related work elements
where developed following in contrast to SOAMMI only a
pragmatic and intuitive approach, having no explicit
metamodel and outside of common architecture standards,
like TOGAF. The metamodel for architecture evaluation
enlarges the standardized CMMI, which is originally used to
assess the quality of software processes and not the quality of
software architectures.

The SOAMMI architecture maturity framework
introduces original architecture areas and organizes them
within extended architecture domains, which are mainly
based on TOGAF. Our intention was to leave most structural
parts e.g. Maturity Levels, Capability Levels, Specific Goals
and Practices, Generic Goals and Practices - of the original
CMMI metamodel as untouched concepts. We extend these
concepts of the metamodel by reclusively connected
architecture patterns, as navigable architecture quality
patterns of a pattern language, and enlarge these by other
architecture specific structures and contents. The metamodel
of SOAMMI is illustrated in Figure 1 also revealing that it
has similarities with the original CMMI metamodel; we left
the semantics of maturity levels and capability levels the
same like in CMMI. Additionally, we added the following

18Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

concepts: Architecture Domain, Architecture Area,
Architecture Pattern, and replaced all the contents of related
Specific Goals, Specific Practices, and the Generic Practices,
to fit for our architecture evaluation purpose. We used
multiplicity indicators for class relations to add a basic
metamodel semantic. Not indicated multiplicities
corresponds to the default 1 cardinality or a 1..1 multiplicity.

The semantics of these maturity levels as in [1] were
adapted from [6] to conform to the architecture assessment
scope for service-oriented enterprise systems. In terms of
requirements from customer oriented domain-models and
reference use scenarios, our model has introduced in [8] five
maturity levels, which define architecture assessment criteria
for service-oriented enterprise systems and help to measure
the architecture maturity, like Initial Architecture, Managed
Architecture, Defined Architecture, Quantitatively Managed
Architecture, and Optimizing Architecture.

Figure 1: SOAMMI Metamodel – Main Concepts.

We have derived the architecture domains mainly from

TOGAF where they are used as specific architecture
subtypes and corresponding phases of the TOGAF-ADM
(Architecture Development Method). Architecture areas
cover assessable architecture artifacts and are correspondent,
but very different, parts of process areas from CMMI. To fit
our architecture assessment scope, we have defined 22
original architecture areas of the SOAMMI framework [1]
and [8], linked them to our architecture maturity levels and
ordered them in line with our specific enterprise and
software architecture domains. Each of the delimited
architecture area is accurately described in a catalog
including name of architecture area, short identification of
architecture area and a detailed description.

SOAMMI supports both the staged and continuous
representations. The same staging rules as in CMMI apply to
SOAMMI and should therefore enable the flexible adoption
of both model representations: Continuous for assessing
single architecture areas and staged for assessing the whole
architecture maturity. The assessment of capability levels
could be applied to iterate specific architecture areas or to
assess or improve a focused innovation aspect, involving one
or more architecture areas. To verify and support persistent
institutionalizations of architecture areas we introduce
architecture related generic goals and practices. All
architecture areas are affected by the same generic goals and

associated generic practices. In the following, two example
architecture areas together with their goals and practices are
presented.

B. Example of Architecture Area
Business Processes & Rules

Purpose: Structure, design, model, and represent business
value chains and business processes to support business
capabilities.
Maturity Level: 2
Specific Goals (SG) and Specific Practices (SP):
SG 1: Model Business Value Chains as Root of Business
Capabilities and Business Processes

SP 1.1 Identify business value for business operations
SP 1.2 Structure value chains
SP 1.3 Optimize business considering customer
channels and supplier networks

SG 2: Model and Optimize Business Processes
SP 2.1 Identify business activities for business
processes: system activities, user interaction activities,
and manual activities
SP 2.2 Structure business processes for business roles
and organizational units
SP 2.3 Define business workflows and business process
rules
SP 2.4 Model and represent business processes

SG 3: Model and Represent Business Control
Information

SP 3.1 Identify and represent control information for
product monitoring
SP 3.2 Identify and represent control information for
process monitoring.

III. PATTERN COLLECTIONS AND LANGUAGES
Design patterns originated as an architectural concept

introduced in the seminal book ”A Pattern Language”
written by Christopher Alexander [16]. He captured his
experience gathered over time and structured this knowledge
in smaller units as patterns describing good qualities of a real
world examples. The level of detail varied from landscape
characteristics over areas, quarters up to single parts of
houses and even rooms. Alexander structured the different
patterns by means of size. This way, patterns explaining
concepts of larger areas were explained first, connecting the
currently read pattern to descendent patterns with a higher
level of detail.

Alexander’s intention was to describe best practices and
effective design solutions in order to share design knowledge
with other people facing similar problems in a related
context. The solution proposed by a software pattern should
be generic rather than specific, such that it can be
implemented in numerous different ways. The benefit of
using patterns is that they communicate insights into
common design problems and reflect solutions that a
community of experts has developed over time.

An important quality of a pattern was the readability by
non-experts. Since every pattern was written in prose with a

19Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

standard vocabulary, the concepts could be understood by a
large readership that was not necessarily experts in the
domain.

This thought of structuring knowledge in patterns was
picked up in many different computer-science domains like
software design, human-computer interaction design, website
design and many others.

In particular, Gamma et al. extended the notion of
patterns into the domain of software engineering, and
constructed twenty-three classic software design patterns [2].
Since then, the concept of design patterns also became
essential in the domain of Human-Computer-Interaction
(HCI), where patterns are commonly used to describe and
preserve solutions to recurring user interface design
problems. Borchers transferred the pattern concept to
human-computer interaction design for interactive exhibits
[17]. From his point of view, especially patterns in HCI need
to bridge the gap between users with conceptual knowledge
and understanding of the problem domain and software
engineers who are deeply involved in the technical
development.

A given pattern is not always the optimal solution in
every case, but tends to work in practice and supports user
acceptance for the system. Tidwell describes the influence of
patterns in user interface design stating that each
implementation of the same pattern differs somehow in its
characteristics although it comes from the same origin [18].
Thus, patterns should be seen as description of a problem
solution as starting-point and not as fixed design rules.

A similar approach is introduced by Schümmer and
Lukosch in the domain of computer-supported collaboration
[19]. They structure their pattern language along the level of
technical complexity: The more detailed a pattern describes a
certain solution, the more technical this description becomes.
Up to a certain degree of detail, they consider all patterns as
relevant for all stakeholders. Beyond that point, the target
group changes to engineers that need to technically
implement the design suggestion.

In addition to working solutions, the description of anti-
patterns is also a valid information source for application
and interface designers. They document surprisingly failing
approaches that turn out to be ineffective or counter-
productive in practice [20]. Other collections, e.g., in UI
design, focus on pointing out repetitions of design flaws
[21]. Here, concepts that have intruded many designs but
actually lead to rejection are discussed and the reasons for
design failures are explained.

A collection of patterns, which are organized in a
directed acyclic graph structure, is referred to as a pattern
language. Elements of a pattern language are navigable
sequences of patterns. In contrast to pattern language,
pattern collections provide semi-structured clusters of
patterns that are not interconnected in a hierarchy. This is for
example the case in [2] who distinguish between structural,
creational and behavioral patterns.

IV. PATTERN INNOVATION FOR ARCHITECTURE DIAGNOSTICS
Although design patterns are mainly used to inform the

design of a system, they are also applied as test cases for

assessing software. Software architecture assessment patterns
are based on the seminal work of software patterns
originated from the work of [16].

Our pattern language for architecture assessments of
service-oriented enterprise systems provides a procedural
method framework for architecture assessment processes and
questionnaire design. This method framework of our new
introduced pattern language was inspired from [20], and
derived from the structures of the metamodel of SOAMMI as
well as from our initial pattern catalog from previous
research [10].

We have linked each specific and each generic goal
within our assessment framework to a distinct pattern of our
pattern language. We organize and represent our architecture
assessment patterns according to the following structures:
Architecture Domains, Architecture Areas, Problem
Descriptions - associated with Specific Goals, Solution
Elements that are connected to Specific Practices and
Related Patterns, which are subsequent connections of
applicable patterns within the pattern language.

Linking elements to specific practices of the SOAMMI
framework indicate solutions for architecture assessments
and improvements of service-oriented enterprise systems.
This assessment and improvement knowledge is both
verification and design knowledge, which is a procedural
knowledge based on standards, best practices, and
assessment experience for architecture assessments of
service-oriented enterprise systems. It is therefore both
concrete and specific for setting the status of service-oriented
enterprise architectures, and helps to establish an
improvement path for change. Patterns of our language show
what to assess. Our patterns aim to represent verification and
improvement knowledge to support cooperative assessments
synchronizing people in cyclic architecture assessments.

Associated with our architecture assessment pattern
language we have set up an assessment process to show how
to assess architecture capabilities. This process is based on a
questionnaire for architecture assessment workshops
providing concrete questions as in [8], answer types, and
helping to direct and standardize the related assessment
process. Additionally, we have included process methods for
workshops, result evaluations, improvement path
information for technology vendors and for application
organizations, as well as change support and innovation
monitoring instruments.

We have identified and distinguished a set of 43 patterns
as parts of a newly researched and introduced pattern
language in the context of 7 Architecture Domains and 22
Architecture Areas. Even though our architecture quality
patterns accords to the Specific Goals, the Specific Practices
and the Generic Goals from the SOAMMI framework, they
extend these structures by navigable patterns as part of an
architecture assessment language. Only this pattern structure
enables architecture quality assessors to navigate easily in
two directions to support the diagnostics and optimization
process, and to provide a clear link to questionnaire and the
related answer and result concepts. The full collection of
patterns of the architecture assessment pattern language was
derived from the SOAMMI framework (cf. Section II).

20Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

A. Evaluation and Findings
The practical benefits of our SOAMMI assessment

pattern language were demonstrated by the successful use as
guideline for the questionnaire design in four major
capability assessments of service-oriented vendor technology
architectures, as in [1] and [8]. Architecture assessments
need to address key challenges for companies during the
built-up and management of service-oriented architectures.

SOAMMI seems to be complex in practice. Therefore a
pragmatic simplification of the SOAMMI framework was
particularly required in counting assessment results.
Additionally, we have considered for our assessments
specific user requirements from companies using and
providing service-oriented enterprise systems.

Following these ideas, the basic structure of our
questionnaire in [8] was taken from the SOAMMI
architecture areas with one or more questions per Specific
Goal. User requirements have been consolidated and mapped
against specific goals. Wherever no user requirements could
be mapped, Specific Practices have been used to generate
questions on the level of specific goals. Through this
procedure each Specific Goal could be related to at least one
concrete question.

The assessment process takes about 3 months in total to
complete for each software technology provider. The first
step is a pre-workshop (2-3 hours) to make sure that the
architecture provider can identify the appropriate experts for
the assessment workshop itself. Then the actual assessment
workshop (4- 6 hours) is held a few weeks later, so that the
provider has enough time to identify the experts that should
participate and prepare answers. Finally, a series of follow
up workshops for specific questions (3-4 hours each) are
arranged with the system technology provider.

B. Shortcomings for Updating and Refining
The pattern catalogue that serves as a basis for our
assessments is continuously a subject of consideration with
regard to pattern refinement, pattern improvement and
catalogue extension. In parallel to the assessments, feedback
on the state of the patterns that were used during the
evaluation is gathered.

This way, we have a chance to update existing patterns or
derive variants of them. However, we cannot be sure that a
new pattern or derivation is really valid. On the other side,
the variant or new formulation can be a promising pattern
candidate and later be validated and therefore be integrated
into the pattern catalogue in order to use and benefit from it
as early as possible.

The current process, however, does not foresee the
inclusion of non- or semi-validated patterns. The validation
process of a pattern also is a time-consuming process with
much iteration. It can partially be combined with additional
SOA assessments but then still a subset of new patterns
needs to be investigated in more depth.

So, our aim is to gather the feedback, adjust our current
findings and preserve knowledge, feedback and new findings
within our catalogue.

For this reason, we aim at establishing an evolution
process that makes it possible to integrate early results into
the existing pattern catalogue. Continuous refinement and
therefore the lifelines of the pattern catalogue need to be
ensured. The requirements for such a process were already
defined in preliminary work [18] and [23]. The process itself
is described in the following section.

Traditionally, pattern collections are published after a
long period of development and validation where the
essences from design experience can be extracted. This is
mostly done by a small, closed group of design experts as
described in [24]. In the approaches presented in the previous
sections, much effort was put into the derivation and
evaluation of mature and evaluated patterns.

However, we see the problem that many findings must be
regarded earlier, at the state of an idea in order to be able to
consider many findings in a flexible pattern set. This holds
the chance to start working with patterns very early – even if
it not yet fully proven. Our process [25] wants to include
new ideas and concepts into the project’s lifecycle as early as
possible. Over time, the idea, which is directly formulated as
a pattern candidate, gets refined and evaluated.

In this scenario, it may turn out that the candidate is not a
pattern and needs to be rejected. Alternatively, after
continuous refinement and evaluation the pattern candidate
may become more mature, reaching a new state, e.g., being
“under consideration”. The counter-result is also possible: A
promising pattern idea may also turn out to lead to a bad
decision or concept. In this case, we speak of a surprisingly
failing solution. In order to avoid similar failures in the
future, we formulate this concept as an anti-pattern. This
way, the pattern gets a warning character, allowing follow-up
to directly cross out this idea and alter considerations.

V. CONCLUSION AND FUTURE WORK
In this work, we have motivated the necessity to extend

existing SOA maturity models to accord to a clear
metamodel approach due to the verified CMMI model.
Based on the related work to CMMI, which is an assessment
and improvement model for software processes but not for
architectures, we have developed suitable models for
assessments of service-oriented enterprise systems. Our
specific architecture assessment approach of the SOAMMI
framework was founded on current architecture standards
like TOGAF and architecture assessment criteria from
related work approaches.

The presented SOAMMI framework was validated in
consecutive assessment workshops with four global vendors
of service-oriented platforms and has provided transparent
results for subsequent changes of service oriented product
architectures and related processes. Our current research
extends SOAMMI to support architecture diagnostics for
complex integrated enterprise systems in the emerging
context of services and cloud computing architectures.

Our empirical validation and optimization of the
presented maturity framework is an ongoing process, which
has to be synchronized with future cyclic evaluations of SOA
platforms and their growing number of services. Extended
validations of customers of service-oriented technologies are

21Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

planned for the next phase of our framework research and
development.

The need for iteratively updating our assessment pattern
collection motivated us to merge the efforts done for SOA
assessment with a flexible and iterative pattern refinement
and creation process. After talking about SOA maturity and
assessment, we looked at the concept of involving many
stakeholders into the pattern creation and evolution process
and to adapt already available knowledge and findings from
the project’s domain as early as possible.

Our presented pattern-lifecycle process allows for
continuously evaluating gathered knowledge during the
project’s lifetime and makes patterns as well as pattern ideas
available during the whole development process. This way,
pattern collections can be formulated collaboratively without
needing to wait for a closed author group that shares its well-
evaluated design knowledge after a longer period of time.

Additional improvement ideas include an architecture
pattern and knowledge repository, as well as patterns for
visualization of architecture artifacts and architecture control
information, to be operable on an architecture management
cockpit. We are working at extending our pattern language to
a full canonical form in order to support fully standardized
cyclic architecture assessments for service-oriented products
and solutions. The pattern evolution process represents a new
aspect to the assembly and structuring our patterns and will
further explored in the SOA assessment domain.

ACKNOWLEDGMENT
This paper extends ideas from the SOA Innovation Lab,
which is a major research and innovation network on
Enterprise Architecture Management for Services and Cloud
Computing in Germany and Europe.

Parts of the research leading to these results has received
funding from the European Union Seventh Framework
Program (FP7/2007-2013) under grant agreement n°261817,
the BRIDGE project (www.bridgeproject.eu) under the
Security Program SEC-2010.4.2-1.

REFERENCES

[1] H. Buckow, H.-J. Groß, G. Piller, K. Prott, J. Willkomm, and A.
Zimmermann, “Analyzing the SOA Ability of Standard Software
Packages with a dedicated Architecture Maturity Framework,” in
EMISA, 2010, pp. 131-143.

[2] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides, Design
Patterns. Elements of Reusable Object-Oriented Software, 1st ed.
Amsterdam: Addison-Wesley Longman, 1994, p. 416.

[3] T. Erl, “SOA Design Patterns”, Prentice Hall. 2009.
[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,

Pattern-Oriented Software Architecture, Volume 1: A System of
Patterns. Chichester, UK: Wiley, 1996.

[5] P. Bianco, R. Kotermanski, and P. Merson, “Evaluating a Service-
Oriented Architecture,” Engineering, no. September, pp. 1-91, 2007.

[6] CMMI-DEV-1.3 2010 “CMMI for Development, Version
1.3”, Carnegie Mellon University, Software Engineering
Institute, SEI-2010-TR-033, 2010.

[7] TOGAF “The Open Group Architecture Framework”
Version-9.1, The Open Group, 2011.

[8] A. Zimmermann, H. Buckow, H.-J. Gross, O. F. Nandico, G. Piller,
and K. Prott, “Capability Diagnostics of Enterprise Service
Architectures Using a Dedicated Software Architecture Reference
Model,” Services Computing, IEEE International Conference on, vol.
0, pp. 592-599, 2011.

[9] A. Zimmermann and G. Zimmermann, “ESARC - Enterprise Services
Architecture Reference Cube for Capability Assessments of Service-
oriented Systems”, SERVICE COMPUTATION 2011 - The Third
International Conferences on Advanced Service Computing,
September 25-30, 2011 Rome, Italy, ISBN 978-1-61208-152-6,
IARIA Proceedings of SERVICE COMPUTATION 2011, pp. 63-68.

[10] A. Zimmermann, F. Laux, and R. Reiners, “A Pattern Language for
Architecture Assessments of Service-oriented Enterprise Systems,” in
PATTERNS 2011, Third International Conferences on Pervasive
Patterns and Applications, 2011, no. c, pp. 7-12.

[11] D. Krafzig, K. Banke, and D. Slama, „Enterprise SOA”,
Prentice Hall, 2005.

[12] “Essential Architecture Project.” [Online]. Available:
http://www.enterprise-architecture.org. [Accessed: 11-Mar-2012].

[13] S. Inaganti and S. Aravamudan, “SOA Maturity Model,” BP Trends,
no. April, pp. 1-23, 2007.

[14] Sonic: “A new Service-oriented Architecture (SOA) Maturity
Model”,
http://soa.omg.org/Uploaded%20Docs/SOA/SOA_Maturity.p
df, [Accessed: 11-Mar-2012].

[15] ORACLE, “ORACLE: ‘SOA Maturity Model’.”[Online]. Available:
http://www.scribd.com/doc/2890015/oraclesoamaturitymodelcheatshe
et. [Accessed: 11-Mar-2012].

[16] C. Alexander, A Pattern Language: Towns, Buildings, Construction.
New York, New York, USA: Oxford University Press, 1977.

[17] J. Borchers, A Pattern Approach to Interaction Design, 1st ed. John
Wiley & Sons, 2001, p. 268.

[18] J. Tidwell, Designing Interfaces, 1st ed. O’Reilly Media, 2005, p.
352.

[19] T. Schümmer and S. Lukosch, Patterns for Computer-Mediated
Interaction. Chistester, West Sussex, England: John Wiley & Sons,
2007, p. 600.

[20] R. Reiners, I. Astrova, and A. Zimmermann, “Introducing new
Pattern Language Concepts and an Extended Pattern Structure for
Ubiquitous Computing Application Design Support,” in PATTERNS
2011, Third International Conferences on Pervasive Patterns and
Applications, 2011, pp. 61-66.

[21] J. Johnson, GUI bloopers 2.0: Common User Interface Design Don’ts
and DOS, vol. 2, no. October. New York, NY, USA: Morgan
Kaufmann, 2007.

[22] T. Grill and M. Blauhut, “Design Patterns Applied in a User Interface
Design (UID) Process for Safety Critical Environments (SCEs),” in
HCI and Usability for Education and Work, vol. 5298, A. Holzinger,
Ed. Springer Berlin / Heidelberg, 2008, pp. 459-474.

[23] C. R. Prause, “Reputation-based self-management of software process
artifact quality in consortium research projects,” in Proceedings of the
19th ACM SIGSOFT symposium and the 13th European conference
on Foundations of software engineering, 2011, pp. 380-383.

[24] “The BRIDGE Design Pattern Library.” [Online]. Available:
http://pattern-library.sec-bridge.eu/. [Accessed: 11-Mar-2012].

[25] R. Reiners, “A Pattern Evolution Process – From Ideas to Patterns“,
Proceeedings Informatiktage 2012 Bonn - Germany, in Lecture Notes
in Informatics, Vol. S-11, 2012, pp. 115-118.

22Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

