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Abstract – With piecemeal growth, complex systems are 

grown in a series of small steps rather than pieced together in 

one large lump.  Although there are many specific examples 

(from agile methods) of piecemeal growth in software 

engineering; we argue that prior art has yet to produce general 

theoretical argument for building complex software systems 

this way.  In this research, we propose a formal, theoretical 

argument for the general applicability of piecemeal growth to 

software engineering.  As part of our argument, we infer both 

the requisites for piecemeal growth and some surprising 

connections between piecemeal growth and existing disciplines 

within software engineering. 
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I. INTRODUCTION 

A. The Nature of this Research 

This paper presents the results of software engineering 

research. We begin with a brief discussion of the nature of 

this research to establish the proper paradigm for evaluating 

this work.  While scientific problems are concerned with the 

study of existing artifacts and phenomena (the behavior of 

subatomic particles, the motions of planets, etc), 

engineering problems are concerned with how to construct 

new artifacts (bridges, buildings, and, in our case, software 

systems) [1].  While scientific research problems have an 

empirical nature, engineering (specifically software 

engineering) research problems do not.  It is not possible to 

apply the same empirical validation methods used for 

scientific research to software engineering research [1].   

 

Software engineering research is the study of processes 

by which people turn ideas into software [1].  Empirical data 

collected about these processes necessarily contain social 

and cultural aspects.  Although empirical data may serve as 

an example to clarify the concepts presented here, it cannot 

objectively validate our results. Producing any such data and 

determining its correspondence with our results requires 

subjective interpretation. 

 

In this paper, we advocate for the effectiveness of a 

particular software engineering approach using a structured 

argument.  Ultimately our work is validated by whether or 

not the argument we present is convincing among practicing 

software engineers. To be considered convincing, the 

argument will have to generate interest and credibility. It 

will have to be circulated among a wider audience, polished 

and refined. Parts or all of the argument must be used by 

engineers to justify design processes of their own. We 

consider this work to be the first step in the process – we 

have recorded an argument so that it can be read, circulated, 

and scrutinized. For this paper, our goal is to produce an 

argument lacks identifiable errors or contradictions. 

B. Piecemeal Growth and Software Engineering 

Piecemeal growth is the process of building a complex 

system in small steps [2]; where nothing is ever completely 

torn down or erased. Additions are made, existing structures 

are embellished and improved [3].  This is different from 

modular design [4] where the system is composed from 

individual pieces snapped together.  Consider the process by 

which the St. Mark’s Square in Venice (Fig. 1) was built – 

the example of piecemeal growth given in [5]. The process 

started in 560 A.D. with a small square basilica, where the 

castle of Doge (middle right in the picture) was built.  In 

976 A.D., two new buildings were added to the center of the 

basilica, including the tower shown in the middle of Fig. 1.  

By 1532 A.D., the tower became embedded in a rectangular 

building and the original basilica was extended. 
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Fig. 1: St. Mark’s Square in Venice [6].   

St. Marks Square grew from a gradual sequence of 

changes rather than by assembling pre-fabricated parts.  

Each change mostly preserved the changes that came before. 

And each change contributed to the organic order seen in 

Fig. 1. Because all acts of piecemeal growth have these 

characteristics in common [3]. We recognize a process as 

piecemeal growth, if it: 

1. Specifies a sequence of operations 

2. Each operation preserves the effects of all previous 

operations 

3. Each operation solves part of a bigger problem 

4. The sum effect of all operations solves the problem 

in its entirety 

We will argue in the next section that although there are 

many specific examples of piecemeal growth in software 

engineering, there is nothing in the prior art that proposes an 

argument for the general applicability of piecemeal growth 

to building software systems. There is no theoretical 

argument that arbitrary, complex software systems can be 

built in a manner similar to the way St. Mark’s Square was 

built.  The general strategy of our argument is inspired by a 

technique used in mathematics – [6] argues that the Koch 

curve fractal exists by showing it to be the unique 

consequence of a particular equation. We argue that 

piecemeal growth is generally applicable in software 

engineering by showing it to be the unique consequence of a 

particular software engineering approach. 

The rest of this paper is as follows. In Section II, we 

argue that software engineering is missing a general 

argument for the applicability of piecemeal growth to 

software engineering. In Section III, we introduce a system 

of mathematics needed to create that argument. In Section 

IV, we use our math to argue for the general applicability of 

piecemeal growth. In Section V and VI, we analyze our 

results and its significance. 

II. STATE OF THE ART 

The idea of piecemeal growth has made its way into 

software engineering practice through the adoption of agile 

methods [8] such as Extreme Programming (XP) [9], Scrum 

[10], and Crystal [11].  Agile methods assert that complex, 

well-designed software systems can be grown gradually 

through a process of continuous refactoring [12].  In this 

approach, software engineers do not put much emphasis on 

comprehensive analysis or design.  Instead, they focus on 

building the highest-priority feature using the first 

reasonable approach that comes to mind. They refactor the 

results into a suitable design, and then repeat the process for 

the next highest-priority feature.  The belief is that engineers 

can progress toward a solution piecemeal because 

refactoring makes it possible (and inexpensive) to make 

changes at any point. 

Although the practice of piecemeal growth is known in 

software engineering as a part of agile methods, the actual 

idea of piecemeal growth is developed by prior works, such 

as [12], [13] and [14] that focus specifically on the practice 

of continuous refactoring. Instead of general arguments, 

these works all give detailed examples of how specialized 

refactoring techniques work to improve parts of a specific 

system.  None of them propose an argument (although the 

premise is asserted) that, in general, continuous refactoring 

can be used to grow arbitrarily complex software systems. 

For example, in [12], continuous refactoring is used as 

the basis for enabling piecemeal growth.  The overall 

concept is developed using an introductory example.  

Although the example describes the basic idea of 

refactoring, it does not describe why this idea is useful 

beyond the specific example given. For the technique’s 

broader application, the reader is asked to “imagine [the 

example] in the context of a much larger system [12].”  In 

[13], continuous refactoring is asserted to be a proper basis 

for piecemeal growth in software engineering.  The concept 

is illustrated by an example of evolving a new application 

framework for a legacy system, however, there is no 

argument for how to extend the techniques used in the 

example to the creation of systems not described in the 

example. In [14], the use of continuous refactoring for 

piecemeal growth is illustrated by an example of evolving a 

database for a simple financial institution. The work 

describes an example starting point for such a process, but 
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the process itself – and its applicability to systems other 

than what is exemplified – is asserted without further 

argument. 

The goal of this research is to add to the current state of 

the art an argument for the general applicability of 

piecemeal growth to software engineering.  Our approach is 

to come up with a mathematical model that characterizes the 

general existence of piecemeal growth in software 

engineering and a mathematical argument that piecemeal 

growth follows naturally as the result of a specific 

engineering approach. In the next section, we establish the 

system of mathematics needed to make our argument. 

III. POSE AND POAD THEORY 

The arguments in the next section will be based on a 

system of mathematics known as Problem-Oriented 

Software Engineering (POSE) [15] and Pattern-Oriented 

Analysis and Design (POAD) Theory [16].  In this section, 

we provide a summary of both. 

In POSE, a software engineering problem has context, 

W; a requirement, R; and a solution, S.  We write        

to indicate that we intend to find a solution S that, given a 

context of W, satisfies R. Details about an element of the 

problem can be captured in a description for that element 

and a description can be written in any language considered 

appropriate. The problem,    of designing a complex system 

can be expressed in POSE as: 

                (1)   

where   is the real-world environment for the system,   

is the system itself and   are the requirements the system 

must meet. Equation (1)  says that we can expect to satisfy 

R when the system S is applied in context W. 

In POSE, engineering design is represented using a 

series of problem transformations. A problem 

transformation is a rule where a conclusion 

problem          is transformed into premise 

problems                            using 

justification   and a rule named  , resulting in the 

transformation step 
     

 

   
   

.  This means that   is a 

solution of          whenever            are solutions of 

                            . The justification   collects 

the evidence of adequacy of the transformation step.  

Through the application of rule   , problems are 

transformed into other problems that may be easier to solve. 

These transformations occur until we are left only with 

problems that we know have a solution fit for the intended 

purpose.   POSE allows us to use one big-step 

transformation to represent several smaller ones. The 

progression of a software engineering solution described by 

a series of transformations can be shown using a 

development tree. 

                           

           

    
    

           

    
    

 

(2)  

 In the tree, the initial problem forms the root and 

problem transformations extend the tree upward toward the 

leaves.   There are four problem nodes in the tree:   ,   ,   , 

and      The problem transformation from    to    is 

justified by   , the transformation from   to    and    is 

justified by   . The bar over    indicates that    is solved. 

Because    remains unsolved, the adequacy argument for 

the tree (the conjunction of all justifications) is not 

complete, and the problem    remains unsolved. A complete 

and fully-justified problem tree means that all leaf problems 

(in this case    and    ) have been solved. 

For the sake of clarity, we will show the context, 

solution, and requirement of a problem only when necessary 

to understanding a given transformation.  In many of the 

equations in section IV, these details are omitted and only 

the problem’s name is shown.  In general we adopt the 

practice of omitting any detail not required to support our 

argument.  For example, we recognize that systems 

requirements often compete and designers must consider 

details such as how to trace from business requirements to 

system requirement to architectural choices.  Although these 

considerations are important in the day-to-day practice of 

software engineering, they were not necessary to complete 

our argument for the general applicability of piecemeal 

growth in software engineering and were, thus, omitted 

from representation in subsequent formal models. 

 An         (short for Architectural Structure) [15] is 

used to represent an architecture in the solution. 

An        ,                      has a name, and combines 

a known structure,   (of arbitrary complexity), together with 

the    which are elements of the solution that are yet to be 

designed. Using the solution interpretation rule       , we 

can modify the solution as follows: 
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 (3)  

Once an         has been applied, we can use the 

Solution Expansion transformation        to expand the 

problem context and refocus the problems to find the     that 

remain to be designed.  For example, in the case where   

  , we would have:  

                          
                         
                        

                    
         

(4)   

where      is used to indicate that nothing is known 

about that particular component. Using       allows us to 

isolate a particular unknown element without making 

assumptions about any of the other unknown elements. The 

       transformation creates a number of premise 

problems.  Each new premise problem requires solving and 

each premise problem contributes its solution to the other 

premise problems.  Note that because the architecture being 

expanded has already been justified, the expansion of the 

architecture requires no further justification. 

Software design patterns record the engineering 

expertise needed to justify the substitution of a complex, 

unfamiliar problems with simpler, more familiar one [17].  

The basis of POAD Theory is that software engineering 

design can be represented as a series of transformations 

from complex engineering problems to simpler ones, with 

software design patterns used to justify those 

transformations:  

              

              

        
                     

 
(5)   

In (5) the engineering expertise in patterns 

                    are used to justify the replacement 

of the                with the               . 

In the next section, we used the mathematics of POSE 

and POAD Theory to argue that piecemeal growth can be 

used to create arbitrary complex software systems. 

IV. THE EXISTENCE OF PIECEMEAL GROWTH 

A pattern          tells us how to solve a problem by 

introducing an architecture and components modeled as 

follows: 

                 

        

        
           

 
(6)   

We could apply the solution expansion rule to the 

architecture introduced by           , similar to what we 

did in (4).  But suppose, instead, we were to 

study         and realize that there is a way to go about 

implementing the pattern’s solution by breaking it into two 

problems: the problem of finding     (the problem of 

implementing the invariants of the pattern), and the problem 

of finding     (the problem of implementing the context-

specific parts of the pattern).  Suppose our research 

into          leads us to the engineering judgment (   ) that 

there is a method for implementing the solution to the 

problem as follows: 

                    

                          

        
    

 
(7)   

Our research into           allows us to realize that we 

can solve           by implementing          using a 

combination of           and            . For the sake 

of clarity, we combine (6) and (7) into a single pattern of 

transformation. 

                   

                 

        
    

        

        
           

 

(8)   

is shortened to 

                   

        

        
              

 
(9)   

In the original application of          to         , the 

component    acts as context for the component    . The 

solution to          will operate within the context of the 

solution for          .  This subtle relationship between 

the solution to            and the solution to 

          will be important later in our argument. 

Suppose we had a                 that we wanted to 

solve. Suppose that we found a set of transformations 

patterned after the one in (9) that we could apply in 

sequence to the                 as follows: 

       
  

             

 
        

         
      

 

                     

        
         

 

(10)   
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 We know that our completed solution will be composed 

of     interrelated problems and    patterns.  The solution 

to          will operate within the context of       . The 

                is solved by finding solutions to all 

leaf-level problems                           For short, 

we can write (10) as  the pattern sequence [17] : 

                        (11)   

The sequence of (11) is a model of the analysis process 

required to find a solution to the                  – the 

patterns      needed to solve the problem, the 

implementation strategies    that must be used for each 

pattern, and the order in which each pattern and 

implementation strategy must be applied. 

Suppose we completed our analysis by finding solutions 

to all leaf-level problems as follows.  

      
         

      

        
     

   
      
         

      

        
     

  
(12)   

                 

      

        
     

 

 

where       is part of a specific implementation of the 

pattern     , and      is convincing justification that        

is adequate to solve       .  Just as we did with (10), we 

can (12) using the following sequence: 

                              (13)   

              

Whereas (11) is a model of the analysis process needed 

to find a solution to the                , (13) is a model 

of the design process required to realize the solution. It 

describes the specific implementation needed to solve each 

outstanding problem and justification for why each 

implementation works.  The sequence of (13) can be 

interpreted as the ordered steps of piecemeal growth 

required to solve the                .   

Recall from Section I, the criteria 1-4 for recognizing a 

process as piecemeal growth.  Equation (13) specifies a 

sequence of operations.  Each step           
 
  in the 

sequence results in        – a partial solution to the 

               .  We know that step     of (13) 

preserves step   because, from earlier analysis, we know that 

         acts entirely in the context of       .  We also 

know from Section III that the solution to the 

                is the collection of all solutions 

      …      . Thus, we have completed our argument 

that a piecemeal-growth solution to the                 

exists, and that the piecemeal-growth solution can be 

characterized as the sequence of steps given by (13).   

In the last section, we analyze the significance of our 

efforts. 

V. ANALYSIS 

We showed piecemeal growth to be a consequence of 

the engineering strategy of (9), and that piecemeal growth 

requires the analysis process modeled in (11). We started by 

looking for a solution to the                . This 

problem is an arbitrary software engineering problem in that 

the only assumption that we made was that the 

                has an arbitrarily large number of 

requirements. We made a single assumption (9) about the 

strategy for solving the problem and found a solution by 

working through the consequences of that one assumption.  

As a consequence, we satisfied the   requirements of the 

                with the      problem-solving 

transformations represented by the sequence in (13) – which 

happened to properly characterize piecemeal growth. The 

progression we went through is an argument that piecemeal 

growth is applicable to arbitrary complex problems in 

software engineering. Piecemeal growth has some very 

specific characteristics (the criteria 1-4 from Section I). Yet, 

by starting only with an engineering assumption made 

independently of the decision to use piecemeal growth, we 

were able to derive an abstract mathematical representation 

that matched our characteristics of piecemeal growth.   

We recognize that the formal models presented in 

Sections III and IV would be easier to understand if 

accompanied by a comprehensive example.  However, 

creating such an example is outside the scope of the current 

research – our goal, here, was to record the argument in 

enough detail to allow it to be circulated and scrutinized. In 

future research, as the argument is polished and refined, it 

will become essential to supplement the formal model with 

a running example. 

VI. CONCLUSIONS 

In (13)          acts entirely in the context of          – 

a relationship that can be satisfied using abstraction and 

refinement [18] – note that a refinement works entirely 
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within the context of an abstraction. With this realization, 

we can begin to imagine specific tactics for general 

piecemeal growth: each step is a refinement of the previous 

step, and an abstraction for the next. 

One of the more interesting questions in piecemeal 

growth is whether or not systems can be grown without the 

help of up-front planning [19].  Can we solve (or begin 

solving) the                 without first completing 

some kind of detailed analysis? We know that the 

progression (13) from the                 to its solution 

required the analysis shown in (11).  If we were to proceed 

without up-front planning, we would have to derive the 

sequence of (11) as the result of progressing along the 

sequence of (13).  As we implemented each of our interim 

solutions, we would have to be able to derive our next 

problem based on our current solution.  More formally, we 

would need to be able to derive          from  

         
 
 . Equation (10) implies that the minimum 

linking them is              .  That is, the minimum 

requisite for successful progression through the piecemeal 

growth of (13) is that one must be able to derive the       

step of the analysis (11) while one performs the     step of 

the design (13).  This may be possible if one can anticipate 

how to structure        so that it can act as the context for 

        .  In other words, our argument implies that 

piecemeal growth without detailed planning is possible only 

if, at each step, one can successfully anticipate and 

accommodate the invariants of the next.  

The idea that one must be able to anticipate future 

invariants suggests a potentially novel approach to 

piecemeal growth and a link between piecemeal growth and 

predictive analytics.  Our argument suggests that all that is 

really needed to proceed with each step of piecemeal growth 

are the invariants of the next step. It may be possible predict 

all required invariants by performing a cluster analysis [20] 

on a complete set of system description documents.  The 

resulting clusters and their dependencies may be interpreted 

as a map of the system’s invariants. It may be interesting to 

explore whether or not it is practical to establish a 

community of software engineers that grow (piecemeal) 

complex software systems guided by architectures mined 

from collections of plain-text descriptions of what users 

would like the system to accomplish.  For example, it may 

be possible to use crowdsourcing to efficiently produce a 

comprehensive set of description documents for a complex 

system, predictive and visual modeling to create a reliable 

map of that system’s invariants, and piecemeal growth to 

build the system gradually over time using a long series of 

small, inexpensive acts of systems development guided by 

the derived map of invariants. 
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