
A Formalization of UML AD Refinement Patterns in Event B

Ahlem Ben Younes
Research Unit of Technologies of Information and

Communication (UTIC)- ESSTT
Tunisia

Ahlem.benyounes@fst.rnu.tn

Leila Jemni Ben Ayed
Research Unit of Technologies of Information and

Communication (UTIC)- ESSTT
Tunisia

Leila.jemni@fsegt.rnu.tn

Abstract— In this paper, we propose a specification and
verification technique using the combination UML Activity
Diagrams (AD) and Event B to both improve graphical
representation of the workflow application structure and its
functions. Its required properties are also verified. The
workflow is initially expressed incrementally graphically with
UML AD, then translated into Event B and verified using the
B powerful support tools. The Event-B expression of the UML
AD model allows us to give it a precise semantics. We propose
a workflow applications constructive approach in witch Event
B models are built incrementally from UML AD models,
driven by UML AD refinement patterns. The use of the B
formal method and its refinement mechanism allows the
verification of the correction of the UML AD refinement
patterns.

Keywords-Progressive Development; Workflow Applications;
Specification; Refinement UML AD; Patterns; Event-B; Formal
Verification.

I. INTRODUCTION

The Workflow Applications (WA) are characterized by a
high complexity. Increasingly, they became omnipresent in
the critical calculation domain (natural or industrial
disasters) and they have to obey to the realiabity and safety
requirements. Thus, the need of an adequate software
specification technique and a suitable development method is
increased. The used specification formalisms need to be
comprehensive, expressive, and precise.

A workflow is a set of activities (tasks/ process) that are
ordered according to a set of procedural rules to achieve a
result or a goal. A workflow model (workflow specification)
is the definition of a workflow. A workflow is either an
atomic task, known as elementary task/activity or a sub-
workflow (nesting), a composite activity/task.

Traditional workflow models have obvious shortcomings
in describing complex workflows. Such complexity is due
not only to the hierarchical property of business process, but
also to the complicated dependencies among tasks.
Composition is an important approach to model larger and
more complex workflow application. Task refinement is one
kind of workflow composition approaches.

Indeed, specifying a complex system is a difficult task,
which cannot be done in one step. The stepwise refinement
technique facilitates the understanding of complex systems
by dealing with the major issues before getting involved in
the details. It consists of developing the system through

different levels of abstraction. The system under
development is first described by a specification at a very
high level of abstraction. A series of iterative refinements
may then be performed with the aim of producing a
specification, consistent with the initial one, in which the
behavior is fully specified and all appropriate design
decisions have been made. Stepwise software development
can be fully exploited only if the language used to create the
specifications is equipped with formal refinement machinery,
making it possible to prove that a given specification SC is a
refinement of another specification SA.

The Unified Modeling Language Activity Diagrams
(UML AD) [3] are considered as an Object Management
Group (OMG) [15] standard notation in the area of workflow
applications modelling. The idea of one standard language
for modelling provides many advantages to software
development, such as simplified training and unified
communication between development teams.

In our work, an UML activity diagrams approach based
on stepwise refinement technique for the workflow
specification is proposed. The refined workflow is presented
in UML using the hierarchical capabilities of the UML
Activity Diagram notation [4][5]. Workflow’s hierarchy
comes from the hierarchy of processes goals (Task). Goals
or activities of workflow applications are organized in a
hierarchy obtained from the Sequence/And/Or refinement of
higher level activities (goals) into lower-level activities
(atomic task). To describe the decomposition of the activity,
we propose some patterns that allow to model some
refinement of activity: sequence, choice (OR), parallel
(AND), loop. Thus, the description of the workflow at
different levels of abstraction becomes possible. In addition,
our objective is to provide a specification and verification
technique for workflow applications using UML AD, which
give readable models and an appropriate formal method
allowing verification of required properties (such no
deadlock) to prove the correctness of the workflow
specification.

Indeed, the main problem with UML activity diagrams is
that they have no formal semantics and in consequence UML
AD does not allow the formal verification of functional
workflow applications properties (safety, deadlock-
inexistence, liveness, fairness, etc) and the correction of the
patterns.

On the other hand, the Event B method [2] is a variant of
the B formal method [1], proposed by Abrial to deal with

116

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

distributed, parallel and reactive systems [2]. The concept of
refinement is the key notation for developing B models. The
refinement of a formal model allows one to enrich the model
in step by step approach. The last refinement gives the
implementation machine, which map directly to a
programming language such as C or ADA. B models provide
an automatic proof, which convinces the user that the system
is effectively correct and satisfies properties, which are
presented as invariants/assertions. The strong point of B is
support tools like as AtelierB [6] or B4free [7], an academic
version of AtelierB. Most theoretical aspects of the method,
such as the formulation of Proof Obligations (PO), are
carried out automatically. The automatic and interactive
provers are also designed to help designer to discharge the
generated proof obligations. All of these points make B well
adapted to large scale industrial projects [8]. However, B is
still difficult to learn and to use. In addition, there is a lack of
methodological studies related to the incremental
development of complex system using the refinement
mechanisms.

This is why a graphical representation of B models is
required. For that purpose, we propose a constructive
approach in witch Event B models are built incrementally
from UML AD models, driven by UML refinement patterns.

Our work presents a specification and verification
technique using the combination UML AD and Event B to
both improve graphical representation of the workflow
application structure and its functions such as the complex
properties, and also verify required properties.

In our approach, the workflow is initially expressed
incrementally graphically with UML AD refinement
patterns, then translated into Event B and verified using the
B powerful support tools.

The Event-B expression of the UML AD model allows
us to give it a precise semantics. In this context, there have
been efforts for defining semantics for activity diagram in
the works of Eshuis [10][11]. However, these works not
consider the hierarchical decomposition of activities in UML
AD. In addition, from the validation point of view, in our
approach, the verification of WA is based on a proof
technique and therefore it does not suffer from the state
space explosion occurring in classical model checking as in
the cases of works in [9] [10] [11] and [12].

Our contribution, in this context, consists of using Event
B method and its associate refinement process to encode the
hierarchical decomposition of activities in UML AD: Each
decomposition of a complex activity in UML AD is
translated into Event B by refining the event corresponding
to this activity. This refinement introduces the decomposition
defined in the original UML AD workflow specification.
Thus, a step by step UML AD workflow description and
validation is performed in parallel.

Refinement allows the developer to express the relevant
properties at the refinement level where they are expressible.
Then, further refinements will preserve these properties
avoiding reproving them again.

The use of the B formal method and its refinement
mechanism allows the verification of the correction of the

UML AD refinement patterns by the use of the B support
tools.

This paper continues our previous works [4][5] by
addressing the Event-B formalization of UML AD patterns
(sequence, parallel, choice) for workflow applications with
additional studies, results and proofs. In [4][5], we have only
proposed translations rules for UML AD notation into Event
B models. In these innovative works, we propose a formal
framework to define refinement patterns for UML AD. We
define an Event-B semantic for each UML AD refinement
pattern for WA by constructing set-theoretic mathematical
models (See Section 4 and 5). Based on the classical set of
inference rules from Event-B [13], we identify the systematic
proof obligations for each UML AD activity refinement
pattern. The use of the B formal method and its refinement
mechanism allows the verification of the correction of the
patterns. The Event-B formalization of the other UML AD
models is a work in progress.

The remainder of the paper is organized as follows:
Section 2 presents a brief overview of the semi-formal UML
activity diagrams notation. Section 3 presents a brief
overview the formal Event B method. Section 4 details our
proposed approach that consists in expressing a UML AD
model with Event-B. Section 5 illustrates the approach by
presenting the Event-B formalization of the sequence
refinement pattern. Finally, a summary of our work
concludes the paper.

II. UML ACTIVITY DIAGRAMS

An activity diagram is a variation of a state machine in
which the states represent the execution of actions or
subactivities and the transitions are triggered by the
completion of the actions or subactivities. We use activity
diagrams to model computational, communication, and
synchronization operations/process of parallel and
distributed applications. Moreover, we use the hierarchical
decomposition (thanks to refinement) offered by UML
activity diagrams to model complexes applications gradually
in incremental way on several levels (see Figure 2). An
action state is used to model a step in the execution of an
algorithm (atomic action), or a workflow process
(Subactivity represents a composed activity). A subactivity
state invokes an activity diagram. When a subactivity state is
entered, the activity diagram nested in it, which corresponds
to the refined activity, is executed. A subactivity state is
shown in the same way as an action state with the addition of
an icon in the upper left corner depicting a nested activity
diagram (see Figure 1.(b)). Transitions are used to specify
that the flow of control (the token) pass from one action to
the next. An activity diagram expresses a decision when
guard conditions are used to indicate different possible
transitions (see Figure 1.(a)). A guard condition specifies a
condition that must be satisfied in order to enable the firing
of an associated transition. A merge has two or more
incoming transitions and one outgoing transition. It can be
used to merge decision branches back together. Fork and join
are used to model parallel flows of control (see Figure 1.(b)).
The initial and final state are, respectively, visualized as a

117

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

solid ball and a solid ball inside a circle. Figure 1.(a)
illustrates how to model a loop by employing an activity
diagram, whereas Figure 1.(b) shows one option for
modeling the parallel execution of two activities.

 (a) Loop (b) Parallel notation

Figure 1. UML activity diagram notation

One of the main features of UML is the refinement with

hierarchical decomposition of activities in UML AD, which
permits to obtain a detailed specification from an initial
specification. Figure 2 illustrates how to model complex
application like distributed and parallel application, on
several levels, by employing a refinement technique of UML
AD.

Figure 2. Hierarchical decomposition of activities in UML activity
diagrams

Our choice of UML AD is motivated by the fact that

workflow modelling is strongly supported by UML through
activity diagrams [1]. Moreover, UML is easy to read and
understand by human beings.

In the Section 4, we show how the semantics of activity
diagrams can be formally described in Event B.

III. EVENT B METHOD

We use the B method [1] and its event-based definition

[2] to formalize UML AD models of workflow application.

Event B model: Development in the Event B method is
based on the concept of model [2]. A model shown below is
composed of:

• Descriptive specification, which describes what the
system does using a set of variables, constants,
properties over constants and invariants which
specify required properties to be verified in each
state. This constitutes the static definition of the
model.

• Operational specification, which describes the way
how the system operates, it is composed of an initial
state and various transitions (events) which show
how the set of variables of the descriptive
specification can move in time.

An Event B model is composed of set atomic events

described by particular generalized substitution (ANY ,
BEGIN and SELECT). Each event Evt is fired if the guard
P associated to this event is true. For the purpose of this
paper, we will only use the SELECT substitution Evt=
SELECT P THEN G END. Moreover, a B model contains a
set of properties i.e invariants, liveness, safety and
reachability properties which can be prove during the
development thanks to the embedded proof system
associated to B and the tool supported by B4free [6].

Refinement of Event B models: Each Event B model can
be refined. A refined model is defined by adding new events,
new variables and a gluing invariant. Each event of the
abstract model is refined in the concrete model by adding
new information describing how the new set of variables and
the new events evolve. All the new events appearing in the
refinement refine the skip event of the refined model.

ActionState

[Condition]

[Else]

Initial state

Merge

Decision

Final state

Guard

Transition

Join

SubactivityState2 SubactivityState1

Fork

 Act0 Act02

 Act03

Act012 Act011

process1 process2

 Act01

Level 0 Level 1 Level 2

MODEL < name>
VARIABLES
<variables>
INVARIANT
< invariant>
ASSERTIONS
< assertion>
INITIALISATION

<initialization of variables>
EVENTS

< events>
END

118

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

The gluing invariant ensures that the properties expressed
and proved at the abstract level (in the ASSERTIONS and
INVARIANTS clauses) are preserved in the concrete level.
Moreover, INVARIANT, ASSERTIONS and VARIANT
[14] clauses express deadlock and livelock.

1. They shall express that the new events of the concrete
model are not fired infinitely (no livelock). A
decreasing variant is introduced for this purpose.

2. They shall express that at any time, an event can be
fired (no deadlock). This property is ensured by
asserting (in the ASSERTIONS clause) that the
disjunction of all the abstract events guards implies
the disjunction of all the concrete events guards.

At every step of the refinement, proof obligations ensure

that events and initialization preserve the system invariant. A
set of proof obligations that is sufficient for the correctness
must be discharged when a refinement is postulated between
two B components [2] [14].

A strong point of the B method is that the B support tools
like B4free [7] provides utilities to discharge automatically
the generated proof obligations (of the invariant preservation
and the refinement correctness). Analyzing the non-
discharged proof obligations with the B support tools is an
efficient and practical way to detect errors encountered
during the specification development.

Moreover, in the refinement, it is not needed to reprove
these properties again while the model complexity increases.
Notice that this advantage is important if we compare this
approach to classical model checking where the transition
system describing the model is refined and enriched.

Finally, the choice of Event-B is due to its similarity and
complementarity with UML AD: both Event-B and UML
AD have the notion of refinement (constructive approach).

IV. THE PROPOSED APPROACH

A. Presentation

Our approach relies on the following steps:
• Step 1: Initially, the workflow is modeled

graphically with UML AD refinement patterns.
• Step 2: For current decomposition level, the

resulting graphical readable model is translated into
Event B applying the approach described in [4][5].

• Step 3: This Event B model is enriched by relevant
properties (no deadlock, no livelock, etc) which are
defined in the INVARIANTS and ASSERTIONS
clauses. These properties will be proved using the
B4free tool [7].

• Step 4: We isolate the events of the Event B model
whose POs, associated to the introduced invariant of
step 3, are not provable.

• Step 5: The UML AD model of step1 is re-design
by introducing a UML AD scope embedding the

events identified at step 4 and a compensation/fault
handler component.

• Step 6: Apply step 2.

This step-based approach is applied until the associated
Event B model is free of unproved PO.

B. Formalization of UML AD

To achieve our objective, we formalize with Event-B the
UML AD refinement patterns that analysts use to generate a
UML AD workflow hierarchy.

The UML AD language [3] offers two categories of

activities:
1) Atomic activities (action) representing the primitive

operations performed by the process. They are defined by
action node in UML AD.

2) Composed activities representing the sub-workflows

(nesting), obtained by composing primitive activities and/or
other composed activities using the sequence, parallel
(For/Join), choice (Decision/ Merge) control constructs in
UML AD.

In the remaining of this paper, we refer to the

decomposition (refinement) of a composed activity by the
activities it contains as a result of the refinement operation
using refinement patterns.

In this innovative work, the formal assertion defining an
activity A is written in first-order logic. Thus, the general
form of the assertions associated to the activities is A-Pre =>
A-post where A-Pre and A-Post are predicates associated to
an activity A (See Figure3). Symbol => denotes the classical
logical implication. Such assertions state that from a state in
which A-Pre holds, we must reach another state in which A-
Post holds.

If we refer to the concepts of guard and postcondition
that exists in Event-B, a UML AD activity can be considered
as a postcondition of the system, since it means that a
property must be established. Following our pervious works
[4], we have proposed to express each UML AD activity as a
B event, where the action represents the achievement of the
activity. Then, we will use the Event-B refinement relation
and additional custombuilt proof obligations to derive all the
subactivity of the system by mean of B events.

At the high level of abstraction, there is only one event
for representing the parent activity. In accordance with the
Event-B semantics, if the guard of the event is true, then the
event necessarily occurs. For the new events built by
refinement and associated to the subactivity, we guarantee by
construction that no events prevent the postconditions to be
established. For that, we have proposed an Event-B semantic
for each UML AD refinement pattern by constructing set-
theoretic mathematical models. Based on the classical set of
inference rules from Event-B [13], we have identified the
systematic proof obligations for each UML AD activity
refinement pattern.

119

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

To better illustrate the approach, the next section presents
just the Event-B refinement semantics related to the
sequence refinement pattern.

V. THE FORMALIZATION OF THE UML AD SEQUENCE

REFINEMENT PATTERN

The sequence activity refinement pattern refines a

composed activity by introducing intermediate sequence
states A01,..., A0n for reaching a state satisfying the target
condition (denoted by A0-Post) from a state satisfying the
current condition (denoted by A0-Pre) as shown in Figure 3
(with just two sub-activity).

Figure 3. Sequence activity refinement pattern

Figure 4. Overview of the Event-B representation of the UML AD model

A. Description

The first sub-activity A0 is an activity with the sequence
condition as target condition; it states that the sequence
condition (denoted by A0-Pos) must hold if.

The specific current condition A01-Pre (which can be
larger than the current condition A0-Pre of the parent
activity) holds in the current state. The second sub-activity
states that the specific target condition A02-Post (which can
be larger than the target condition A0-Post of the parent
goal) must hold if the specific sequence condition A02-Pre
(derived from A01-Post) holds in the current state.

B. Formal definition

As explained in the last section, each level i (i ∈ [0..n]) is
represented in the hierarchy of the UML AD models as an
Event-B model Mi that refines the model Mi−1 related to the
level i − 1. Moreover, we represent each activity A j,i (j ∈
[0,..,n] activity index) as a B event EvtAi,j , where the guard
is the transcription of A-Guard from the activity expression,
and the THEN part is the translation into Event-B of A-Post
(see Figure 4).

C. Proof obligations identification

 We are going to give systematic rules defining exactly
what we have to prove for this pattern in order to ensure that
each concrete event (EvtA01, EvtA02) indeed refines its
abstraction EvtA0. In fact, we have to prove three different
lemmas:

- The ordering constraint (PO1) expresses the

sequence characteristic between the Event-B events.
PO1 ensures that the target condition of the activity
A01 implies the current condition of the activity
A02.

A01-Post => A02-Pre (PO1)

- The guard strengthening (PO2) ensures that the

concrete guard is stronger than the abstract one. In
other words, it is not possible to have the concrete
version enabled whereas the abstract one would not.
The term “stronger” means that the concrete guard
implies the abstract guard.

A01-Pre => A0-Pre (PO2)

- The correct refinement (PO3) ensures that the

sequence of concrete events transforms the concrete
variables in a way which does not contradict the
abstract event.

A02-Post => A0-Post (PO3)

Level 0 Level 1

A0

A0-Pre =>A0-Post

A01

A01-Pre =>A1-Post

A02

A02-Pre =>A02-Post

MODEL M-O
EVENTS
 EvtA0 =
SELECT A0-Pre
THEN A0-Post
 END;

REFINEMENT M-1
REFINES M-0
…….
EVENTS
 EvtA01=
SELECT A01-Pre
THEN A01-Post END;
 EvtA02=
SELECT A02-Pre
THEN A02-Post END

REFINES

Abstract Model M0 Refinement Model M1

120

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

The Event-B refinement semantics of the sequence
refinement pattern requires to prove three proof obligations
((PO1) (PO2) (PO3)) that could easily be discharged by the
current version of B4free or Rodin automatic theorem
prover.

VI. CONCLUSION

We have proposed a specification and verification
technique for workflow applications using UML AD and
Event B. The workflow is at first modelled with UML AD
refinement patterns, which is understandable allowing
communications with costumers, then translated the resulting
model into Event B, which is enriched by relevant properties
(Safety, nodeadlock) to be verified using powerful support
tool B4free[7]. This approach allows to rigorously verify
UML specifications by analysing derived B specifications
and to prove that the modelled workflow using the AD
respects all safety and reliability constraints by the formal
verification of its properties. Analyzing derived B
specifications (thanks to B4free tool) is a practical and
rigorous way to improve initial UML AD specifications.

Our contribution consists in the use of the Event B
method and its associate refinement process to encode the
hierarchical decomposition of activities in UML AD and its
tools for the formal verification of workflow applications. In
addition, the strong point in our approach is that the
validation can be performed at any development stage and
particularly at early steps allowing saving at development.
Thus, a step by step UML AD workflow description and
validation is performed in parallel.

For an incremental development of AW using UML AD,
we have proposed some activity refinement patterns
(sequence, parallel, choice). In this paper, we have proposed
a formal framework to define refinement patterns for UML
AD. The use of the B formal method and its refinement
mechanism allows the verification of the correction of the
patterns by the B support tools.

In contrast to the works of Eshuis [10] [11], Karamanolis
[12] and Van der Aalst [9], in our works, the verification is
based on a proof technique and therefore it does not suffer
from the state number explosion occurring in classical model
checking as in the cases of their works.

Actually, we are actively working on the extension of our
works to investigate new refinement patters presented in [4]

and to generalize our method. In addition, in future work, we
envisage the formal validation of our transformation rules.

REFERENCES

[1] J.-R, Abrial, “The B Book. Assigning Programs to Meanings”.

Cambridge University Press, 1996.

[2] J.-R.Abrial. ”Extending B without changing it” (for developing
distributed systems)”. In H Habrias, editor, First B Conference. 1996.

[3] R. Johason, I. Jacobson, and G. Booch, “The Unified Modelling
Language reference Manual” .Addison- Wesley. 1998.

[4] A. Ben Younes, and L.-Jemni,Ben Ayed “ Using UML Activity
Diagrams and Event B for Distributed and Parallel Applications”. In
31st Annual IEEE International Computer Software and Applications
Conference .COMPSAC 2007: pp, 163-170.

[5] A. Ben Younes, and L.-Jemni, Ben Ayed, “Specification and
verification of Workflow Applications using Combination of UML
Activity Diagrams and Event B’’. In The 5th International
Conference on Software Engineering and Data Technologies.
ICSOFT 2010: pp 312-316.

[6] Clearsy, “ System Engineering Atelier B”. Version 3.6. ,2001

[7] Clearsy“B4free,” Available at www.b4free.com . (June 30, 2011).

[8] P. Behm, P. Desforges, and J.-M. Meynadier. “MÉTÉOR: An
Industrial Success in Formal Development”. April 1998. An invited
talk at the 2nd Int. B conference, LNCS 1939.

[9] W.M.P. van der Aalst. “Workflow Verification: Finding Control-
Flow Errors using Petri-net-based Techniques”. In Business Process
Management: Models, Techniques, and Empirical Studies, volume
1806 of Lecture Notes in Computer Science, pp 161-183. Springer-
Verlag, Berlin, 2000.

[10] R. Eshui and R. Wieringa. “Tool Support for verifying UML Activity
Diagram”. IEEE transaction on software Engineering , volume 30 ,
N°7; pp 437-447. 2004.

[11] R. Eshuis and R. Wieringa. “ A formal semantics for UML activity
diagrams”. Technical Report TR-CTIT-01-04, Centre for Telematics
and Information Technology, University of Twente, 2001.

[12] C. Karamanolis, D.Giannakopoulou, J. Magee, and S. M.Wheater
“Formal verification of workflow schemas”. University of Newcastle,
Technical Report. 2000.

[13] J.-R. Abrial. Chapter 2 of the forthcoming book: "Modeling in Event-
B: System and Software Engineering Forthcoming book".
http://www.event-b.org/A ch2.pdf.

[14] C. Metayer, J,-R. Abrial, and L. Voisin. ”Event B language’’,
Technical Report D7, RODIN Project Delivrable. 2005.

[15] Object Management Group (OMG), http://www.omg.org. (June 30,
2011).

121

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

