
Growing Complex Software Systems

A Formal Argument for Piecemeal Growth in Software Engineering

Jerry Overton
Computer Sciences Corporation (CSC)

St. Louis, Missouri, USA

joverton@csc.com

Abstract – With piecemeal growth, complex systems are

grown in a series of small steps rather than pieced together in

one large lump. Although there are many specific examples

(from agile methods) of piecemeal growth in software

engineering; we argue that prior art has yet to produce general

theoretical argument for building complex software systems

this way. In this research, we propose a formal, theoretical

argument for the general applicability of piecemeal growth to

software engineering. As part of our argument, we infer both

the requisites for piecemeal growth and some surprising

connections between piecemeal growth and existing disciplines

within software engineering.

Keywords – Piecemeal Growth; Complex Systems; Software

Engineering; Agile Methods; Software Design Pattern;

Mathematics; Formal Method; POAD Theory

I. INTRODUCTION

A. The Nature of this Research

This paper presents the results of software engineering

research. We begin with a brief discussion of the nature of

this research to establish the proper paradigm for evaluating

this work. While scientific problems are concerned with the

study of existing artifacts and phenomena (the behavior of

subatomic particles, the motions of planets, etc),

engineering problems are concerned with how to construct

new artifacts (bridges, buildings, and, in our case, software

systems) [1]. While scientific research problems have an

empirical nature, engineering (specifically software

engineering) research problems do not. It is not possible to

apply the same empirical validation methods used for

scientific research to software engineering research [1].

Software engineering research is the study of processes

by which people turn ideas into software [1]. Empirical data

collected about these processes necessarily contain social

and cultural aspects. Although empirical data may serve as

an example to clarify the concepts presented here, it cannot

objectively validate our results. Producing any such data and

determining its correspondence with our results requires

subjective interpretation.

In this paper, we advocate for the effectiveness of a

particular software engineering approach using a structured

argument. Ultimately our work is validated by whether or

not the argument we present is convincing among practicing

software engineers. To be considered convincing, the

argument will have to generate interest and credibility. It

will have to be circulated among a wider audience, polished

and refined. Parts or all of the argument must be used by

engineers to justify design processes of their own. We

consider this work to be the first step in the process – we

have recorded an argument so that it can be read, circulated,

and scrutinized. For this paper, our goal is to produce an

argument lacks identifiable errors or contradictions.

B. Piecemeal Growth and Software Engineering

Piecemeal growth is the process of building a complex

system in small steps [2]; where nothing is ever completely

torn down or erased. Additions are made, existing structures

are embellished and improved [3]. This is different from

modular design [4] where the system is composed from

individual pieces snapped together. Consider the process by

which the St. Mark’s Square in Venice (Fig. 1) was built –

the example of piecemeal growth given in [5]. The process

started in 560 A.D. with a small square basilica, where the

castle of Doge (middle right in the picture) was built. In

976 A.D., two new buildings were added to the center of the

basilica, including the tower shown in the middle of Fig. 1.

By 1532 A.D., the tower became embedded in a rectangular

building and the original basilica was extended.

1Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

Fig. 1: St. Mark’s Square in Venice [6].

St. Marks Square grew from a gradual sequence of

changes rather than by assembling pre-fabricated parts.

Each change mostly preserved the changes that came before.

And each change contributed to the organic order seen in

Fig. 1. Because all acts of piecemeal growth have these

characteristics in common [3]. We recognize a process as

piecemeal growth, if it:

1. Specifies a sequence of operations

2. Each operation preserves the effects of all previous

operations

3. Each operation solves part of a bigger problem

4. The sum effect of all operations solves the problem

in its entirety

We will argue in the next section that although there are

many specific examples of piecemeal growth in software

engineering, there is nothing in the prior art that proposes an

argument for the general applicability of piecemeal growth

to building software systems. There is no theoretical

argument that arbitrary, complex software systems can be

built in a manner similar to the way St. Mark’s Square was

built. The general strategy of our argument is inspired by a

technique used in mathematics – [6] argues that the Koch

curve fractal exists by showing it to be the unique

consequence of a particular equation. We argue that

piecemeal growth is generally applicable in software

engineering by showing it to be the unique consequence of a

particular software engineering approach.

The rest of this paper is as follows. In Section II, we

argue that software engineering is missing a general

argument for the applicability of piecemeal growth to

software engineering. In Section III, we introduce a system

of mathematics needed to create that argument. In Section

IV, we use our math to argue for the general applicability of

piecemeal growth. In Section V and VI, we analyze our

results and its significance.

II. STATE OF THE ART

The idea of piecemeal growth has made its way into

software engineering practice through the adoption of agile

methods [8] such as Extreme Programming (XP) [9], Scrum

[10], and Crystal [11]. Agile methods assert that complex,

well-designed software systems can be grown gradually

through a process of continuous refactoring [12]. In this

approach, software engineers do not put much emphasis on

comprehensive analysis or design. Instead, they focus on

building the highest-priority feature using the first

reasonable approach that comes to mind. They refactor the

results into a suitable design, and then repeat the process for

the next highest-priority feature. The belief is that engineers

can progress toward a solution piecemeal because

refactoring makes it possible (and inexpensive) to make

changes at any point.

Although the practice of piecemeal growth is known in

software engineering as a part of agile methods, the actual

idea of piecemeal growth is developed by prior works, such

as [12], [13] and [14] that focus specifically on the practice

of continuous refactoring. Instead of general arguments,

these works all give detailed examples of how specialized

refactoring techniques work to improve parts of a specific

system. None of them propose an argument (although the

premise is asserted) that, in general, continuous refactoring

can be used to grow arbitrarily complex software systems.

For example, in [12], continuous refactoring is used as

the basis for enabling piecemeal growth. The overall

concept is developed using an introductory example.

Although the example describes the basic idea of

refactoring, it does not describe why this idea is useful

beyond the specific example given. For the technique’s

broader application, the reader is asked to “imagine [the

example] in the context of a much larger system [12].” In

[13], continuous refactoring is asserted to be a proper basis

for piecemeal growth in software engineering. The concept

is illustrated by an example of evolving a new application

framework for a legacy system, however, there is no

argument for how to extend the techniques used in the

example to the creation of systems not described in the

example. In [14], the use of continuous refactoring for

piecemeal growth is illustrated by an example of evolving a

database for a simple financial institution. The work

describes an example starting point for such a process, but

2Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

the process itself – and its applicability to systems other

than what is exemplified – is asserted without further

argument.

The goal of this research is to add to the current state of

the art an argument for the general applicability of

piecemeal growth to software engineering. Our approach is

to come up with a mathematical model that characterizes the

general existence of piecemeal growth in software

engineering and a mathematical argument that piecemeal

growth follows naturally as the result of a specific

engineering approach. In the next section, we establish the

system of mathematics needed to make our argument.

III. POSE AND POAD THEORY

The arguments in the next section will be based on a

system of mathematics known as Problem-Oriented

Software Engineering (POSE) [15] and Pattern-Oriented

Analysis and Design (POAD) Theory [16]. In this section,

we provide a summary of both.

In POSE, a software engineering problem has context,

W; a requirement, R; and a solution, S. We write

to indicate that we intend to find a solution S that, given a

context of W, satisfies R. Details about an element of the

problem can be captured in a description for that element

and a description can be written in any language considered

appropriate. The problem, of designing a complex system

can be expressed in POSE as:

 (1)

where is the real-world environment for the system,

is the system itself and are the requirements the system

must meet. Equation (1) says that we can expect to satisfy

R when the system S is applied in context W.

In POSE, engineering design is represented using a

series of problem transformations. A problem

transformation is a rule where a conclusion

problem is transformed into premise

problems using

justification and a rule named , resulting in the

transformation step

. This means that is a

solution of whenever are solutions of

 . The justification collects

the evidence of adequacy of the transformation step.

Through the application of rule , problems are

transformed into other problems that may be easier to solve.

These transformations occur until we are left only with

problems that we know have a solution fit for the intended

purpose. POSE allows us to use one big-step

transformation to represent several smaller ones. The

progression of a software engineering solution described by

a series of transformations can be shown using a

development tree.

(2)

 In the tree, the initial problem forms the root and

problem transformations extend the tree upward toward the

leaves. There are four problem nodes in the tree: , , ,

and The problem transformation from to is

justified by , the transformation from to and is

justified by . The bar over indicates that is solved.

Because remains unsolved, the adequacy argument for

the tree (the conjunction of all justifications) is not

complete, and the problem remains unsolved. A complete

and fully-justified problem tree means that all leaf problems

(in this case and) have been solved.

For the sake of clarity, we will show the context,

solution, and requirement of a problem only when necessary

to understanding a given transformation. In many of the

equations in section IV, these details are omitted and only

the problem’s name is shown. In general we adopt the

practice of omitting any detail not required to support our

argument. For example, we recognize that systems

requirements often compete and designers must consider

details such as how to trace from business requirements to

system requirement to architectural choices. Although these

considerations are important in the day-to-day practice of

software engineering, they were not necessary to complete

our argument for the general applicability of piecemeal

growth in software engineering and were, thus, omitted

from representation in subsequent formal models.

 An (short for Architectural Structure) [15] is

used to represent an architecture in the solution.

An , has a name, and combines

a known structure, (of arbitrary complexity), together with

the which are elements of the solution that are yet to be

designed. Using the solution interpretation rule , we

can modify the solution as follows:

3Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 (3)

Once an has been applied, we can use the

Solution Expansion transformation to expand the

problem context and refocus the problems to find the that

remain to be designed. For example, in the case where

 , we would have:

(4)

where is used to indicate that nothing is known

about that particular component. Using allows us to

isolate a particular unknown element without making

assumptions about any of the other unknown elements. The

 transformation creates a number of premise

problems. Each new premise problem requires solving and

each premise problem contributes its solution to the other

premise problems. Note that because the architecture being

expanded has already been justified, the expansion of the

architecture requires no further justification.

Software design patterns record the engineering

expertise needed to justify the substitution of a complex,

unfamiliar problems with simpler, more familiar one [17].

The basis of POAD Theory is that software engineering

design can be represented as a series of transformations

from complex engineering problems to simpler ones, with

software design patterns used to justify those

transformations:

(5)

In (5) the engineering expertise in patterns

 are used to justify the replacement

of the with the .

In the next section, we used the mathematics of POSE

and POAD Theory to argue that piecemeal growth can be

used to create arbitrary complex software systems.

IV. THE EXISTENCE OF PIECEMEAL GROWTH

A pattern tells us how to solve a problem by

introducing an architecture and components modeled as

follows:

(6)

We could apply the solution expansion rule to the

architecture introduced by , similar to what we

did in (4). But suppose, instead, we were to

study and realize that there is a way to go about

implementing the pattern’s solution by breaking it into two

problems: the problem of finding (the problem of

implementing the invariants of the pattern), and the problem

of finding (the problem of implementing the context-

specific parts of the pattern). Suppose our research

into leads us to the engineering judgment () that

there is a method for implementing the solution to the

problem as follows:

(7)

Our research into allows us to realize that we

can solve by implementing using a

combination of and . For the sake

of clarity, we combine (6) and (7) into a single pattern of

transformation.

(8)

is shortened to

(9)

In the original application of to , the

component acts as context for the component . The

solution to will operate within the context of the

solution for . This subtle relationship between

the solution to and the solution to

 will be important later in our argument.

Suppose we had a that we wanted to

solve. Suppose that we found a set of transformations

patterned after the one in (9) that we could apply in

sequence to the as follows:

(10)

4Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 We know that our completed solution will be composed

of interrelated problems and patterns. The solution

to will operate within the context of . The

 is solved by finding solutions to all

leaf-level problems For short,

we can write (10) as the pattern sequence [17] :

 (11)

The sequence of (11) is a model of the analysis process

required to find a solution to the – the

patterns needed to solve the problem, the

implementation strategies that must be used for each

pattern, and the order in which each pattern and

implementation strategy must be applied.

Suppose we completed our analysis by finding solutions

to all leaf-level problems as follows.

(12)

where is part of a specific implementation of the

pattern , and is convincing justification that

is adequate to solve . Just as we did with (10), we

can (12) using the following sequence:

 (13)

Whereas (11) is a model of the analysis process needed

to find a solution to the , (13) is a model

of the design process required to realize the solution. It

describes the specific implementation needed to solve each

outstanding problem and justification for why each

implementation works. The sequence of (13) can be

interpreted as the ordered steps of piecemeal growth

required to solve the .

Recall from Section I, the criteria 1-4 for recognizing a

process as piecemeal growth. Equation (13) specifies a

sequence of operations. Each step

 in the

sequence results in – a partial solution to the

 . We know that step of (13)

preserves step because, from earlier analysis, we know that

 acts entirely in the context of . We also

know from Section III that the solution to the

 is the collection of all solutions

 … . Thus, we have completed our argument

that a piecemeal-growth solution to the

exists, and that the piecemeal-growth solution can be

characterized as the sequence of steps given by (13).

In the last section, we analyze the significance of our

efforts.

V. ANALYSIS

We showed piecemeal growth to be a consequence of

the engineering strategy of (9), and that piecemeal growth

requires the analysis process modeled in (11). We started by

looking for a solution to the . This

problem is an arbitrary software engineering problem in that

the only assumption that we made was that the

 has an arbitrarily large number of

requirements. We made a single assumption (9) about the

strategy for solving the problem and found a solution by

working through the consequences of that one assumption.

As a consequence, we satisfied the requirements of the

 with the problem-solving

transformations represented by the sequence in (13) – which

happened to properly characterize piecemeal growth. The

progression we went through is an argument that piecemeal

growth is applicable to arbitrary complex problems in

software engineering. Piecemeal growth has some very

specific characteristics (the criteria 1-4 from Section I). Yet,

by starting only with an engineering assumption made

independently of the decision to use piecemeal growth, we

were able to derive an abstract mathematical representation

that matched our characteristics of piecemeal growth.

We recognize that the formal models presented in

Sections III and IV would be easier to understand if

accompanied by a comprehensive example. However,

creating such an example is outside the scope of the current

research – our goal, here, was to record the argument in

enough detail to allow it to be circulated and scrutinized. In

future research, as the argument is polished and refined, it

will become essential to supplement the formal model with

a running example.

VI. CONCLUSIONS

In (13) acts entirely in the context of –

a relationship that can be satisfied using abstraction and

refinement [18] – note that a refinement works entirely

5Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

within the context of an abstraction. With this realization,

we can begin to imagine specific tactics for general

piecemeal growth: each step is a refinement of the previous

step, and an abstraction for the next.

One of the more interesting questions in piecemeal

growth is whether or not systems can be grown without the

help of up-front planning [19]. Can we solve (or begin

solving) the without first completing

some kind of detailed analysis? We know that the

progression (13) from the to its solution

required the analysis shown in (11). If we were to proceed

without up-front planning, we would have to derive the

sequence of (11) as the result of progressing along the

sequence of (13). As we implemented each of our interim

solutions, we would have to be able to derive our next

problem based on our current solution. More formally, we

would need to be able to derive from

 . Equation (10) implies that the minimum

linking them is . That is, the minimum

requisite for successful progression through the piecemeal

growth of (13) is that one must be able to derive the

step of the analysis (11) while one performs the step of

the design (13). This may be possible if one can anticipate

how to structure so that it can act as the context for

 . In other words, our argument implies that

piecemeal growth without detailed planning is possible only

if, at each step, one can successfully anticipate and

accommodate the invariants of the next.

The idea that one must be able to anticipate future

invariants suggests a potentially novel approach to

piecemeal growth and a link between piecemeal growth and

predictive analytics. Our argument suggests that all that is

really needed to proceed with each step of piecemeal growth

are the invariants of the next step. It may be possible predict

all required invariants by performing a cluster analysis [20]

on a complete set of system description documents. The

resulting clusters and their dependencies may be interpreted

as a map of the system’s invariants. It may be interesting to

explore whether or not it is practical to establish a

community of software engineers that grow (piecemeal)

complex software systems guided by architectures mined

from collections of plain-text descriptions of what users

would like the system to accomplish. For example, it may

be possible to use crowdsourcing to efficiently produce a

comprehensive set of description documents for a complex

system, predictive and visual modeling to create a reliable

map of that system’s invariants, and piecemeal growth to

build the system gradually over time using a long series of

small, inexpensive acts of systems development guided by

the derived map of invariants.

VII. REFERENCES

[1] M. Lázaro and E. Marcos. Research in Software Engineering:
Paradigms and Methods. Advanced Information Systems Engineering,

17th International Conference. Proceedings of the CAiSE 05 Workshops,

2005, pp. 517-522

[2] C. Alexander. A Timeless Way of Building. Oxford University Press,

1979.

[3] C. Alexander. The Oregon Experiment. Oxford University Press, 1975.

[4] K. Sullivan, Y. Cai, B. Hallen, and W. Griswold, The Structure and

Value of Modularity in Software Design. Proceedings, ESEC/FSE, 2001,

ACM Press, pp. 99-108

[5] C. Alexander. A Vision of A Living World. The Center for

Environmental Structure, 2005.

[6] Maps.google.com. Last Accessed: 03/15/2012

[7] H.O. Peitgen, H. Jurgens, D. Saupe. Chaos and Factals: New Frontiers

of Science. Springer, 2004.

[8] J.O. Coplien, N.B. Harrison. Organizational Patterns of Agile Software
Development. Prentice Hall, 2004.

[9] K. Beck. Extreme Programming Explained: Embrace Change, Second

Edition. Addison-Wesley, 2004.

[10] K. Schwaber, M. Beedle. Agile Software Development with SCRUM.

Prentice Hall, 2001.

[11] A. Cockburn. Agile Software Development. Addison-Wesley, 2001.

[12] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.

Refactoring: Improving the Design of Existing Code. Addison-Wesley,

2000.

[13] J. Kerievsky. Refactoring to Patterns. Addison-Wesley, 2005.

[14] S. W. Ambler, P. J. Sadalage. Refactoring Databases. Addison-

Wesley, 2006.

[15] J. G. Hall, L. Rapanotti, and M. Jackson. Problem-Oriented Software

Engineering: Solving the Package Router Control Problem. IEEE Trans.

Software Eng., 2008. doi:10.1109/TSE.2007.70769

[16] J. Overton, J. G Hall, and L. Rapanotti. A Problem-Oriented Theory of

Pattern-Oriented Analysis and Design. 2009, Computation World: Future

Computing, Service Computation, Cognitive, Adaptive, Content, Patterns,
pages 208-213, 2009.

[17] F. Buschmann, K. Henney, and D. Schmidt. Pattern-Oriented

Software Architecture: On Patterns and Pattern Languages, Volume 5.
John Wiley & Sons, West Sussex, England, 2007.

[18] D. F. D’Souza, A. C. Willis. Objects, Components, and Frameworks

with UML. Addison-Wesley, 1998.

[19] A. Dagnino, K. Smiley, H. Srikanth, A. I. Anton, and L. Williams,

Experiences in Applying Agile Software Development Practices in New
Product Development. In Proceedings of Proceedings of the Eighth

IASTED International Conference on Software Engineering and

Applications, Nov 9-11 2004 (Cambridge, MA, United States, 2004). Acta
Press, Anaheim, CA, United States.

[20] I. H. Witten, E. Frank. Data Mining Practical Machine Learning
Tools and Techniques. Elsevier, Inc. 2005.

6Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

