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Abstract— This paper is motivated by a desire to create a 
user friendly, technically flexible approach to cryptography.  
This approach can create a flexible design pattern that is 
useable under a wide variety of circumstances from broadcast 
media to existing network protocols.   This is accomplished by 
designing a new, key piece of infrastructure used for 
cryptography key lookup.  Once the key is obtained the 
application/protocol developer is given the flexibility to meet 
their requirements. 
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I.  INTRODUCTION 
Encryption technology needs to evolve to a point where 

end-users are not aware they are using it [1]. To accomplish 
this goal a common infrastructure, which can be used across 
a wide spectrum of applications, is needed.  Currently 
deployed technologies, namely Secure Sockets Layer (SSL) 
and Certificate Authorities, are no longer sufficient because 
in a quest for the lowest possible price the current 
infrastructure has shown it is extremely vulnerable to attacks 
due to woefully inadequate administrative procedures [2]-[3] 
and technical issues that prevent it from being used to solve 
an array of problems from email to media distribution. 

This paper presents a solution that is extremely 
configurable and distributable.  It develops a security pattern 
by leveraging existing technologies and ideas, and using 
them in a manner similar to that of other widely deployed 
technologies that make up the fundamental building blocks 
of the Internet.  The structure of this solution also allows 
developers to re-examine other features in the TCP/IP suite, 
like UDP broadcast and multicast, enabling easier 
distribution of encrypted content to many users 
simultaneously.  

The rest of the paper is organized as follows.  The 
remainder of the introduction defines trust and requirements.  
The foundations for the general implementation of our 
pattern is described in Section II.  Section III describes our 
concept of operations for a TCP and UDP implementation.  
The implementation and testing details for our pattern are 
described in Section IV.  Sections V-VI describe the benefits 
and shortcomings of this pattern.  Future improvements are 
described in Section VII.  The conclusion follows in Section 
VIII. 

 

A. Trust 
The main goal of this research has been to establish a 

trusted encrypted channel between two points that is easily 
configurable by the developer while requiring minimal user 
input.  The channel must not work if there is any breakdown 
in trust.  To accomplish this we first need to define trust.  A 
proper trust definition is essential to understanding 
requirements.  This is the definition of trust we have been 
working with: 

 
 “Trust is a mental state comprising: expectancy — the 

[trusting individual] expects (hopes for) a specific behavior 
from the [entity s/he is putting trust in] (such as providing 

valid information or effectively performing cooperative 
actions); belief — the [trusting individual] believes that the 

expected behavior occurs, based on the evidence of the 
[trusted entity’s competence] and goodwill; and willingness 

to take risk — [based on that belief] the [trusting 
individual] is willing to take risk [for the purpose of 

achieving some desired result.]” [4] 

B. Requirements 
Our requirements are fairly straightforward.  The 

proposed solution only requires a minimal amount of setup 
information to establish an encrypted channel.  If there are 
any key or encrypted channel problems the recipient shall 
not be able to decrypt the data.  The encryption algorithm 
needs to support encryption with multiple public keys.   The 
implementation also needs to be able to support non-
malleability [5], non-repudiation, and authentication.  

The added interaction between the user and the client 
application required for cryptography needs to be minimal.  
We focus on an API that is used at the application layer of 
the ISO network model; our approach utilizes a separate key 
server, and requires a small amount of additional 
information, almost all of which can be automated, to the 
client application: 1. the location where the key server 
resides on the network; 2. a local username; and 3. the 
recipient’s username and host.  The key server details can be 
hidden by creating an additional user variable on the local 
system or creating a new DNS record type that specifically 
points to the key server.  The local username is also typically 
available as a user variable.  The recipient’s username could 
also be standardized under certain circumstances with a 
getservbyname() [6] system call.  This could reduce the 
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required user input to just one piece of information -- the 
destination host name, which is already required. 

Cryptography software developers have largely ignored 
the TCP/IP broadcast and multicast features; however this 
important functionality needs to be considered [7].  To help 
facilitate those needs, copyright holders increasingly need to 
be able to easily distribute intellectual property while 
ensuring it is protected.  Software should be able to encrypt 
the same data with multiple public keys and transmit it such 
that only the intended recipients will be able to decrypt it.  
This capability, combined with an understanding of the 
network media reliability allows broadcast and multicast 
features to be utilized with cryptography.  

Our proposed solution also needs to support non-
repudiation and authentication; of these two, the more 
important one is non-repudiation:  It is extremely important 
that data sources cannot be disavowed.  While key-based 
authentication is desirable it may be appropriate in some 
situations to add an additional level of trust; an application 
developer may wish to also add a username and a password 
or a secondary key file, such as a crafted image, that will 
only be accepted from a designated user.  

II. PROPOSED SOLUTION 

A. General Encryption Technology 
Currently, only the PGP/GPG cryptography standard 

meets the encryption requirements of this project.  However, 
it does have a few trade-offs that must be handled.  One 
major trade-off is the zip compression algorithm utilized by 
the PGP standard, as illustrated in Figure 1.  Since PGP uses 
compression, a particular data size to cipher text size cannot 
be guaranteed.  We address this later in this paper. 

 

Figure 1: PGP Data Shape [8] 

B. General Terms 
There are three terms that will appear throughout the 

remainder of this paper – Originator, Destination, and 
Encryption Key System (EKS).  All data and connections 
originate from an Originator, which could be a Client or a 

Server depending on protocol configuration.  The Encryption 
Key System (EKS) serves public cryptography keys (Pk) to 
the Originator.  It works similar to the Domain Name System 
(DNS) [9] except that rather than providing IP addresses it 
will provide public keys.   

C. Web of Trust Model 
Lucas tells us that PGP goes out of its way not to define 

trust [10], which leads to an application that is difficult to use 
properly [1].  A trust (in performance and belief) model 
needs to be established that automatically finds and trusts 
keys.  The trust in performance is based on the destination’s 
ability to pass a challenge by decrypting the received data.  
The trust in belief is in the process of receiving the correct 
public key in the process.  If both a trust in performance and 
belief are satisfied then public keys should be fully trusted.   

Huang has defined a semantic for a belief relationship 
[4]: 

τβ(δ,ε,ξ,κ) 

! 

" α(ε, κ

! 

" ξ) 

! 

"   ψ(δ,κ

! 

" ξ)       (1) 

where a trust-in-belief relationship, τβ(δ,ε,ξ,κ), 
represents that trusting-entity δ trusts trusted-entity ε 
regarding ε’s belief ξ in context κ. This trust relationship 
means that if ε believes ξ in context κ, then δ also believes ξ 
in that context [4]. 

A semantic for a performance relationship can be 
formulated as [4]:   

τΠ(δ,ε,ξ,κ) 

! 

" α(ε, κ

! 

" ξ) 

! 

"   ψ(δ,κ

! 

" ξ)       (2) 

where a trust-in-performance relationship, τΠ(δ,ε,ξ,κ), 
represents that trusting-entity δ trusts trusted-entity ε 
regarding ε’s performance ξ in context κ. This relationship 
means that if ε makes ξ in context κ, then δ believes ξ in that 
context [4]. 

Trust can now be directly defined such that:  

τ(δ,ε,ξ,κ) 

! 

" τΒ(δ,ε,ξ,κ) 

! 

" τΠ(δ,ε,ξ,κ)       (3) 

That is to say that if the destination believes it is 
communicating with the correct originator and that originator 
is performing as expected it would be trusted. 

D. Web of Trust in Practice 
In practice, the trust relationship begins with the local 

EKS Server.  Figure 2Figure 2 illustrates the communication 
that might be required for an originator to obtain a particular 
key that is not hosted on a Local EKS server. If the Pk were 
hosted locally the Local EKS Server would simply return it.  
However in this case the originator will connect to the Local 
EKS Server that will locate and provide the Originator with 
the desired Pk.  

134

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-158-8



 

 
Figure 2: Web of Trust 

The Local EKS Server starts this process by 
communicating with the appropriate Root EKS Server that 
will provide the Local EKS Server with PkDest EKS.  The Local 
EKS Server will then contact the Destination EKS Server 
asking for PkFD or Final Destination; the Final Destination is 
not illustrated in the figure.  Since the Destination EKS 
Server does not have Pklocal EKS it is sent during the initial 
connection.  The process of looking up a Pk could best be 
compared with looking up an IP address.  Once the IP 
address has been obtained the originator can begin to 
establish communication with the destination host. 

The Originator trusts the key provided by the Local EKS 
server because of the process required to retrieve it.  The 
Originator and Local EKS Server have a priori knowledge of 
their Pks.  The Local EKS Server has the same a priori 
knowledge with the Root EKS Server.  The Local EKS 
Server only needs to send its Pk to the Destination EKS 
Server.  This process has three main strengths 1. it only 
exposes the ability to encrypt a message that can only be 
decrypted by the destination; 2. IP addresses can still change 
since key lookup is based on name; 3. if a Destination’s IP 
address is spoofed the Local EKS Server will not have 
access to the spoofed Destination’s Pk at lookup; so the 
spoofed Destination will be unable to decrypt any received 
data.  The Originator trusts the received Pk because those 
three characteristics create a trust in belief and performance.    

III. CONCEPT OF OPERATION 

A. TCP Example 
Let us walk through the implementation of an FTP like 

protocol using TCP.  The Originator, in this case the Client, 
sends a request to the EKS Server asking for the Destination, 
or Server’s, Pk.  The EKS Server responds with the 
Destination’s key name (NPk) and it’s PkServer – all encrypted 
with the Pkclient.  The Originator is now ready to initiate 
encrypted communication with the Destination.  The Client 
opens a connection and sends an encrypted IDENT message 
type that includes the Pkclient.  The Destination then decrypts 
and installs Pkclient and establishes trust in it. A two-way 

encrypted communication channel between the Client and 
the Server is now established.  The Client follows up on its 
initial connection with a request in field I, in the second 
communication between the client and server; since the 
Server has installed and trusts Pkclient, which is the first 
communication between the client and server, it is able to 
respond as illustrated in Figure 3Error! Reference source 
not found.. 

 
Figure 3: TCP Example 

B. UDP Example 
Let us now walk through a protocol that implements the 

UDP broadcast capability.  The Originator or Server in this 
case, sends a request to the EKS Server asking for the 
Destination, or Client’s, Pk.  The EKS Server responds with 
the Destination’s NPk and Pkclient – all encrypted with Pkserver.  
The Originator installs Pkclient and is now ready to establish 
an encrypted one-way channel with the Destination as 
illustrated in Figure 4Error! Reference source not found..  
Since the Client will never need to reply in this scenario, the 
Server does not provide Pkserver to the Client. 

  

 
Figure 4: UDP Example 

To work within UDP limitations it is recommended that 
data be parsed such that its encrypted size is less then or 
equal to the size of the Maximum Transmission Unit (MTU) 
[11] of the particular network medium.  A counter has also 
been inserted to enhance the resolution of the PGP time 
stamp illustrated in Figure 1Figure 1 to better enable any 
data buffering implemented at the destination.  

IV. IMPLEMENTATION AND TESTING 

A. Initial Setup 
A few steps are necessary to set up the infrastructure 

required by the EKS Server, Originator, and the Destination.  
While these steps may seem in depth this process can and 
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should be automated for a final solution.  First, all three 
accounts must initialize PGP keys.   

The EKS Server must have both PkDestination and PkOriginator 
installed and trusted in its key ring.  The Originator must 
initially have and trust PkEKS Server.  The EKS Server will 
provide PkDestination upon request.  After the EKS Server 
transfers PkDestination the Originator will install and trust it.  
The Destination does not initially need any Pks installed in 
its key ring because it will not initiate contact with any other 
host.  When the Originator initially connects PkOriginator will 
be transferred during the initial message if needed.  The 
Destination will trust and install PkOriginator if it is transferred.  

B. Implementation 
We have implemented this solution architecture using 

both the 32- and 64-bit versions of the Ubuntu Linux 10.10 
operating system hosted on VMware Workstation and 
Fusion; we see no reason this solution will not work on other 
platforms like Microsoft Windows or Apple’s Macintosh OS 
X.  GPG version 1.4.10 was used and installed using the apt 
tool.  We used Qt 4.7, a cross-platform application 
framework, to construct these two tools together.  We 
implemented the TCP and UDP communication protocols. 
This solution makes communication with a spoofed IP 
address impossible because an attacker will not have access 
to the required secret keys (Sk) SkOriginator or SkDestination to 
decrypt the transmitted data. 

C. Testing 
There can be many use cases for this research; we tested 

two of them: TCP, and UDP Broadcast Communication.  In 
both cases all three hosts were on the same local network.  
The EKS Server trusted PkEKS, PkDestination, and PkOriginator.  
The Originator trusted two public keys before running – its 
own and PkEKS; after connecting to the EKS Server the 
Originator also trusted PkDestination.  The Destination initially 
trusted one key – its own; after the Originator connected to 
the Destination it trusted PkOriginator if transmitted.  

D. GPG Commands 
A small number of GPG commands were needed for this 

implementation [12] and we will highlight a few of the more 
compelling features.  The encrypt capability includes the 
–s and –r options.  The –s option signs the data with the 
sender’s key, which is helpful for TCP communication; 
assuming the Destination(s) are familiar with the Originator, 
this can be used for sender verification since the recipient 
will understand the sender’s signature.   The –r option allows 
users to be added to the encryption stream and can be called 
multiple times with different usernames enabling a UDP 
broadcast capability where only the intended recipients will 
be able to decrypt the stream. 

V. BENEFITS 
The implementation described provides several key 

benefits to existing solutions.  It enables non-repudiation and 
authentication through the built-in PGP capabilities and a 
defined trust relationship.  The user provides minimal input 
to start and maintain an encrypted channel, thus simplifying 

the end-user’s experience [1] by providing fewer 
opportunities to make a mistake.  Our solution is more 
scalable than other key distribution techniques as explained 
below.  Finally, communication is task-based, allowing 
better protection of information, such as usernames and/or 
passwords, because the API is used at the Application Layer. 

Since PGP enables non-repudiation and authentication 
and we have established an automated trust definition users 
can connect to a host and trust that they have in fact 
connected to the right host because the EKS Servers are 
trusted and match DNS results. Our defined trust relationship 
may in some cases delude the trust PGP originally intended 
so usernames and passwords can be used additionally and 
linked to a particular key signature, increasing the overall 
security. 

The user is never asked any security questions, unless the 
implementation utilizes the added security of a 
username/password.  If a particular host is unable to 
communicate it may indicate that an attack is underway and 
communication at this point in time is not desirable.  In this 
case a malicious host will not be able to decrypt the data 
since it does not posses the correct private key required to 
decrypt the data.  The method to download new public keys 
establishes trust and there is no way to compromise data 
integrity.  This feature prevents attack vectors like evilgrade 
[13], presented by Amato, since there is no way to decrypt 
the transmitted network traffic. 

The EKS server and protocol design have several 
benefits when compared to a Kerberos Key Distribution 
Center [14] implementation.  The two primary differences 
are: first, EKS servers can be scaled up to cache keys and 
thus reduce the expense of continuously looking up the same 
keys, similar to DNS capabilities.  The other primary 
difference is that the EKS server does not need to contact 
both the Originator and Destination with a ticket since the 
Originator will send the Destination its key during the initial 
connection if needed.  The added capabilities of this solution 
allow it to be more scalable than the alternative.  

Protocols can become more task-oriented, enabling better 
sandboxing [15].  Since each task or daemon can use its own 
private key, tasks can be better partitioned on the same 
system.  Information, like usernames and/or passwords, can 
be encrypted for transit so that it cannot be sniffed [16], 
which will eliminate the Man-in-the-Middle Attack [17].  
Data can be stored in the cloud in a manner that the service 
provider, or any attacker, will not have access to it. 

VI. SHORTCOMINGS 
Our proof-of-concept exhibits two main shortcomings.  

All Originator traffic must start with its home EKS Server.  
The current implementation is performance-limited due to 
file IO; GPG requires that all encryption and decryption 
activity go through a file. 

All Originator communication must start with its EKS 
Server because of the trust relationship between the two.  If 
users are mobile and using random access points to access 
the Internet their home EKS Server must be publicly 
available on the Internet.  This only poses a minimal security 
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risk since the EKS Server is a low value target since it only 
hosts and transmits public keys. 

The current GPG implementation is extremely file IO 
dependent; all communications are realized through a file on 
both sides of the connection.  This can have an impact on the 
speed of the communications. This was observed during 
early testing on a Windows XP system, where a noticeable 
delay was perceptible.  The remainder of the implementation 
and testing was done on a Linux system in a virtual machine 
and file IO was not a perceptible slow down, however 
simultaneous connections were limited.  We currently view 
this limitation as minimal since it could easily be resolved 
with a GPG API. 

VII. FUTURE IMPROVEMENTS 
This proof-of-concept still needs improvements.  First 

and foremost our research has so far focused on two use 
cases and more are needed to address other scenarios.  In 
addition, there are several other areas that also need 
improvement, such as, key caching time limits, and a GPG 
API to avoid file thrashing. 

More use cases need to be added to the EKS Server.  
There are two main EKS Server use cases -- when the 
Originator and Destination are on the same network and 
when they are further apart on the Internet.  Additional 
protocols need to be implemented for the second use case 
since the local EKS Server will need to be able to 
communicate with other EKS Servers to look up other public 
keys.    

After more use cases are added the EKS Server needs a 
time based cache table added for non-local hosts.  Similar to 
DNS [9], an EKS Server should cache non-local Pk for a 
certain amount of time to reduce network traffic and CPU 
utilization.  This feature is also a security enhancement since 
key pairs could be allowed to sunset after a particular period 
of time.   

This implementation could also be considerably quicker 
with GPG provided API level access; this would eliminate 
almost all file IO transactions.  A linkable library that 
provides the same capability but provides byte level access 
to data input and output would accomplish this. 

VIII. SUMMARY 
The solution proposed in this paper forms the foundation 

of a new cryptography design pattern.  This design pattern 
allows developers the flexibility they require and users the 
security and simplicity they need to accomplish a task.  This 
pattern is only possible because of a proper trust definition 
that enables security issues to be handled automatically. 

Modern computing is already complex enough without 
adding more layers that users need to worry about. 
Application developers need secure flexible cryptography 
libraries that implement best practices that are easy to use to 
solve encryption problems from media distribution to email.  
Encryption technology needs to become ubiquitous in 
computing.  To create this capability the solution needs to be 
as close to invisible as possible to the end user; the user must 

be able to focus on the task at hand.  While the user is 
focusing on her/his task any security-related questions 
necessary to achieve these goals must be automatable to 
avoid overwhelming the user. 

To become more ubiquitous the solution needs to be 
flexible enough to enable as many existing data distribution 
capabilities as possible while restricting decryption 
privileges to only the intended recipients.  Once this goal is 
achieved many of the existing problems currently being 
experienced will be obsolete.    
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