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Abstract – This work proposes the use of a pattern-based 

hazard descriptions and generic failure modes, in 

combination with domain ontology and Jackson's problem 

frames for automating the identification of hazards. This is 

an extension of our previous work in the CESAR project 

where we built a tool that enables a requirements engineer to 

write requirements in a semiformal notation based on 

domain knowledge described as ontologies plus a set of 

predefined requirement templates. Our approach will enable 

automatic generation of the complete FMEA table based on 

system’s requirements, pattern based hazard descriptions 

and domain knowledge formalized as domain ontologies.     

Keywords – safety analysis; HazId; generic hazards; 

generic failure modes.  

I. INTRODUCTION   

The reported work is based on the work on 
requirement patterns defined by E. Hull et al. [1] and 
extended and improved in the CESAR project. In this 
project we combined requirements patterns with domain 
ontologies. This allows us to check the requirements for 
e.g., consistency and completeness.  The ontologies also 
enabled the identification of system components such as 
sensors, actuators and control units. By including a set of 
generic failure modes for each component, we are able to 
build a partly filled in Hazard Identification (HazId) table 
based on Failure Mode and Effect Analysis (FMEA) for 
the system specified by the requirements. In order to make 
further progress we identified three needs: we needed (1) 
to describe existing hazards in the environment where the 
specified system should operate, (2) to formalize the 
failure mechanisms that operate in this environment and 
(3) an algorithm that could bridge that gap between the 
local, generic failure modes from the FMEA and the 
global, domain specific hazards.  

The rest of this paper is organized as follows: in 
Section II we give a short description of the two concepts 
generic failure modes and generic hazards. In Section III 
we discuss how to describe hazards while Section IV 
discusses the use of textual templates – boilerplates – for 
hazard description. In Section V we discuss possible ways 
to bridge the gap between system FMEA and environment 
hazards. In the last section (Section VI) we discuss how 

we can combine theoretical work with industrial 
experiments to validate and improve the work.  

II. GENERIC DESRIPTIONS IN SAFETY ANALYSIS 

The starting point of this work was the use of textual 
patterns – boilerplates – for requirements, ontologies for 
describing equipment and generic failure modes for each 
part of the equipment to semi-automatically construct an 
FMEA table. Our work on the application of boilerplates 
for requirements engineering is based on the work of E. 
Hull et al. [1] and further developed by the partners in the 
CESAR project – see [2]. The reader should consult this 
article for further information on the definition and use of 
boilerplates.  

To apply textual patterns in the HazId process, we have 
used two concepts: 

 Equipment ontology. This is used to identify the 
components that are part of the equipment. This is 
used for two purposes (1) to control that there are 
requirements for all components of the equipment 
and (2) to keep an updated ontology with the 
generic failure modes for each component.    

 Generic failure modes, which are already used in a 
wide area of application domains – e.g. offshore 
industry [3], nuclear industry [4], aerospace [5] 
and automotive industry [6]. 

A generic failure mode is a failure mode containing a 
group of more detailed, specific failure modes that all have 
the same high level manifestation – e.g., all failure modes 
that will lead to a motor stopping can be included in the 
generic failure mode "motor stops". After having studied a 
large set of published generic failure modes, we have 
settled for the following: 

 Actuators  – no action, wrong actions 

 Sensors  – no info, wrong info 

 Control systems – omission, commission, 
incorrect, too late.  

Below is a small part of the requirements written using 
boilerplates and the generated part of a HazId table for a 
steam boiler. For further discussion of the boilerplate 
requirements and the semi-automatic generation of a 
system HazId, see [7].  

 <controller> shall <read> <water level> from 
<water level sensor> 
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 If <water level exceeds TBD>, <controller> shall 
<turn off> <feeding pump> 

 If <water level below TBD>, <controller> shall 

<turn on> <feeding pump> 

TABLE I.  EXAMPLE OF A GENERATED PART OF A HAZID TABLE 

Element  Failure mode 
Risk from environment risk 

assessment  

controller 

Omission   

Commission   

Incorrect  

Too late  

Water level 

sensor 

No output  

Wrong output  

Feeding 

pump 

No action  

Wrong action   

 
Generic hazards are widely used in industry e.g., the 

offshore industry's generic hazards for blow-out [8] and 
subsea drilling [9].  Important industrial areas like aviation 
[10], chemical plants [11] and the building industry [12] 
also have lists of relevant generic hazards.  

III. HAZARD DESCRIPTIONS  

There are several ways to describe hazards. We have 
chosen an approach based on Ericson [13], which is 
illustrated by the diagram in Figure 1. 

Based on this diagram, a hazard description must at 
least contain the three topmost components – hazardous 
element, initiating mechanism and target and threat.  

 Control unit => initiating mechanism, related to 
the control unit’s failure modes. The control unit 
receives info from the equipment under control.  

 Controlled equipment => hazardous element, 
related to the equipment’s failure modes. The 
equipment can move to a hazardous failure mode 
either due to a wrong control command or due to 
an internal failure 

 Target and threat => equipment’s environment, 
e.g., building and personnel. These are represented 
as having generic hazards.  

 
 
 
 
 
 

IV.  

V. BRIDGING THE GAP  

 
 
 
 
 

Figure 1: Hazard description pattern 

We see that we need two descriptions in order to 
analyse an accident: 

 How the equipment can harm the environment – 
cause an accident. Our starting point here is a list 
of generic hazards. The event sequence is as 
follows: (1) the equipment is brought into a 
hazardous state and (2) an event can then cause an 
accident – identified by one or more of the 
potential accidents contained in the list of generic 
hazards. 

 How the equipment can reach a hazardous state. 
We need to consider how the equipment can do 
this alone, e.g., based on equipment characteristics 
or due to a faulty command from the controller.  

Related to this, we need to consider (1) the controller's 
action and what causes it, e.g., an internal error or faulty 
information from equipment or from the equipment's 
environment via sensors and (2) the equipment entity that 
is affected, which will bring the equipment into a 
hazardous state – actuators such as pumps and valves. 

The challenge is how much of the accident sequence 
we can describe in a generic fashion using one or more 
boilerplate patterns. The sequence of events that finally 
leads to an accident can also be described as a cause – 
effect chain. 

In order to organize our hazard description, we have 
based our accident descriptions on Jackson’s problem 
frames [14]. We need to map: 

 Hazardous element, something that is in or can be 
brought into a hazardous state. 

 Initiating mechanism, something that happens to 
the hazardous element or to something that might 
affect the hazardous element. 

 Target and threat, which is a description of a 
potential accident.   

The use of boilerplates to describe hazards will enable 

the representation of hazards in a semi-formal way and 

will thus be an improvement over the use of tables. We 

believe that the use of hazard boilerplates provides a 

useful mid-level in order to go from manual hazard 

analysis to machine understandable hazards for automated 

safety analysis. It is possible to translate hazards 

expressed as free text or tables into hazard boilerplates, 

and also to generate table-based hazards from a set of 

hazard boilerplates.  

 
Figure 2: Pattern for equipment under control 
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The use of hazard boilerplates has the following 

advantages: 

 It provides a unified structure and style of 
describing hazard and thereby reduces ambiguity. 
It also brings some consistency into the way 
similar hazards are represented. 

 It will engender reuse of hazard descriptions since 
the semi-formal representation using boilerplates 
is more amenable to automated text processing. It 
creates a basis for pattern-based, structure-based, 
and semantic-based reuse in hazard analysis, 
which is useful in the context of product lines and 
variant systems in specific domains. Several 
automated safety analysis procedures for failure 
detection and prediction, hazard mitigation, and 
cause-effect analysis will benefit from reusable 
boilerplate hazard definitions. 

 Increased completeness of hazard descriptions – 
ensuring that every hazard conforms to the 
requirements of the Hazard Classification Matrix 
used by Ericson [13] – see Figure 1. 

IV. HAZARD BOILERPLATE DESCRIPTIONS  

An element that is in a state where it has the potential 
to cause an accident is said to be in a hazardous state. Such 
an element is called a hazardous element. The element is 
brought to the hazardous state by an action – e.g., an 
equipment failure. This gives the following boilerplate 
formulation:  

<action> to <entity> in <state> can cause <hazardous 
state> 

A hazardous state does not necessarily lead to an 
accident. Instead it might just be the first step out of 
several that eventually leads to an accident.  Thus, we 
might need several boilerplate statements in sequence to 
describe the full accident sequence.  

If we stick to Ericson's model as shown in Figure 1, we 
see that an initiating mechanism applied to a hazardous 
element will create a threat to a target – an accident. We 
will use the notation {...} to indicate an alternative and 
since <action> to <entity> = <event>, we can write: 

 {<action> to} <entity> in <state> can cause 
<hazardous state> 

 <event> {in <hazardous state>} can cause 
<accident>  

It is possible to have different events leading to the 
same hazardous state and to have several hazardous states 
leading to or enabling the same accident. When we have a 
chain of events finally leading to an accident, it is also 
possible to identify the event in the chain where it is most 
easy to stop the process and thus prevent the accident from 
happening.  

Using the following steps, we can build the complete 
cause - consequence chain for any controlled equipment in 
any environment. 

 Environment: identify all generic hazards that are 
relevant for the environment under consideration, 
e.g., explosion, flooding and fire. 

 Controlled equipment: use the two boilerplates 
"<action> to <entity> in <state> can cause 
<hazardous state>" and "<event> in <hazardous 
state> can cause <accident>" to describe how the 
equipment can cause an accident in the relevant 
environment. We start with the generic hazard and 
can write "<too high pressure> to <vessel> can 
cause <explosion>".  When we consider the 
equipment ontology we see that <too much heat> 
can cause <too high pressure>. 

 Control unit: The control unit can cause an 
accident by sending the wrong command to the 
equipment. The reason for the wrong command is 
either wrong input, e.g., from a sensor, or a wrong 
understanding of the current state of the 
equipment, which again is based on wrong info 
from the equipment.   

The last step is to identify how the events leading up to 
the accident can be initiated. This involves understanding 
of how the controller works, i.e. the mapping from input 
sensor signals to the output actuator signals. E.g., <wrong 
value> to <temperature> can cause <wrong command> to 
<heater> 

The last step can be used to map instruments – e.g., 
sensors – to an initiating event. The necessary knowledge 
can be taken from an equipment ontology where we find 
that temperature is measured using a temperature sensor. 
E.g., <sensor error> can cause <wrong value> to 
<temperature>. 

With the examples above in mind we have the 
following event chain: EQ ! wrong temperature value => 
CU ! wrong command to heater => too high pressure => 
explosion. The event EQ ! wrong pressure value will have 
the same consequences.  

V. BRIDGING THE GAP 

We now have a semi-formal description of how the 
system can fail (Section II) and a semi-formal description 
of the environmental hazards (Section IV). We can thus 
bridge the gap between system failures and environment 
accidents – consequences. 

The control unit's components are identified by using 
information from the control unit's requirements and from 
the equipment's ontology, see fig. 3. The equipment 
ontology will also contain failure modes – generic or 
specialized – for each component.   

 
Figure 3: System-under-control pattern with necessary information   
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If we consider the examples at the end of the previous 
section, we see that the initiating event is an equipment 
sensor failure. A sensor registered in the tool's ontology 
base will have two generic failure modes: wrong output 
and no output and the first of these failure modes can 
cause an explosion.  

Given that the control unit is correctly implemented, 
the control unit can move the equipment into a hazardous 
state in three ways: 

 By acting correctly on a wrong signal from the 
equipment – e.g., a faulty sensor. 

 By getting to a wrong state due to a wrong signal 
and then acting wrongly on a correct signal. 

 By acting too late on a signal from the equipment. 
Thus, the main activity for bridging the gap between 

hazard descriptions and the equipment and control unit's 
failures is to map generic failure modes onto the first 
action in the cause – consequence chain used in the hazard 
descriptions.   

The typical event described in the previous section is 
EQ ! wrong temperature value => CU ! wrong command 
to heater => too high pressure => explosion. The local 
effect is related to the CU – send wrong command, while 
the global effect is the generic hazard – explosion. If we 
use the standard elements in an FMEA or HazId table we 
get the table shown in Table II below.  

It is straight forward to include a detection strategy in 
the equipment ontology description for each component, 
thus extending the FMEA to a Failure Mode, Effect and 
Diagnostics Analysis (FMEDA). The detection strategy 
can be linked to each component or to each failure mode 
depending on the granularity of the information available. 
For our sensor example this could be a built-in self-test or 
sensor duplication.  

Building on an already existing CESAR tool, we can 
add a new tool, which will enable the definition of hazards 
described as boilerplates and production of a HazId table 
using FMEA or FMEDA.  

TABLE II.  EXAMPLE OF COMPLTE HAZID TABLE 

Component  Failure 

mode 

Local effect Global 

effect 
p C 

Temperature 
sensor 

No signal     

Wrong 

signal  

Wrong 

command 
to heater 

Explosion    

 

VI. CONCLUSIONS AND FURTHER WORK 

Our present work is based on our work in the CESAR 
project where we built a tool that enables a requirements 
engineer to write requirements in a semi-formal notation 
based on domain knowledge and stored as boilerplates. 
The equipment ontology can contain a set of generic 
failure modes, which allows a tool to automatically 
generate the first part of an FMEA table. 

In the present work we have shown that it is also 
possible to describe hazards that stems from defined 

equipment failures using boilerplates and an equipment 
ontology. This enables us to complete the FMEA table. 
The new tool will also allow the engineers to add new 
knowledge and experience, thus making the tool an 
important part of the company's memory for safety 
analysis.  

Our next steps will be to build a tool prototype and, in 
cooperation with an industrial partner, to enter a set of 
hazard definitions written as boilerplates.  The tool 
prototype will be used in an experiment to identify strong 
and weak points plus identifying new functionality that 
need to be added in order to satisfy industrial users' needs.  
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