
Reducing User Error by Establishing Encryption Patterns

Anthony Gabrielson, Haim Levkowitz
Department of Computer Science

University of Massachusetts Lowell
One University Avenue, Lowell, MA 01854, United States of America

agabriel@cs.uml.edu
haim@cs.uml.edu

Abstract— This paper is motivated by a desire to create a
user friendly, technically flexible approach to cryptography.
This approach can create a flexible design pattern that is
useable under a wide variety of circumstances from broadcast
media to existing network protocols. This is accomplished by
designing a new, key piece of infrastructure used for
cryptography key lookup. Once the key is obtained the
application/protocol developer is given the flexibility to meet
their requirements.

Keywords-Security Patterns; Patterns of Trust; Authorization

Patterns

I. INTRODUCTION
Encryption technology needs to evolve to a point where

end-users are not aware they are using it [1]. To accomplish
this goal a common infrastructure, which can be used across
a wide spectrum of applications, is needed. Currently
deployed technologies, namely Secure Sockets Layer (SSL)
and Certificate Authorities, are no longer sufficient because
in a quest for the lowest possible price the current
infrastructure has shown it is extremely vulnerable to attacks
due to woefully inadequate administrative procedures [2]-[3]
and technical issues that prevent it from being used to solve
an array of problems from email to media distribution.

This paper presents a solution that is extremely
configurable and distributable. It develops a security pattern
by leveraging existing technologies and ideas, and using
them in a manner similar to that of other widely deployed
technologies that make up the fundamental building blocks
of the Internet. The structure of this solution also allows
developers to re-examine other features in the TCP/IP suite,
like UDP broadcast and multicast, enabling easier
distribution of encrypted content to many users
simultaneously.

The rest of the paper is organized as follows. The
remainder of the introduction defines trust and requirements.
The foundations for the general implementation of our
pattern is described in Section II. Section III describes our
concept of operations for a TCP and UDP implementation.
The implementation and testing details for our pattern are
described in Section IV. Sections V-VI describe the benefits
and shortcomings of this pattern. Future improvements are
described in Section VII. The conclusion follows in Section
VIII.

A. Trust
The main goal of this research has been to establish a

trusted encrypted channel between two points that is easily
configurable by the developer while requiring minimal user
input. The channel must not work if there is any breakdown
in trust. To accomplish this we first need to define trust. A
proper trust definition is essential to understanding
requirements. This is the definition of trust we have been
working with:

 “Trust is a mental state comprising: expectancy — the

[trusting individual] expects (hopes for) a specific behavior
from the [entity s/he is putting trust in] (such as providing

valid information or effectively performing cooperative
actions); belief — the [trusting individual] believes that the

expected behavior occurs, based on the evidence of the
[trusted entity’s competence] and goodwill; and willingness

to take risk — [based on that belief] the [trusting
individual] is willing to take risk [for the purpose of

achieving some desired result.]” [4]

B. Requirements
Our requirements are fairly straightforward. The

proposed solution only requires a minimal amount of setup
information to establish an encrypted channel. If there are
any key or encrypted channel problems the recipient shall
not be able to decrypt the data. The encryption algorithm
needs to support encryption with multiple public keys. The
implementation also needs to be able to support non-
malleability [5], non-repudiation, and authentication.

The added interaction between the user and the client
application required for cryptography needs to be minimal.
We focus on an API that is used at the application layer of
the ISO network model; our approach utilizes a separate key
server, and requires a small amount of additional
information, almost all of which can be automated, to the
client application: 1. the location where the key server
resides on the network; 2. a local username; and 3. the
recipient’s username and host. The key server details can be
hidden by creating an additional user variable on the local
system or creating a new DNS record type that specifically
points to the key server. The local username is also typically
available as a user variable. The recipient’s username could
also be standardized under certain circumstances with a
getservbyname() [6] system call. This could reduce the

133

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

required user input to just one piece of information -- the
destination host name, which is already required.

Cryptography software developers have largely ignored
the TCP/IP broadcast and multicast features; however this
important functionality needs to be considered [7]. To help
facilitate those needs, copyright holders increasingly need to
be able to easily distribute intellectual property while
ensuring it is protected. Software should be able to encrypt
the same data with multiple public keys and transmit it such
that only the intended recipients will be able to decrypt it.
This capability, combined with an understanding of the
network media reliability allows broadcast and multicast
features to be utilized with cryptography.

Our proposed solution also needs to support non-
repudiation and authentication; of these two, the more
important one is non-repudiation: It is extremely important
that data sources cannot be disavowed. While key-based
authentication is desirable it may be appropriate in some
situations to add an additional level of trust; an application
developer may wish to also add a username and a password
or a secondary key file, such as a crafted image, that will
only be accepted from a designated user.

II. PROPOSED SOLUTION

A. General Encryption Technology
Currently, only the PGP/GPG cryptography standard

meets the encryption requirements of this project. However,
it does have a few trade-offs that must be handled. One
major trade-off is the zip compression algorithm utilized by
the PGP standard, as illustrated in Figure 1. Since PGP uses
compression, a particular data size to cipher text size cannot
be guaranteed. We address this later in this paper.

Figure 1: PGP Data Shape [8]

B. General Terms
There are three terms that will appear throughout the

remainder of this paper – Originator, Destination, and
Encryption Key System (EKS). All data and connections
originate from an Originator, which could be a Client or a

Server depending on protocol configuration. The Encryption
Key System (EKS) serves public cryptography keys (Pk) to
the Originator. It works similar to the Domain Name System
(DNS) [9] except that rather than providing IP addresses it
will provide public keys.

C. Web of Trust Model
Lucas tells us that PGP goes out of its way not to define

trust [10], which leads to an application that is difficult to use
properly [1]. A trust (in performance and belief) model
needs to be established that automatically finds and trusts
keys. The trust in performance is based on the destination’s
ability to pass a challenge by decrypting the received data.
The trust in belief is in the process of receiving the correct
public key in the process. If both a trust in performance and
belief are satisfied then public keys should be fully trusted.

Huang has defined a semantic for a belief relationship
[4]:

τβ(δ,ε,ξ,κ)

!

" α(ε, κ

!

" ξ)

!

" ψ(δ,κ

!

" ξ) (1)

where a trust-in-belief relationship, τβ(δ,ε,ξ,κ),
represents that trusting-entity δ trusts trusted-entity ε
regarding ε’s belief ξ in context κ. This trust relationship
means that if ε believes ξ in context κ, then δ also believes ξ
in that context [4].

A semantic for a performance relationship can be
formulated as [4]:

τΠ(δ,ε,ξ,κ)

!

" α(ε, κ

!

" ξ)

!

" ψ(δ,κ

!

" ξ) (2)

where a trust-in-performance relationship, τΠ(δ,ε,ξ,κ),
represents that trusting-entity δ trusts trusted-entity ε
regarding ε’s performance ξ in context κ. This relationship
means that if ε makes ξ in context κ, then δ believes ξ in that
context [4].

Trust can now be directly defined such that:

τ(δ,ε,ξ,κ)

!

" τΒ(δ,ε,ξ,κ)

!

" τΠ(δ,ε,ξ,κ) (3)

That is to say that if the destination believes it is
communicating with the correct originator and that originator
is performing as expected it would be trusted.

D. Web of Trust in Practice
In practice, the trust relationship begins with the local

EKS Server. Figure 2Figure 2 illustrates the communication
that might be required for an originator to obtain a particular
key that is not hosted on a Local EKS server. If the Pk were
hosted locally the Local EKS Server would simply return it.
However in this case the originator will connect to the Local
EKS Server that will locate and provide the Originator with
the desired Pk.

134

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

Figure 2: Web of Trust

The Local EKS Server starts this process by
communicating with the appropriate Root EKS Server that
will provide the Local EKS Server with PkDest EKS. The Local
EKS Server will then contact the Destination EKS Server
asking for PkFD or Final Destination; the Final Destination is
not illustrated in the figure. Since the Destination EKS
Server does not have Pklocal EKS it is sent during the initial
connection. The process of looking up a Pk could best be
compared with looking up an IP address. Once the IP
address has been obtained the originator can begin to
establish communication with the destination host.

The Originator trusts the key provided by the Local EKS
server because of the process required to retrieve it. The
Originator and Local EKS Server have a priori knowledge of
their Pks. The Local EKS Server has the same a priori
knowledge with the Root EKS Server. The Local EKS
Server only needs to send its Pk to the Destination EKS
Server. This process has three main strengths 1. it only
exposes the ability to encrypt a message that can only be
decrypted by the destination; 2. IP addresses can still change
since key lookup is based on name; 3. if a Destination’s IP
address is spoofed the Local EKS Server will not have
access to the spoofed Destination’s Pk at lookup; so the
spoofed Destination will be unable to decrypt any received
data. The Originator trusts the received Pk because those
three characteristics create a trust in belief and performance.

III. CONCEPT OF OPERATION

A. TCP Example
Let us walk through the implementation of an FTP like

protocol using TCP. The Originator, in this case the Client,
sends a request to the EKS Server asking for the Destination,
or Server’s, Pk. The EKS Server responds with the
Destination’s key name (NPk) and it’s PkServer – all encrypted
with the Pkclient. The Originator is now ready to initiate
encrypted communication with the Destination. The Client
opens a connection and sends an encrypted IDENT message
type that includes the Pkclient. The Destination then decrypts
and installs Pkclient and establishes trust in it. A two-way

encrypted communication channel between the Client and
the Server is now established. The Client follows up on its
initial connection with a request in field I, in the second
communication between the client and server; since the
Server has installed and trusts Pkclient, which is the first
communication between the client and server, it is able to
respond as illustrated in Figure 3Error! Reference source
not found..

Figure 3: TCP Example

B. UDP Example
Let us now walk through a protocol that implements the

UDP broadcast capability. The Originator or Server in this
case, sends a request to the EKS Server asking for the
Destination, or Client’s, Pk. The EKS Server responds with
the Destination’s NPk and Pkclient – all encrypted with Pkserver.
The Originator installs Pkclient and is now ready to establish
an encrypted one-way channel with the Destination as
illustrated in Figure 4Error! Reference source not found..
Since the Client will never need to reply in this scenario, the
Server does not provide Pkserver to the Client.

Figure 4: UDP Example

To work within UDP limitations it is recommended that
data be parsed such that its encrypted size is less then or
equal to the size of the Maximum Transmission Unit (MTU)
[11] of the particular network medium. A counter has also
been inserted to enhance the resolution of the PGP time
stamp illustrated in Figure 1Figure 1 to better enable any
data buffering implemented at the destination.

IV. IMPLEMENTATION AND TESTING

A. Initial Setup
A few steps are necessary to set up the infrastructure

required by the EKS Server, Originator, and the Destination.
While these steps may seem in depth this process can and

135

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

should be automated for a final solution. First, all three
accounts must initialize PGP keys.

The EKS Server must have both PkDestination and PkOriginator
installed and trusted in its key ring. The Originator must
initially have and trust PkEKS Server. The EKS Server will
provide PkDestination upon request. After the EKS Server
transfers PkDestination the Originator will install and trust it.
The Destination does not initially need any Pks installed in
its key ring because it will not initiate contact with any other
host. When the Originator initially connects PkOriginator will
be transferred during the initial message if needed. The
Destination will trust and install PkOriginator if it is transferred.

B. Implementation
We have implemented this solution architecture using

both the 32- and 64-bit versions of the Ubuntu Linux 10.10
operating system hosted on VMware Workstation and
Fusion; we see no reason this solution will not work on other
platforms like Microsoft Windows or Apple’s Macintosh OS
X. GPG version 1.4.10 was used and installed using the apt
tool. We used Qt 4.7, a cross-platform application
framework, to construct these two tools together. We
implemented the TCP and UDP communication protocols.
This solution makes communication with a spoofed IP
address impossible because an attacker will not have access
to the required secret keys (Sk) SkOriginator or SkDestination to
decrypt the transmitted data.

C. Testing
There can be many use cases for this research; we tested

two of them: TCP, and UDP Broadcast Communication. In
both cases all three hosts were on the same local network.
The EKS Server trusted PkEKS, PkDestination, and PkOriginator.
The Originator trusted two public keys before running – its
own and PkEKS; after connecting to the EKS Server the
Originator also trusted PkDestination. The Destination initially
trusted one key – its own; after the Originator connected to
the Destination it trusted PkOriginator if transmitted.

D. GPG Commands
A small number of GPG commands were needed for this

implementation [12] and we will highlight a few of the more
compelling features. The encrypt capability includes the
–s and –r options. The –s option signs the data with the
sender’s key, which is helpful for TCP communication;
assuming the Destination(s) are familiar with the Originator,
this can be used for sender verification since the recipient
will understand the sender’s signature. The –r option allows
users to be added to the encryption stream and can be called
multiple times with different usernames enabling a UDP
broadcast capability where only the intended recipients will
be able to decrypt the stream.

V. BENEFITS
The implementation described provides several key

benefits to existing solutions. It enables non-repudiation and
authentication through the built-in PGP capabilities and a
defined trust relationship. The user provides minimal input
to start and maintain an encrypted channel, thus simplifying

the end-user’s experience [1] by providing fewer
opportunities to make a mistake. Our solution is more
scalable than other key distribution techniques as explained
below. Finally, communication is task-based, allowing
better protection of information, such as usernames and/or
passwords, because the API is used at the Application Layer.

Since PGP enables non-repudiation and authentication
and we have established an automated trust definition users
can connect to a host and trust that they have in fact
connected to the right host because the EKS Servers are
trusted and match DNS results. Our defined trust relationship
may in some cases delude the trust PGP originally intended
so usernames and passwords can be used additionally and
linked to a particular key signature, increasing the overall
security.

The user is never asked any security questions, unless the
implementation utilizes the added security of a
username/password. If a particular host is unable to
communicate it may indicate that an attack is underway and
communication at this point in time is not desirable. In this
case a malicious host will not be able to decrypt the data
since it does not posses the correct private key required to
decrypt the data. The method to download new public keys
establishes trust and there is no way to compromise data
integrity. This feature prevents attack vectors like evilgrade
[13], presented by Amato, since there is no way to decrypt
the transmitted network traffic.

The EKS server and protocol design have several
benefits when compared to a Kerberos Key Distribution
Center [14] implementation. The two primary differences
are: first, EKS servers can be scaled up to cache keys and
thus reduce the expense of continuously looking up the same
keys, similar to DNS capabilities. The other primary
difference is that the EKS server does not need to contact
both the Originator and Destination with a ticket since the
Originator will send the Destination its key during the initial
connection if needed. The added capabilities of this solution
allow it to be more scalable than the alternative.

Protocols can become more task-oriented, enabling better
sandboxing [15]. Since each task or daemon can use its own
private key, tasks can be better partitioned on the same
system. Information, like usernames and/or passwords, can
be encrypted for transit so that it cannot be sniffed [16],
which will eliminate the Man-in-the-Middle Attack [17].
Data can be stored in the cloud in a manner that the service
provider, or any attacker, will not have access to it.

VI. SHORTCOMINGS
Our proof-of-concept exhibits two main shortcomings.

All Originator traffic must start with its home EKS Server.
The current implementation is performance-limited due to
file IO; GPG requires that all encryption and decryption
activity go through a file.

All Originator communication must start with its EKS
Server because of the trust relationship between the two. If
users are mobile and using random access points to access
the Internet their home EKS Server must be publicly
available on the Internet. This only poses a minimal security

136

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

risk since the EKS Server is a low value target since it only
hosts and transmits public keys.

The current GPG implementation is extremely file IO
dependent; all communications are realized through a file on
both sides of the connection. This can have an impact on the
speed of the communications. This was observed during
early testing on a Windows XP system, where a noticeable
delay was perceptible. The remainder of the implementation
and testing was done on a Linux system in a virtual machine
and file IO was not a perceptible slow down, however
simultaneous connections were limited. We currently view
this limitation as minimal since it could easily be resolved
with a GPG API.

VII. FUTURE IMPROVEMENTS
This proof-of-concept still needs improvements. First

and foremost our research has so far focused on two use
cases and more are needed to address other scenarios. In
addition, there are several other areas that also need
improvement, such as, key caching time limits, and a GPG
API to avoid file thrashing.

More use cases need to be added to the EKS Server.
There are two main EKS Server use cases -- when the
Originator and Destination are on the same network and
when they are further apart on the Internet. Additional
protocols need to be implemented for the second use case
since the local EKS Server will need to be able to
communicate with other EKS Servers to look up other public
keys.

After more use cases are added the EKS Server needs a
time based cache table added for non-local hosts. Similar to
DNS [9], an EKS Server should cache non-local Pk for a
certain amount of time to reduce network traffic and CPU
utilization. This feature is also a security enhancement since
key pairs could be allowed to sunset after a particular period
of time.

This implementation could also be considerably quicker
with GPG provided API level access; this would eliminate
almost all file IO transactions. A linkable library that
provides the same capability but provides byte level access
to data input and output would accomplish this.

VIII. SUMMARY
The solution proposed in this paper forms the foundation

of a new cryptography design pattern. This design pattern
allows developers the flexibility they require and users the
security and simplicity they need to accomplish a task. This
pattern is only possible because of a proper trust definition
that enables security issues to be handled automatically.

Modern computing is already complex enough without
adding more layers that users need to worry about.
Application developers need secure flexible cryptography
libraries that implement best practices that are easy to use to
solve encryption problems from media distribution to email.
Encryption technology needs to become ubiquitous in
computing. To create this capability the solution needs to be
as close to invisible as possible to the end user; the user must

be able to focus on the task at hand. While the user is
focusing on her/his task any security-related questions
necessary to achieve these goals must be automatable to
avoid overwhelming the user.

To become more ubiquitous the solution needs to be
flexible enough to enable as many existing data distribution
capabilities as possible while restricting decryption
privileges to only the intended recipients. Once this goal is
achieved many of the existing problems currently being
experienced will be obsolete.

REFERENCES
[1] A. Whitten. (1999). Why Johnny can’t encrypt: a usability evaluation

of PGP 5.0. In SSYM’99 Proceedings of the 8th conference on
USENIX Security Symposium, ACM, Ed. Vol. 8. 15.

[2] E. Nakashima. (2011) Washington Post webpage on Cyberattack.
[Online]. Retrieved June 17, 2011, From The Washington Post:
http://www.washingtonpost.com/world/us_agencies_respond_to_cybe
rattack_on_information_security_firm/2011/03/23/ABDhjoKB_story.
html?wprss=rss_homepage

[3] F. Rashid. (2011) eWeek webpage on Fake SSL certificates, [Online].
Retrieved June 17, 2011, From eWeek.com:
http://www.eweek.com/c/a/Security/Fake-SSL-Certificate-Incident-
Highlights-Flaws-in-DNS-Comodo-CEO-440985/

[4] J. Huang. (2010). A formal-semantics-based calculus of trust. In
Internet Computing, IEEE. iEEE, 38 – 46.

[5] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. (1998).
Relations Among Notions of Security for Public-Key Encryption
Schemes. In Advances in Cryptology – Crpto ’98.

[6] FreeBSD Man Page., [Online]. Retrieved June 17, 2011, From The
UNIX.com Man Pages: http://www.unix.com/man-
page/FreeBSD/3/getservbyname/

[7] Lixin Gao; Towsley, D. ; , "Threshold-based multicast for continuous
media delivery," Multimedia, IEEE Transactions on , vol. 3, no. 4,
pp. 405-414, Dec 2001

[8] J. Wang. (2009). Computer Network Security Theory and Practice.
Springer.

[9] Albitz, Paul. 2001. DNS and BIND, 4th Edition. Oreilly.
[10] M. Lucas. (2006). PGP & GPG Email for the practical paranoid. No

Starch Press.
[11] Reviriego, P. ; Sanchez-Macian, A. ; Maestro, J.A. ; Bleakley, C.J. ; ,

"Increasing the MTU size for Energy Efficiency in Ethernet," Signals
and Systems Conference (ISSC 2010), IET Irish , vol., no., pp. 124-
128, 23-24 June 2010

[12] gnupg: Documentation, [Online]. Retrieved June 17, 2011, From The
GNU Privacy Guard:
http://www.gnupg.org/documentation/manuals/gnupg-devel/GPG-
Configuration-Options.html#GPG-Configuration-Options.

[13] F. Amato. Evilgrade: you have pending upgrades... . Ekoparty
Security Conference, Buenos Aires, Argentina, Nov 30 – Dec 1,
2007.

[14] Neuman, B.C.; Ts'o, T.; , "Kerberos: an authentication service for
computer networks," Communications Magazine, IEEE , vol. 32, no.
9, pp. 33-38, Sep 1994.

[15] Greamo, C.; Ghosh, A.; , "Sandboxing and Virtualization: Modern
Tools for Combating Malware," Security & Privacy, IEEE , vol.9, no.
2, pp. 79-82, March-April 2011.

[16] Qadeer, M.A.; Zahid, M.; Iqbal, A.; Siddiqui, M.R.; , "Network
Traffic Analysis and Intrusion Detection Using Packet Sniffer,"
Communication Software and Networks, 2010. ICCSN '10. Second
International Conference on , vol., no., pp. 313-317, 26-28 Feb. 2010

[17] M. Marlinspike. (2009). Defeating SSL. In Black Hat DC.

137

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

