
Patterns in Safety Analysis

Tor Stålhane

Olawande Daramola

Vikash Katta

Department of Computer and Information Science

Norwegian University of Science and Technology

Trondheim, Norway

{stalhane, wande, vikash.katta}@idi.ntnu.no

Abstract – This work proposes the use of a pattern-based

hazard descriptions and generic failure modes, in

combination with domain ontology and Jackson's problem

frames for automating the identification of hazards. This is

an extension of our previous work in the CESAR project

where we built a tool that enables a requirements engineer to

write requirements in a semiformal notation based on

domain knowledge described as ontologies plus a set of

predefined requirement templates. Our approach will enable

automatic generation of the complete FMEA table based on

system’s requirements, pattern based hazard descriptions

and domain knowledge formalized as domain ontologies.

Keywords – safety analysis; HazId; generic hazards;

generic failure modes.

I. INTRODUCTION

The reported work is based on the work on
requirement patterns defined by E. Hull et al. [1] and
extended and improved in the CESAR project. In this
project we combined requirements patterns with domain
ontologies. This allows us to check the requirements for
e.g., consistency and completeness. The ontologies also
enabled the identification of system components such as
sensors, actuators and control units. By including a set of
generic failure modes for each component, we are able to
build a partly filled in Hazard Identification (HazId) table
based on Failure Mode and Effect Analysis (FMEA) for
the system specified by the requirements. In order to make
further progress we identified three needs: we needed (1)
to describe existing hazards in the environment where the
specified system should operate, (2) to formalize the
failure mechanisms that operate in this environment and
(3) an algorithm that could bridge that gap between the
local, generic failure modes from the FMEA and the
global, domain specific hazards.

The rest of this paper is organized as follows: in
Section II we give a short description of the two concepts
generic failure modes and generic hazards. In Section III
we discuss how to describe hazards while Section IV
discusses the use of textual templates – boilerplates – for
hazard description. In Section V we discuss possible ways
to bridge the gap between system FMEA and environment
hazards. In the last section (Section VI) we discuss how

we can combine theoretical work with industrial
experiments to validate and improve the work.

II. GENERIC DESRIPTIONS IN SAFETY ANALYSIS

The starting point of this work was the use of textual
patterns – boilerplates – for requirements, ontologies for
describing equipment and generic failure modes for each
part of the equipment to semi-automatically construct an
FMEA table. Our work on the application of boilerplates
for requirements engineering is based on the work of E.
Hull et al. [1] and further developed by the partners in the
CESAR project – see [2]. The reader should consult this
article for further information on the definition and use of
boilerplates.

To apply textual patterns in the HazId process, we have
used two concepts:

 Equipment ontology. This is used to identify the
components that are part of the equipment. This is
used for two purposes (1) to control that there are
requirements for all components of the equipment
and (2) to keep an updated ontology with the
generic failure modes for each component.

 Generic failure modes, which are already used in a
wide area of application domains – e.g. offshore
industry [3], nuclear industry [4], aerospace [5]
and automotive industry [6].

A generic failure mode is a failure mode containing a
group of more detailed, specific failure modes that all have
the same high level manifestation – e.g., all failure modes
that will lead to a motor stopping can be included in the
generic failure mode "motor stops". After having studied a
large set of published generic failure modes, we have
settled for the following:

 Actuators – no action, wrong actions

 Sensors – no info, wrong info

 Control systems – omission, commission,
incorrect, too late.

Below is a small part of the requirements written using
boilerplates and the generated part of a HazId table for a
steam boiler. For further discussion of the boilerplate
requirements and the semi-automatic generation of a
system HazId, see [7].

 <controller> shall <read> <water level> from
<water level sensor>

7Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 If <water level exceeds TBD>, <controller> shall
<turn off> <feeding pump>

 If <water level below TBD>, <controller> shall

<turn on> <feeding pump>

TABLE I. EXAMPLE OF A GENERATED PART OF A HAZID TABLE

Element Failure mode
Risk from environment risk

assessment

controller

Omission

Commission

Incorrect

Too late

Water level

sensor

No output

Wrong output

Feeding

pump

No action

Wrong action

Generic hazards are widely used in industry e.g., the

offshore industry's generic hazards for blow-out [8] and
subsea drilling [9]. Important industrial areas like aviation
[10], chemical plants [11] and the building industry [12]
also have lists of relevant generic hazards.

III. HAZARD DESCRIPTIONS

There are several ways to describe hazards. We have
chosen an approach based on Ericson [13], which is
illustrated by the diagram in Figure 1.

Based on this diagram, a hazard description must at
least contain the three topmost components – hazardous
element, initiating mechanism and target and threat.

 Control unit => initiating mechanism, related to
the control unit’s failure modes. The control unit
receives info from the equipment under control.

 Controlled equipment => hazardous element,
related to the equipment’s failure modes. The
equipment can move to a hazardous failure mode
either due to a wrong control command or due to
an internal failure

 Target and threat => equipment’s environment,
e.g., building and personnel. These are represented
as having generic hazards.

IV.

V. BRIDGING THE GAP

Figure 1: Hazard description pattern

We see that we need two descriptions in order to
analyse an accident:

 How the equipment can harm the environment –
cause an accident. Our starting point here is a list
of generic hazards. The event sequence is as
follows: (1) the equipment is brought into a
hazardous state and (2) an event can then cause an
accident – identified by one or more of the
potential accidents contained in the list of generic
hazards.

 How the equipment can reach a hazardous state.
We need to consider how the equipment can do
this alone, e.g., based on equipment characteristics
or due to a faulty command from the controller.

Related to this, we need to consider (1) the controller's
action and what causes it, e.g., an internal error or faulty
information from equipment or from the equipment's
environment via sensors and (2) the equipment entity that
is affected, which will bring the equipment into a
hazardous state – actuators such as pumps and valves.

The challenge is how much of the accident sequence
we can describe in a generic fashion using one or more
boilerplate patterns. The sequence of events that finally
leads to an accident can also be described as a cause –
effect chain.

In order to organize our hazard description, we have
based our accident descriptions on Jackson’s problem
frames [14]. We need to map:

 Hazardous element, something that is in or can be
brought into a hazardous state.

 Initiating mechanism, something that happens to
the hazardous element or to something that might
affect the hazardous element.

 Target and threat, which is a description of a
potential accident.

The use of boilerplates to describe hazards will enable

the representation of hazards in a semi-formal way and

will thus be an improvement over the use of tables. We

believe that the use of hazard boilerplates provides a

useful mid-level in order to go from manual hazard

analysis to machine understandable hazards for automated

safety analysis. It is possible to translate hazards

expressed as free text or tables into hazard boilerplates,

and also to generate table-based hazards from a set of

hazard boilerplates.

Figure 2: Pattern for equipment under control

8Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

The use of hazard boilerplates has the following

advantages:

 It provides a unified structure and style of
describing hazard and thereby reduces ambiguity.
It also brings some consistency into the way
similar hazards are represented.

 It will engender reuse of hazard descriptions since
the semi-formal representation using boilerplates
is more amenable to automated text processing. It
creates a basis for pattern-based, structure-based,
and semantic-based reuse in hazard analysis,
which is useful in the context of product lines and
variant systems in specific domains. Several
automated safety analysis procedures for failure
detection and prediction, hazard mitigation, and
cause-effect analysis will benefit from reusable
boilerplate hazard definitions.

 Increased completeness of hazard descriptions –
ensuring that every hazard conforms to the
requirements of the Hazard Classification Matrix
used by Ericson [13] – see Figure 1.

IV. HAZARD BOILERPLATE DESCRIPTIONS

An element that is in a state where it has the potential
to cause an accident is said to be in a hazardous state. Such
an element is called a hazardous element. The element is
brought to the hazardous state by an action – e.g., an
equipment failure. This gives the following boilerplate
formulation:

<action> to <entity> in <state> can cause <hazardous
state>

A hazardous state does not necessarily lead to an
accident. Instead it might just be the first step out of
several that eventually leads to an accident. Thus, we
might need several boilerplate statements in sequence to
describe the full accident sequence.

If we stick to Ericson's model as shown in Figure 1, we
see that an initiating mechanism applied to a hazardous
element will create a threat to a target – an accident. We
will use the notation {...} to indicate an alternative and
since <action> to <entity> = <event>, we can write:

 {<action> to} <entity> in <state> can cause
<hazardous state>

 <event> {in <hazardous state>} can cause
<accident>

It is possible to have different events leading to the
same hazardous state and to have several hazardous states
leading to or enabling the same accident. When we have a
chain of events finally leading to an accident, it is also
possible to identify the event in the chain where it is most
easy to stop the process and thus prevent the accident from
happening.

Using the following steps, we can build the complete
cause - consequence chain for any controlled equipment in
any environment.

 Environment: identify all generic hazards that are
relevant for the environment under consideration,
e.g., explosion, flooding and fire.

 Controlled equipment: use the two boilerplates
"<action> to <entity> in <state> can cause
<hazardous state>" and "<event> in <hazardous
state> can cause <accident>" to describe how the
equipment can cause an accident in the relevant
environment. We start with the generic hazard and
can write "<too high pressure> to <vessel> can
cause <explosion>". When we consider the
equipment ontology we see that <too much heat>
can cause <too high pressure>.

 Control unit: The control unit can cause an
accident by sending the wrong command to the
equipment. The reason for the wrong command is
either wrong input, e.g., from a sensor, or a wrong
understanding of the current state of the
equipment, which again is based on wrong info
from the equipment.

The last step is to identify how the events leading up to
the accident can be initiated. This involves understanding
of how the controller works, i.e. the mapping from input
sensor signals to the output actuator signals. E.g., <wrong
value> to <temperature> can cause <wrong command> to
<heater>

The last step can be used to map instruments – e.g.,
sensors – to an initiating event. The necessary knowledge
can be taken from an equipment ontology where we find
that temperature is measured using a temperature sensor.
E.g., <sensor error> can cause <wrong value> to
<temperature>.

With the examples above in mind we have the
following event chain: EQ ! wrong temperature value =>
CU ! wrong command to heater => too high pressure =>
explosion. The event EQ ! wrong pressure value will have
the same consequences.

V. BRIDGING THE GAP

We now have a semi-formal description of how the
system can fail (Section II) and a semi-formal description
of the environmental hazards (Section IV). We can thus
bridge the gap between system failures and environment
accidents – consequences.

The control unit's components are identified by using
information from the control unit's requirements and from
the equipment's ontology, see fig. 3. The equipment
ontology will also contain failure modes – generic or
specialized – for each component.

Figure 3: System-under-control pattern with necessary information

9Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

If we consider the examples at the end of the previous
section, we see that the initiating event is an equipment
sensor failure. A sensor registered in the tool's ontology
base will have two generic failure modes: wrong output
and no output and the first of these failure modes can
cause an explosion.

Given that the control unit is correctly implemented,
the control unit can move the equipment into a hazardous
state in three ways:

 By acting correctly on a wrong signal from the
equipment – e.g., a faulty sensor.

 By getting to a wrong state due to a wrong signal
and then acting wrongly on a correct signal.

 By acting too late on a signal from the equipment.
Thus, the main activity for bridging the gap between

hazard descriptions and the equipment and control unit's
failures is to map generic failure modes onto the first
action in the cause – consequence chain used in the hazard
descriptions.

The typical event described in the previous section is
EQ ! wrong temperature value => CU ! wrong command
to heater => too high pressure => explosion. The local
effect is related to the CU – send wrong command, while
the global effect is the generic hazard – explosion. If we
use the standard elements in an FMEA or HazId table we
get the table shown in Table II below.

It is straight forward to include a detection strategy in
the equipment ontology description for each component,
thus extending the FMEA to a Failure Mode, Effect and
Diagnostics Analysis (FMEDA). The detection strategy
can be linked to each component or to each failure mode
depending on the granularity of the information available.
For our sensor example this could be a built-in self-test or
sensor duplication.

Building on an already existing CESAR tool, we can
add a new tool, which will enable the definition of hazards
described as boilerplates and production of a HazId table
using FMEA or FMEDA.

TABLE II. EXAMPLE OF COMPLTE HAZID TABLE

Component Failure

mode

Local effect Global

effect
p C

Temperature
sensor

No signal

Wrong

signal

Wrong

command
to heater

Explosion

VI. CONCLUSIONS AND FURTHER WORK

Our present work is based on our work in the CESAR
project where we built a tool that enables a requirements
engineer to write requirements in a semi-formal notation
based on domain knowledge and stored as boilerplates.
The equipment ontology can contain a set of generic
failure modes, which allows a tool to automatically
generate the first part of an FMEA table.

In the present work we have shown that it is also
possible to describe hazards that stems from defined

equipment failures using boilerplates and an equipment
ontology. This enables us to complete the FMEA table.
The new tool will also allow the engineers to add new
knowledge and experience, thus making the tool an
important part of the company's memory for safety
analysis.

Our next steps will be to build a tool prototype and, in
cooperation with an industrial partner, to enter a set of
hazard definitions written as boilerplates. The tool
prototype will be used in an experiment to identify strong
and weak points plus identifying new functionality that
need to be added in order to satisfy industrial users' needs.

REFERENCES

[1] E. Hull, K. Jackson, and K. Dick, (2004): “Requirements
Engineering”, Springer.

[2] O. Daramola, T. Stålhane, T. Moser, and S. Biffl (2011): “A
Conceptual Framework for Semantic Case-based Safety
Analysis”, 16th IEEE Intl. Conf. on Emerging Technologies
and Factory Automation, Toulouse France, IEEE Press

[3] SINTEF: “OREDA Offshore Reliability Data”, 5th Edition
[4] J.D. Lawrence: “Software Safety Hazard Analysis”,

NUREG/CR-6430, February, 1996.
[5] C. Seguin, “Formal Notation Suitable to Express Safety

Properties”, ESACS technical report, September 17, 2001
[6] P. Johannesen, F. Tørner, and J. Torin: “Actuator Based

Hazard Analysis for Safety Critical Systems”, Proceedings of
the 23th International Conference on Computer safety,
Reliability and security, Potsdam, Germany September 2004.

[7] T. Stålhane, S. Farfeleder, and O. Daramola: “Safety analysis
based on requirements”, Extended Halden Reactor Project
Meeting, Sandefjord, Norway, 2011

[8] H. Brant et al.: “Environmental Risk Assessment of
Exploration Drilling in Nordland IV”, DnV no. 2010-04-20

[9] J.L. Melendez: “Risk Assessmnet of Surface vs. Subsea
Blowout prevneters (BOPs) on Mobil Offshore Drilling Units
focusing on Riser Failure and the use of Subsea Shear Rams”
Texas A&M University, May 2006

[10] N. Alvares and H. Lambert: “Realistic Probability Estimates
For Destructive Overpressure Events In Heated Center Wing
Tanks Of Commercial Jet Aircraft”. 5th International
Seminar on Fire and Explosion Hazards”. Edinburgh, United
Kingdom April 23, 2007 through April 27, 2007

[11] S. Rathnayakaa, F. Khana,, and P. Amyotte: “SHIPP
methodology: Predictive accident modeling approach. Part I”
Methodology and model description”. Process Safety and
Environmental Protection 8 9 (2011) 151–164

[12] B.E. Biringer, R.V. Matalucci, and S.L. O'Connor: “Security
Risk Assessment and Management: A Professional Practice
Guide for Protecting Buildings and Infrastructures”. John
Wiley & Sons, 2007

[13] C.A. Ericson II: "Hazard Analysis Techniques for System
Safety". John Wiley & Sons, Inc., New Jersey, 2005

[14] M. A. Jackson: "Problem frames: analysing and structuring
software development problems". Addison-Wesley 2001

10Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

http://www.amazon.com/Betty-E.-Biringer/e/B001IXUAWG/ref=ntt_athr_dp_pel_1/176-5899652-9440819
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2/176-5899652-9440819/176-5899652-9440819?_encoding=UTF8&sort=relevancerank&search-alias=books&ie=UTF8&field-author=Rudolph%20V.%20Matalucci
http://www.amazon.com/s/ref=ntt_athr_dp_sr_3/176-5899652-9440819/176-5899652-9440819?_encoding=UTF8&sort=relevancerank&search-alias=books&ie=UTF8&field-author=Sharon%20L.%20O%27Connor

