
A Rewriting Logic-based Meta-Model
for Design Patterns Formalization

Halima Douibi, Kamel Boukhelfa, Faiza Belala

LIRE Laboratory. University Mentouri of Constantine
Constantine, Algeria

{douibi_halima, boukhelfakamel}@yahoo.fr, belalafaiza@hotmail.com

Abstract— Informal description of design patterns is adopted
to facilitate their understanding by software developers.
However, these descriptions lead to ambiguities limiting their
correct usage in support tools. Hence, there is a need for
formal specification of the design patterns to ensure their
successful application. In this paper, we propose a new
formalization of design pattern while using a meta-model,
based on rewriting logic. The meta-model is encoded in Maude
to provide an executable framework allowing experimentation
of design patterns models and their formal analysis. Indeed,
the relevant elements that constitute a design pattern solution
are formally deduced from this formalization.

Keywords-Design patterns; Meta-model; Rewriting logic;
Maude.

I. INTRODUCTION
A design pattern expresses solution of a known and

recurrent problem in a particular context. It is applied in
object programming software to improve the quality of the
expected system [3].

The design patterns are generally described by using a
combination of textual descriptions, object oriented graphical
notations such as UML’s diagrams and sample code
fragments. This informal description is adopted to facilitate
their understanding by software developers. However, these
descriptions lead to ambiguities limiting their correct usage
in support tools. Hence, there is a need for formal
specification of the design patterns to ensure their successful
application. Indeed, this precise and rigorous description
permits to achieve the following goals:

• a full understanding of the patterns semantics
• a formal analysis to resolve some issues such as

patterns duplication, refinement, disjunction and
composition

• a development of the patterns integration into CASE
tools.

The formal approaches to design pattern specifications
are not intended to replace existing informal approaches, but
to complement them.

In this work, we propose a rewriting logic-based meta-
model to formalize design pattern solutions and their
instantiations. Our proposed meta-model includes all the
common elements of design patterns, so any design pattern
can be expressed in terms of this meta-model. It provides a
high level of abstraction that will cover all the features of
design patterns, it allows a generic representation that is used
to produce automatically any design pattern specification.

Rewriting logic is identified as a semantic basis of our
approach since it constitutes an unified semantic framework
for many concurrent models. Besides, it has an important
property which is reflection allowing powerful meta-
programming uses. Intuitively, a logic is reflective if it
allows to express at object (or data) level a meta-level (or
type level) description. It is used extensively in our meta-
model implementation represented as a rewrite logic theory
[5]. Hence, we show how this meta-model can be
implemented in Maude language. This implementation
exploits fully the flexible parser of Maude language and its
facilities to define the concrete syntax of the relevant
features of our meta-model and its possible analysis.

The rest of this paper is organized as follows: in Section
2, a synthesis on related work for design patterns
formalization is given. Then, we present in Section 3 the key
concepts of the rewriting logic and its practical Maude
language. Section 4 describes on one hand, the proposed
meta-model of design patterns, and on the other hand, its
encoding in Maude language. Furthermore, an illustrative
example is given to elucidate the main idea of our approach.
Section 5 concludes this work and presents its perspectives.

II. RELATED WORK
Several attempts to formalize design patterns have been

proposed. In this section, we present a brief survey about
them focusing especially on the specification formalisms
dealing with structural and behaviour aspects of design
patterns.

In [9], BPSL (Balanced Pattern Specification Language)
language is proposed. This language uses a subset of first-
order logic (FOL) to formalize structural aspect of patterns,
while the behavioural aspect is formalized in TLA
(Temporal Logic of Actions). The first-order logic is
justified by its simplicity to express relations between pattern
participants as predicates.

In [4], the author presents a use of formal language
LePUS (LanguagE for Patterns Uniform Specification) to
describe design patterns. LePUS is a fragment of the
monadic high-level order logic using a limited vocabulary of
entities and relations. A LePUS instruction is formed by a
list of participants (classes, functions or hierarchies) and a
list of relations between these participants. A program is
represented by a model M which is a pair <P, R> where P is
the universe of the basic entities (classes and functions) and
R=R1,…, Rn is the set of the relations between these entities.
These relations are deduced by generalization of all the

84

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

existing basic relations between participating entities in the
GOF patterns (GOF for “Gang Of Four”) [3]. Hence, a
design pattern is described by HOL formulae which are
accompanied by a graphic representation in order to facilitate
its understanding.

Other research works deal with the issues of design
patterns integration in CASE tools. We can cite [2] about
DPML (Design Pattern Modeling Language) which defines a
meta-model and a notation for specifying design pattern
solutions and solution instances within object models.
The meta-model defines a logical structure of objects DPML
which can be used to create models of design pattern
solutions and design pattern solution instances, while the
notation describes the diagrammatic notations used to
represent visually the models.

At present, DPML allows only specifying the structural
aspect of pattern design and no indications are mentioned
about the composition and the verification of design patterns.
However, instantiation is achieved by mapping from the
pattern specification to its realization in a UML design
model. The most interesting element of DPML is that it uses
a simple set of visual abstractions and readily lends itself to
tool support.

Unlike our approach, the most emerging ones are
founded on hybrid models and tackle formalization of only
some concepts of design patterns which are closed to the
object level.

In the present work, we aim to formalize design patterns
using a new meta-modeling approach, in which the meta-
model represents a part of the global standardized UML
meta-model as described by [1]. This meta-model is then
integrated in rewriting logic framework.

Our approach differs mainly from the above cited works
by the use of a common formalism to specify both the
structural and behaviour aspects of design patterns.
Moreover, the use of the meta-model concept in design
patterns formalization permits to describe all the design
pattern features at a same high level of abstraction. In
addition, with the encoding of our meta-model in Maude, we
obtain executable programs that can be subject of several
analysis and verifications.

III. REWRITING LOGIC AND MAUDE
Rewriting logic is known as being logic of concurrent

change taking into account the state and the calculus of the
concurrent systems. It was shown as a unifying semantic
framework of several concurrent systems and models [5][6].
In this context, we can cite without being exhaustive, the
labelled transitions systems, Petri nets, CCS, etc.

In rewriting logic, a dynamic system is represented by a
rewriting theory),,,(LRΕΣ=ℜ describing the complex
structure of its states and the various possible transitions
between them. In rewriting theory definition, (Σ, E)
represents an equational membership theory, L is a set of
labels and R is a set of labelled conditional rewriting rules.
These rewriting rules can be of the following form:

ll
Ll

jj
Jj

ii
Ii

ttswqpifttrX ':':)(→∧∧=→∀ ∧∧∧
∈∈∈

where r is a labeled rule, all the terms (pi ,qi ,wj ,sj ,tl ,tl’)
are Σ-terms and the conditions can be rewriting rules,
membership equations in (Σ, E), or any combination of both.
Given a rewriting theory, we say that ࣬ implies a formula
[t]→[t’] if and only if, it is obtained by a finite application
of the following deduction rules :

1. Reflexivity:
For each term [t] ∈ TΣ,E(X), [t] → [t]
where TΣ,E(X), is the set of Σ-terms with variables.

2. Congruence:
For each operator f ∈ ∑n , n ∈ N,

)]',,'([)],,([
]'[][]'[][

11

11

nn

nn

ttfttf
tttt
KK

L

→
→→

3. Replacement:
For each rewriting rule,
r :[t(x1,…,xn)] → [t’(x1,…,xn)] in R :

)]/'('[)]/([
]'[][]'[][11

xwtxwt
wwww nn

→
→→ K

4. Transitivity:

][][
][][][][

31

3221

tt
tttt

→
→→

Rewriting logic is also a reflexive logic, i.e., aspects of its
meta-theory can be represented in a consistent way, namely
there is a universal theory U in which any finitely presented
rewrite theory R (including U itself) can be presented as a
term R , any terms t; t’ in R as terms t , 't and any pair
()tR, as a term ܴۃ,ഥ so that the following equivalence is ,ۄҧݐ
established : ܴ ٟ ݐ ՜ ᇱݐ ܷ ٟ ۃ തܴ, ۄҧݐ ՜ ۃ തܴ, ۄԢഥݐ

The rewriting logic theoretical concepts are implemented
through the Maude language [5][6]. Maude objective is to
extend the use of the declarative programming and the
formal methods to specify and verify critical and concurrent
systems. Maude program is simple and easy to understand. It
represents a rewriting theory, i.e., a signature and a set of
rewriting rules. The computation in this language
corresponds to the deduction in rewriting logic. Maude
integrates also equational and object oriented programming,
which are used in our formalisation to describe our proposed
meta-model, in a convenient way. Its logical basis facilitates
a clear definition of the object oriented semantics and makes
it good choice for the formal specification of object oriented
systems. In this case, a concurrent system is modeled by a
multi-set of objects and juxtaposed messages. Concurrent
interactions between objects are governed by rewriting rules.

85

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

An object is represented by the term < O : C | a1 : v1 , …
, an : vn >, where O is the object instance name of class C,
ai, I ∈ 1..n, the object attributes names, and vi, their
respective values.

The class declaration follows this syntax:
class C | a1 : s1 , … , an : sn .
Where C is the name of the class and si is the sort of the
attribute ai. It is also possible to declare sub-classes to
benefit from the class inheritance.

Messages are declared using the keyword “msg”. The
general form of a rewriting rule in the Maude's object-
oriented syntax is:

crl [r] : M1 … Mn < O1 : F1 | at1> … < Om : Fm | atm >

=> < Oi1 : F’i1 | at’i1 > … <Oik : F’ik | at’ik > M1’ … Mp’
if Cond .

r is the rule label, Ms, s ∈ 1..n, and M’u, u ∈1..p, are
messages, Oi, i ∈ 1..m, and Oil, l ∈ 1..k, are objects, Cond is
the rule condition. If the rule is not conditional, we replace
the keyword crl by rl and we remove the clause if Cond.

Another important aspect which favors the use of Maude
language is its implementation through a running
environment, allowing prototyping and formal analysis of
concurrent and complex systems.

IV. THE META-MODEL FORMALIZATION APPROACH
In this section, we present our design patterns

formalization approach based on the rewriting logic
formalism. This executable logic is intended to specify both
the structural and behaviour aspects of design patterns
contrary to the other formalization approaches which use at
least two distinct formalisms. Besides, its reflective feature
allows us to reason on design patterns meta models instead
of their formal specifications only. Thus, the use of the meta-
model concept in design patterns formalization permits to
describe all the design pattern features at a same high level
of abstraction. In the following, we first define our meta-
model for specifying design pattern solutions. Then, we
show how to encode it in Maude to obtain executable
design pattern models that can be subject of several analysis
and formal verifications.

A. The proposed Meta-Model
To formalize design pattern models and their solutions,

we suggest to use a generic notation based on the following
meta-model (see Figure 1) as it was done by authors of [1].
Our meta-model defines a logical structure of elements
involved in the models conception of the design pattern
solutions.

We consider a design pattern solution as a collection of
elements and constraints on these elements. An element
represents a structural significant part of a design pattern
solution. In the object oriented context, this can express a
class, an operation or an attribute. Constraints represent
conditions that must be verified by an element (i.e., class,
operation or attribute). Also, they may represent OCL
constraints in object oriented framework.

Thus, the core concept of our meta-model, design pattern
model (DP Meta-Model), serves to generate a design pattern
solution. The other elements are joined with a set of specific
relationship.

We have chosen class diagram notation to represent
graphically our meta-model (see Figure 1). Classes and UML
relationship (agregation, inheritance, composition, etc.) are
used to represent respectively elements and relationship of
the meta-model. Thus, the transcription of a class diagram in
Maude is easily made thanks to the strong correspondence
between UML class concept and the one in Maude [8]. We
divided the classes of the solution part of design patterns in
several parts (elements, operations, attributes, and
constraints). Element class in our meta model represent
classes in the solution part, operations of a class are
represented by the class operation, the attributes of a class
are also represented by a class called attribute. We can see in

Figure 1. A Meta-model of design patterns

(Figure 1) that the two classes operation and attributes are
subclasses of the element class, so each pattern may be
composed of a set of elements, operations, attributes and
possibly a set of constraints on these elements.

Example: Let us consider as a simple example the
Singleton Pattern from [3] (see Figure 2). This pattern is
used to ensure that a class has only one instance, and
provides a global point of access to it. The solution part of
Singleton consists of a single class which contains one
attribute called instance and one operation called
getinstance().

This pattern can be expressed using our meta-model as it
is shown in (Figure 3). In this meta-model there are one main
element called singleton which corresponds to singleton
class in the solution part of the singleton design pattern, we
have also getinstance and instance elements which
correspond respectively to the getinstance() operation and
instance attribute in the solution part of the singleton design
pattern. Finally, we find Return-unique-instance element
which represent the constraint imposed by the design pattern.

86

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

Figure 2. Singleton design pattern

Figure 3. Applying DP Meta-Model to Singleton

B. Encoding the DP Meta-Model in Maude
Our proposed meta-model is formalized using rewriting

logic model, we adopt object oriented concepts of this logic
to define all the components of the meta-model “DP Meta-
Model”. The proposed model is described in this case, as
being a multi-set of juxtaposed objects and messages, where
the concurrent interactions between the objects are governed
by rewrite rules. Objects represent elements (participants) of
the proposed meta-model that may have some behaviours.
Then, the semantics of these object interactions is
materialized by the defined messages.

We exploit rewriting logic as a unique semantic
formalism for specifying and checking design patterns and
their solutions. Thanks to this formalization we lean on the
category model to give precise and sufficient semantics to
behaviour aspects in design patterns. Besides, this high level
specification constitutes an executable one, it allows formal
analysis using a particular well-founded language Maude
having a proof and prototyping environment.

So, we first give the Meta-model class in our global
object oriented Maude module Meta-Model-DP with a
specific attribute called Name-ID of sort QID.

omod Meta-Model-DP is
 Including QID
 Class Meta-model | NameID : QID .
 ...
endom

This will define configurations of concurrent models of
possibly several design patterns. Rewriting theory describes
static and dynamic aspects of these models. Elements and

constraints components in the Meta-model are respectively
declared as classes called D-element and D-constraint,
having one attribute Meta-Model to relate all elements and
also constraints of a given Meta-model. The second
attribute of D-constraint class is defined to indicate which
element is concerned with this constraint:

Class D-element | Meta-Model : oid .
Class D-constraint | Meta-Model : oid,
Element : oid .

Elements of type Operation or Attribute in the design

patterns meta-model are defined as sub classes of D-element
class with an attribute called Element to indicate the
operation or the attribute to which element they are attached:

Subclass D-operation | Element : oid < D-
element .
Subclass D-attribute | Element : oid < D-
element .

Thus, we have defined the essential parts of elements or

constraints structures involved in the meta-model of design
patterns. In addition, we are able to provide an object-
message fair rewriting strategy that is well suited for
executing objects of Meta-Model DP configurations. For
lack of paper space, we have limited our work to the
following set of messages which have as role to deal only
with the different constructs of the meta-model. For instance,
the first message is called get-element, it has one argument
of type oid (of class D-element):

msg _get-elements : Oid Msg .
msg _get-constraints : Oid Msg .
msg _get-operations_: Oid Oid Msg .
msg _get-attributes_: Oid Oid Msg .

rl [get-elements]:
< O1 : Meta-model | NameID : S1 >
< O2 : D-element | Meta-Model : O1 > O1get-
elements =>
< O2 : D-element | Meta-Model : O1 > .

rl [get-constraints]:
< O1 : Meta-model | NameID : S1 > <
O2 : D-element | Meta-Model: O1 > < O3 :
D-contraint | Meta-Model : O1 , Element: O2>
O1get-contraints =>
 < O3 : D-contraint | Meta-Model : O1 ,
Element: O2> .

rl [get-operations]:
< O1 : Meta-model | NameID : S1 > < O2 : D-
element | Meta-Model: O1 > < O3 : D-
operation | Meta-Model : O1 , Element: O2>
 O1get-operations O2
=> < O3 : D-operation | Meta-Model : O1 ,
Element: O2> .
rl [get- attributes]:

Singleton

Instance

+ Getinstance()

87

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

< O1 : Meta-model | NameID : S1 > < O2 : D-
element | Meta-Model: O1 > < O3 : D-
attribute | Meta-Model : O1 , Element: O2>
 O1get-attributes O2
=> < O3 : D-attribute | Meta-Model : O1 ,
Element: O2> .

These rules are examples of synchronous message
passing rules involving one or more objects and one message
on the left-hand side. In these examples new objects are
created but no new messages are sent. Another rule type
involving the joint participation of at least two meta-models
of design patterns may be naturally defined in the same
way. Note that the multiset structure of the configuration
provides the top-level distributed structure of the design

patterns meta-model and allows concurrent application of
these rules

The proposed model is generic enough, it may be easily
enriched to take into account specific patterns as for example
those of [3]. We add to the Meta-Model-DP module some
constants (operators and equations) to instantiate our meta-
model to a given design patterns. We take the same example
of Singleton pattern to show what we need to declare in this
new module called for this case DP-SINGLETON (see
Figure 4). The constant singleton designate a given
configuration specifying the design pattern. This
configuration is defined through an equation which contains
a set of objects that form the pattern participants: Sing, S-
class, instance, get-state and S-constraint .

Figure 4. Meta-model module and DP-singleton module

Figure 5. Rewriting configuration example

88

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

C. Formal Analysis
The successful implementation of the different modules,

previously proposed has been done in Maude workstation 1.0
environment implemented in JAVA. The syntactic
verification is implicitly done when the module is loaded
(see Figure 4).

We can for instance rewrite any configuration consisting
of participants (elements and constraints) of a given design
pattern model (or several ones) and some messages with the
rewrite command of Maude engine. (Figure 5) presents an
example of rewriting a simple configuration to get the
elements of the Sing design pattern (Singleton).

This model will enable developers to detect erroneous
behaviors and contradictions in the meta models of design
patterns. Its main advantage is the clear distinction between
the two concerns static and dynamic ones. Thus, firstly we
describe the static aspects of the meta-model using Maude
objects through their classes. Then, we proceed to the
enrichment of this module to ensure its behaviour
description. The execution semantic of a model composed of
possibly some communicating design patterns models is
naturally defined thanks to rewrite rules concurrent
execution and Maude module operations. Besides, we can
exploit the META-LEVEL predefined Maude module to get
the meta representation of these both declared modules and
terms (objects and configurations). Thus, we may check if a
given design pattern solution respects its pattern or no thanks
to metaReduce and metaApply commands.

V. CONCLUSION
The use of formal methods to design patterns is an

effective means to improve the reliability and the quality of
complex systems. The objective of this work was to adapt
one of these methods, largely mastered due to its widespread
use in our recent research works, to design patterns model
specification and analysis, so that the system development
depending of these design patterns solutions can benefit from
it.

We have proposed a new approach to formalize design
patterns. First we have suggested a meta-model for all design
patterns [3]. We considered a design pattern solution as a
collection of a participants and constraints on these
participants. Our meta-model was defined as a oriented
object Maude module, in which all the components of the
meta-model are defined as classes. Design patterns can be
instantiated from this module. Obtaining the different
patterns as dynamic configurations. This will allow us to
have multiple patterns in a common configuration.

In the related work section, we have discussed the
originality of our proposed approach relatively to other ones
that provide languages to formalize design patterns, we have
shown through the paper how Rewriting logic (via Maude)
offers an accurate way of specifying a meta-model for a
generic design pattern and possibly its solutions and provides
good tool support for reasoning about them. Our proposed
Object Rewrite Theory based model takes benefits from the
underlined formalism to consider both static and dynamic
aspects of Design Patterns, so it inherits all theoretical

advantages of rewriting logic formalism. We do not have
need to prove that rewriting logic is better than other
formalisms used in this context such monadic high-level
order logic, first-order logic (FOL), temporal logic of
actions, etc. Besides, rewriting logic has been shown as a
logical framework in which several logic have been already
integrated.

In future, we will be interested by the study of behavior
associated to more complex operations performed on these
patterns models such as the composition, the
parameterization, etc. On the other hand, defining and
encoding in Maude this design pattern meta-model will
facilitate the integration of the design patterns into CASE
tools. We will take advantage from our meta-modelling
approach and the meta model of Maude to deal with Model-
to-model transformations (Moment-MT tool, [7]) as
technologies looking for reducing the gaps between
platform-independent models (PIMs) and platform-specific
models (PSMs).

REFERENCES
[1] A. Boronat. “MOMENT: a formal framework for MOdel

manageMENT”. PhD in Computer Science, Universitat
Polit`enica de Val`encia (UPV), Spain (2007),

[2] D. Mapelsden, J. Hosking, and J. Grundy, “Design Pattern
Modelling and Instantiation using DPML”. The 40th
International Conference on Technology of Object-Oriented
Languages and Systems (TOOLS Pacific 2002), Sydney,
Australia.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. “Design
patterns: elements of reusable objectoriented systems”.
Addison-Wesley, 1995.

[4] E. Gasparis. “LePUS: A Formal Language for Modeling
Design Patterns”, Chapter XVI in Design Pattern
Formalization Techniques, IGI Publishing (an imprint of IGI
Global) (2007), pp. 357-372.

[5] J. Meseguer. “A Logical Theory of Concurrent Objects and its
Realization in the Maude Language”. In G. Agha, P. Wegner,
and A. Yonezawa, Editors, Research Directions in Object-
Based Concurrency. MIT Press, 1992.

[6] J. Meseguer, “Software Specification and Verification in
Rewriting Logic”. In M. Broy and M. Pizka, editors, Models,
algebras and logic of engineering software, pp. 133-193. IOS
Press, 2003. http://maude.cs.uiuc.edu. 7.12.2011

[7] http://moment.dsic.upv.es/. 7.12.2011
[8] K. Boukhelfa, F. Belala, A. Choutri, and H. Douibi, “For

more understandable UML diagrams”. In IEEE/ACS
International Conference on Computer Systems and
Applications (AICCSA) 2010, pp. 1 – 7.

[9] T. Taibi and D. Ngo. “Formal specification of design patterns-
A balanced approach”. In Journal of Object Technology, 2, 4.
(2003), pp. 127-140.

89

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

