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Abstract— In this paper, we describe a novel method to 
create the complete 3D model of the object on uncalibrated 
images. First, we match the points both detected by multi-
scale Harris corner detection algorithm and line detection 
technique.  Second, we perform a projected reconstruction 
based on factorization using Singular Value Decomposition 
(SVD). After that, we are able to upgrade from projective to 
Euclidean structure and then eliminate the ambiguity in 
Euclidean reconstruction. Finally, we use 3D registration 
algorithm based on common points to build the whole 3D 
model of the object. Sufficient experiments proved the 
validity and efficiency of the method. 
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I. INTRODUCTION 

Reconstruction of the object in 3D from images taken 
by uncalibrated cameras has long been a topic of research 
in computer vision. Factorization has been a common and 
reliable method for 3D reconstruction and motion recovery. 
Sturm and Triggs [1] proposed a projective reconstruction 
algorithm based on factorization, they recovered projective 
depths by estimating a set of fundamental matrixes. Ponce 
[2] upgraded the projective reconstruction to Euclidean 
reconstruction on the assumption that the cameras are 
zero-skew. Mei Han and Takeo Kanade recovered the 
shape and motion from image sequence which taken by 
uncalibrated camera using factorization method in [3]. R 
Szeliski mentioned the ambiguity problem in the process 
of simultaneously recovering structure and motion with 
uncalibrated cameras in [4], this ambiguity would cause 
errors in 3D registration. 

Displaying after meshing the 3D models is one of the 
important applications for 3D reconstruction. Direct 
feature points detection algorithm [9] [10] would have 
edge and corner information lost during 3D reconstruction, 
which would cause the unsatisfactory display. To solve 
this problem, the method describe in [5] using the feature 
points which are detected both by Harris and Sift [9] for 
reconstruction, but it would not reduce the edge 
information loss. 

In this paper, the line detection algorithm and the 
feature points detection and matching algorithm are 
proposed in Section II. In Section III, we introduce the 
projective reconstruction and Euclidean reconstruction in 
Subsection A and Subsection B, and then propose an 
algorithm to eliminate ambiguity in Euclidean 
reconstruction after identifying its cause in Subsection C. 
In order to create the complete 3D model, we introduce the 
detail of 3D registration technique in Section IV. 
Experimental processes and results are introduced in 

Section V; we use four cameras for synchronized taking 
2  pictures for the moving object, and then 

reconstruct each of the four parts of the object from the 
images taken by each camera, and finally create the 
complete 3D model. In Section VI, we give a conclusion 
of this paper. There are three contributions in this paper: 

 Propose a 3D reconstruction method using line 
detection technique that ensures the correctness and 
completeness of corners and edges on the 3D model. 

 Describe the cause of ambiguity in Euclidean 
reconstruction and propose a method to eliminate 
ambiguity. 

 Increase the quantity of common points in 3D using 
guided matching algorithm that enhance accuracy of 
3D registration. 

II. FEATURE POINTS DETECTION AND MATCHING 

In this paper, we use the multi-scale Harris corner 
detection algorithm [8] to detect feature points on images. 
This algorithm is the combination of Harris operator and 
scale space theory. We first detect the Harris feature points 
in different scales, and then using LOG operator to select 
the appropriate scale and obtain the location of the feature 
points. 

The feature points detected by traditional detection 
algorithm [5] [9] [10] cannot cover the edges and corners 
of the object, which will cause the loss of edge and corner 
information when reconstructing the 3D model. So we 
detect lines on images using line detection algorithm [6] 
based on Hough transform, and then match the points on 
the lines for reconstruction. 

In this paper, we use the wide baseline matching 
algorithm [11] to match the points which are detected on 
the images taken by adjacent cameras, we call it “match 
between cameras”; we use the algorithm based on guided 
matching to match the points which are detected on the 
images taken by one camera, we call it “match in camera”. 

There are two steps in “matching between cameras”. 
First, we execute initial matching. Calculate the correlation 
coefficient of feature points of the two images respectively. 
When the correlation coefficient is larger than a given 
threshold value, both the feature points are considered as 
the candidate of matching points. Search support strength 
from the neighborhood to accumulate matching strength. 
We merely consider the maximum support of each 
neighborhood as the initial matching points. Next, we use 
RANSAC method to calculate the fundamental matrix F 
and homography matrix H, and remove the mismatches at 
the same time. 

There are also two steps in “matching in camera”. We 
execute initial matching at first. Next, we using guided 
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matching algorithm [12] to find the points on other images 
that correspond to the feature points obtained from 
matching points between cameras and detected lines. 
Guided matching is a technique which can redirected 
match the designated feature points by using epipolar 
geometry and homography constraint. 

The outline of feature points detection and matching is 
as follows: 

Suppose 1… 	is the image taken by th 1
j 4  camera at time i. 

a) detect feature points on  

b) match between cameras: 
	 	 match 	 ; 
	 	 match 	 ; 

  		 	 match 	 ; 
	 	 match 	 ; 

c  line detection:	

		
2
; 

		 	 	 ;	
		 line	detect 	 ; 
		 line	detect 	 ; 
		 line	detect 	 ; 

								  are the points spaced selected on detected lines	
d  match in camera:	

Camera1: 
{ 	 … initial	match	 	 … ; 

	 …   
guided	match	 	on	 	to	 ; 
	 …   
guided	match	 	on	 	to	 ; 

PIO 	PIO …PIO  
guided	match	 	on	 	to	 2 ; 

∪ ∪ 1… ; 
    	 …  are final matching points of 

Camera 1. Camera 2, camera 3 and camera 4 do 
the similar way with Camera 1. 

III. 3D RECONSTRUCTION 

In order to create the complete 3D model, we have to 
reconstruct each of the four parts of the object. In Section 
III, we will describe the reconstruction algorithm. 

A. Projective Reconstruction 

Suppose there are m object points 1…  and 
n perspective matrixes 1… ,  is the projection 
of  that projected by . 
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(1) 

In (1),  is scaled measurement matrix and  is a 
non-zero factor called projective depth. The goal of 
projective reconstruction is to estimate the projective depth 
of . We use the algorithm based on SVD described in [3] 
[7] to estimate : 

a) Set 	1 . Compute the current scaled 
measurement matrix , by (1) 

b) Perform SVD decomposition on : 	
	SVD .  

c) Set , ’ ∗  where , ,  are 
the first four lines of , , . 

d) Set ′ ∗ , update  and : 

e) ∗
∗

∗
; 	 			 ∗  

f) Go to step 3 until D 5,5  is small enough. 

B. Euclidean Reconstruction 

The factorization of (1) recovers the motion  and 
shape  up to a 4	 4 linear projective transformation : 

 (2) 

The goal of Euclidean reconstruction is to calculate the 
matrix  that upgrades the  and  in projective space to 

 and  in Euclidean space. The  in Euclidean space 
can be written as: 

∗ | 	    (3) 

where  is a none-zero real number;  is a orthogonal 
matrix, which shows the rotation of the camera;  is a 
vector, which shows the position of the camera. Because 
of the orthogonality of , we rewrite  as | , 
where  is 4 3 and  is 4 1. We have: 

 (4) 

In this paper we only discuss the case that camera 
pixels are square, and we shift principal point to the 
original, so the intrinsic parameters matrix  can be 
denoted by: 

0 0
0 0
0 0 1

              (5) 

where . Substituting (5) into (4)： 

0 0
0 0

0 0
   (6) 

where  

.   (7) 

14

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-158-8



From (6) we can obtain the equation: 

0,0 1,1  
1,2 1,3 2,3 0     (8) 

We can set up 4 equations from each frame, and given 
1, we have 4 1 equations to solve  which have 

10 unknown elements. Then we get the matrix  from  
by SVD decomposition. 

To solve B we denote by | |  and 
substitute 	 	 , 	 	  into it : 

∗ ;	 ∗ ;	 ∗           (9) 

Put the origin of the world coordinate system at the 
center of gravity of the scaled object points to enforce: 

∑ ∗

∑
							

∑ ∗

∑
     (10) 

From (9) (10) we set up 2n liner equations to solve B. 
After  and  have been computed, we can obtain 

motion matrix ′ and shape matrix ′ in Euclidean space. 

C. Eliminate Ambiguity in Euclidean Reconstruction 

There exists an ambiguity in Euclidean Reconstruction 
we described in Section III Subsection B. The 4 3 
matrix  that we obtained from  using SVD 
decomposition is non-unique. Suppose A is a solution of 
(7), we have: 

∗ ∗ ∗         (11) 

From (11) we know A still a solution if we reverse any 
columns of it: 

∓ ∗ ∓  

∗ ∗  (12) 

So, there are at most 8 solutions for equation . 
Substitute  into equation ′ | | : 

∗ ∗ ∗         (13) 

Moreover, ′ and ′ satisfy: 

′ ′    (14) 

From (13) and (14) we know that we will obtain 
different motion matrix ′  and shape matrix ′ 
corresponding to different solutions of (7). Suppose  
and  are different solutions of (7), and the th 4  
column of  has opposite signs to the jth column of , 
then each members of jth column of ′  and 	 ′  computed 
from  and  is opposite numbers to each other. Also 
according to (14) we know that the jth row of ′  and ′  
has opposite signs corresponding to P′  and 	P′ . When we 

perform Euclidean reconstruction using the method 
mentioned in Section III Subsection B, we will obtain one 
solution randomly from all solutions which satisfy (11) 
and (14). 

Suppose ′  and ′  are the solution sets which satisfy 
(7) (13) and (14).We can divide ′  into two groups ′ and 
′ . Every solution in one group can transform to every 

other one in this group through rotation and translation, 
but the solutions in different groups cannot transform to 
each other like that. We can image this situation as every 
solution ′	 ′ ∈ ′  is in the left-handed coordinate 
system, and ′	 ′ ∈ ′  is in the right-handed 
coordinate system. 

We must make sure all shapes that are reconstructed 
from the images which taken by different cameras are in 
the same type of coordinate system when we generate the 
complete 3D model of the object using 3D registration 
algorithm. Figure 1 shows the wrong result that doing 3D 
registration with two shapes that in different groups. 

Suppose  is the image taken by th camera at time , 
′ is the motion matrix of th camera at time , ′ is the 

shape matrix which reconstruct from . If we have the 

images …  and … 1, 2, 3, 4  which are 
taken by each camera at different moment  and , the 
rotational direction of the object from  to  computed 
from each motion matrix ′ , ; 1…4  must 
be the same(when static cameras capture videos of moving 
object, the motions that obtained from motion matrixes of 
cameras have opposite directions with the motion of 
object). For example, if the object rotate clockwise from  
to , the rotational directions that we computed from ′ 

and ′ must be counter-clockwise. But if we have the 
wrong situation like Figure 1, each rotational direction 
obtained from each motion matrixes must be the opposite, 
so we can eliminate ambiguity according to this property. 
From (6) we compute intrinsic parameters matrix  as: 

, ,
  (15) 

We eliminate the ambiguity of Euclidean 
reconstruction after normalize ′: 

a) Normalize 
′

1, 2 : 

 if
′
1,1 0  

′
: ,1

′
: ,1 				 ′ 1, : ′ 1, :  

 if
′
2,2 0  

′
: ,2

′
: ,2 				 ′ 2, : ′ 2, :  

b) Compute  and ,  from (15) and (3). 

c) Compute rotational direction  from , . 

d) Compare 1 4  with : 

e) if	 	has	the	opposite	direction	to	 							 

	
′
: ,3

′
: ,3 				 ′ 3, : ′ 3, : 	 
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