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Abstract— In this paper, we describe a novel method to
create the complete 3D model of the object on uncalibrated
images. First, we match the points both detected by multi-
scale Harris corner detection algorithm and line detection
technique. Second, we perform a projected reconstruction
based on factorization using Singular Value Decomposition
(SVD). After that, we are able to upgrade from projective to
Euclidean structure and then eliminate the ambiguity in
Euclidean reconstruction. Finally, we use 3D registration
algorithm based on common points to build the whole 3D
model of the object. Sufficient experiments proved the
validity and efficiency of the method.
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1. INTRODUCTION

Reconstruction of the object in 3D from images taken
by uncalibrated cameras has long been a topic of research
in computer vision. Factorization has been a common and

reliable method for 3D reconstruction and motion recovery.

Sturm and Triggs [1] proposed a projective reconstruction
algorithm based on factorization, they recovered projective
depths by estimating a set of fundamental matrixes. Ponce
[2] upgraded the projective reconstruction to Euclidean
reconstruction on the assumption that the cameras are
zero-skew. Mei Han and Takeo Kanade recovered the
shape and motion from image sequence which taken by
uncalibrated camera using factorization method in [3]. R
Szeliski mentioned the ambiguity problem in the process
of simultaneously recovering structure and motion with
uncalibrated cameras in [4], this ambiguity would cause
errors in 3D registration.

Displaying after meshing the 3D models is one of the
important applications for 3D reconstruction. Direct
feature points detection algorithm [9] [10] would have
edge and corner information lost during 3D reconstruction,
which would cause the unsatisfactory display. To solve
this problem, the method describe in [5] using the feature
points which are detected both by Harris and Sift [9] for
reconstruction, but it would not reduce the edge
information loss.

In this paper, the line detection algorithm and the
feature points detection and matching algorithm are
proposed in Section II. In Section III, we introduce the
projective reconstruction and Euclidean reconstruction in
Subsection A and Subsection B, and then propose an
algorithm to eliminate ambiguity in Euclidean
reconstruction after identifying its cause in Subsection C.
In order to create the complete 3D model, we introduce the
detail of 3D registration technique in Section IV.
Experimental processes and results are introduced in
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Section V; we use four cameras for synchronized taking
n(n > 2) pictures for the moving object, and then
reconstruct each of the four parts of the object from the
images taken by each camera, and finally create the
complete 3D model. In Section VI, we give a conclusion
of this paper. There are three contributions in this paper:

e Propose a 3D reconstruction method using line
detection technique that ensures the correctness and
completeness of corners and edges on the 3D model.

e Describe the cause of ambiguity in Euclidean
reconstruction and propose a method to eliminate
ambiguity.

e Increase the quantity of common points in 3D using
guided matching algorithm that enhance accuracy of
3D registration.

II.  FEATURE POINTS DETECTION AND MATCHING

In this paper, we use the multi-scale Harris corner
detection algorithm [8] to detect feature points on images.
This algorithm is the combination of Harris operator and
scale space theory. We first detect the Harris feature points
in different scales, and then using LOG operator to select
the appropriate scale and obtain the location of the feature
points.

The feature points detected by traditional detection
algorithm [5] [9] [10] cannot cover the edges and corners
of the object, which will cause the loss of edge and corner
information when reconstructing the 3D model. So we
detect lines on images using line detection algorithm [6]
based on Hough transform, and then match the points on
the lines for reconstruction.

In this paper, we use the wide baseline matching
algorithm [11] to match the points which are detected on
the images taken by adjacent cameras, we call it “match
between cameras”; we use the algorithm based on guided
matching to match the points which are detected on the
images taken by one camera, we call it “match in camera”.

There are two steps in “matching between cameras”.
First, we execute initial matching. Calculate the correlation

coefficient of feature points of the two images respectively.

When the correlation coefficient is larger than a given
threshold value, both the feature points are considered as
the candidate of matching points. Search support strength
from the neighborhood to accumulate matching strength.
We merely consider the maximum support of each
neighborhood as the initial matching points. Next, we use
RANSAC method to calculate the fundamental matrix F
and homography matrix H, and remove the mismatches at
the same time.

There are also two steps in “matching in camera”. We
execute initial matching at first. Next, we using guided
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matching algorithm [12] to find the points on other images
that correspond to the feature points obtained from
matching points between cameras and detected lines.
Guided matching is a technique which can redirected
match the designated feature points by using epipolar
geometry and homography constraint.
The outline of feature points detection and matching is
as follows:
Suppose I]-i(i =1..n)is the image taken by jth(1 <
j < 4) camera at time i.
a) P]-i =detect feature points on I]-i
b)  match between cameras:
{PO} PO},} = match{P}! P};
{P03; P03,} = match{P}' P; };
{P0}, PO}3} = match{P} P};
{PO}, P0O},} = match{P} P!};
¢) line detection:

-

PLT = line detect{I]" };
PLT = line detect{I]" };
PLT = line detect{I]" };
PLY = line detect{I}" };
PL are the points spaced selected on detected lines
d) match in camera:

Cameral:
{PI} PI? ... PI'} = initial match {P} PZ ... P['};
{PIL} PII? ..PIL"} =

guided match PLT* on IT* to I} (i # m);
{PIOL, PI0%, ...PIOT,} =

guided match POF, on I to I} (i # n);
(P10}, PIOZ, ...PIOY,} =

guided match PO}, on I} to I} (i # 2);
PM} = PI} U PILY U PIOL,(i =1..n);
{PM} PM? ...PM}'} are final matching points of

Camera 1. Camera 2, camera 3 and camera 4 do
the similar way with Camera 1.

III. 3D RECONSTRUCTION

In order to create the complete 3D model, we have to
reconstruct each of the four parts of the object. In Section
111, we will describe the reconstruction algorithm.

A. Projective Reconstruction

Suppose there are m object points X;(j = 1...m) and
n perspective matrixes P;(i = 1...n), x;; is the projection
of X; that projected by P;.

Axy Auxy o A, R

_ Xy Ay ALY,

A
w | o, )=px

/’iinlxml ﬂ’mZ'me o ﬂ’ X, it

i~ mn m (1)
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In (1), W is scaled measurement matrix and A;; is a
non-zero factor called projective depth. The goal of
projective reconstruction is to estimate the projective depth
of x;j. We use the algorithm based on SVD described in [3]

[7] to estimate A;;:
a) Set A4;= 1. Compute the current scaled
measurement matrix W, by (1)
b) Perform SVD decomposition on W : UDV =
SVD(W).
¢) Set P'=U,X =D,V where U,D, V] are
the first four lines of U, D, V.
d) SetW'=P'*X' update A;; and W:
W’iTj*Wij '
wiwij
/) Go to step 3 until D(5,5) is small enough.

e)  Aij =i * Wi = Aij * x5

B. Euclidean Reconstruction

The factorization of (1) recovers the motion P and
shape X up to a4 X 4 linear projective transformation H:

W =P’ x X' = (PH) x (H™1X) )

The goal of Euclidean reconstruction is to calculate the
matrix H that upgrades the P and X in projective space to
P’ and X' in Euclidean space. The P;" in Euclidean space
can be written as:

P = a;K * [R;|T;] 3)

where a; is a none-zero real number; R; is a orthogonal
matrix, which shows the rotation of the camera; T; is a
vector, which shows the position of the camera. Because
of the orthogonality of R;, we rewrite H as H = [A|B],
where Ais 4 X 3 and B is 4 X 1. We have:

P,AAP] = a;?KR;R[K" = a;>KK" (4

In this paper we only discuss the case that camera
pixels are square, and we shift principal point to the
original, so the intrinsic parameters matrix K can be
denoted by:

a, 0 0
K=10 a, 0] )
0 0 1
where a, = a,,. Substituting (5) into (4):
ata? 0 0
M; = PBAATP" =PQPT=| 0 afa?l 0| (6)
0 0 af
where
Q = AAT. 7
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From (6) we can obtain the equation:

M;(0,0) = M;(1,1)
M;(1,2) = M;(1,3) = M;(23) =0 ®)

We can set up 4 equations from each frame, and given
a, = 1, we have 4n + 1 equations to solve Q which have
10 unknown elements. Then we get the matrix A from Q
by SVD decomposition.

To solve B we denote P’'by P’ = [F|T] = P[A|B] and
substitute P = (P, P, P,)", T = (T, T, T,)" into it :

T,=P,*B;T,=P,*B; T,=P,*B 9)

Put the origin of the world coordinate system at the
center of gravity of the scaled object points to enforce:

Tai _ Yt dijrxij  Tyg _ i1 Aijyij (10)

Ty T Aij Tz X7, Aij

From (9) (10) we set up 2n liner equations to solve B.
After A and B have been computed, we can obtain
motion matrix P’ and shape matrix X’ in Euclidean space.

C. Eliminate Ambiguity in Euclidean Reconstruction

There exists an ambiguity in Euclidean Reconstruction
we described in Section III Subsection B. The 4 x 3
matrix A that we obtained from @ wusing SVD
decomposition is non-unique. Suppose A is a solution of
(7), we have:

Qij =An *Ajy +Ap x Ajp + Az + Ajs QY

From (11) we know A still a solution if we reverse any
columns of'it:

Qij = (FA;) = (F4;1) +
(FAi2) * (A7) + (£A3) * (F4j3)  (12)

So, there are at most 8 solutions for equation Q = AAT.
Substitute A into equation P' = [F|T] = P X [A|B]:

Fij = Py * Ay + Py * Ag; + Piz + A, (13)
Moreover, P’ and X satisfy:
PxX =W (14)

From (13) and (14) we know that we will obtain
different motion matrix P’ and shape matrix X'
corresponding to different solutions of (7). Suppose A,
and A, are different solutions of (7), and the jth(j < 4)
column of A; has opposite signs to the jth column of A,,
then each members of jth column of P; and P, computed
from A; and A, is opposite numbers to each other. Also
according to (14) we know that the jth row of X; and X,
has opposite signs corresponding to P; and P,. When we
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perform Euclidean reconstruction using the method
mentioned in Section III Subsection B, we will obtain one
solution randomly from all solutions which satisfy (11)
and (14).

Suppose P, and X, are the solution sets which satisfy
(7) (13) and (14).We can divide X, into two groups X; and
X,. Every solution in one group can transform to every
other one in this group through rotation and translation,
but the solutions in different groups cannot transform to
each other like that. We can image this situation as every
solution X} (X} € X)) is in the left-handed coordinate
system, and X! (X! € X,) is in the right-handed
coordinate system.

We must make sure all shapes that are reconstructed
from the images which taken by different cameras are in
the same type of coordinate system when we generate the
complete 3D model of the object using 3D registration
algorithm. Figure 1 shows the wrong result that doing 3D
registration with two shapes that in different groups.

Suppose I]-i is the image taken by jth camera at time i,
Pji’is the motion matrix of jth camera at time i, X, j is the
shape matrix which reconstruct from Iji. If we have the
images {I].t1 I].tl} and {I].t2 Ijtz}(i =1,2,3,4) which are
taken by each camera at different moment t; and ¢,, the
rotational direction of the object from t; to t, computed
from each motion matrix Pji '(i=ty,ty;j=1..4) must
be the same(when static cameras capture videos of moving
object, the motions that obtained from motion matrixes of
cameras have opposite directions with the motion of
object). For example, if the object rotate clockwise from t;
to t,, the rotational directions that we computed from 13-“'

and Pjtz’must be counter-clockwise. But if we have the

wrong situation like Figure 1, each rotational direction
obtained from each motion matrixes must be the opposite,
so we can eliminate ambiguity according to this property.
From (6) we compute intrinsic parameters matrix K as:

M;(0,0)+M;(1,1)
a,=a, = [HOTHOD (1s)

We eliminate the ambiguity of Euclidean
reconstruction after normalize le "

a) Normalize P]-",(i = t1,¢t2):
if(Pji'(l,l) <0)
Pj"’(:,l) = —Pji'(:,l) X(1,:) =-X;(1,:)
if(P;"(z,z) <0)
PIG:2) =PI (:,2) X/(2:)=—-X/(2:)
b)  Compute K; and {R{*, R{*} from (15) and (3).
¢) Compute rotational direction RD; from {R{*, R{*}.
d) Compare RD;(1 < j < 4) with RD;:
e) if (RD; has the opposite direction to RD; )
PIG:3)=—P (:3) X(3:)=—-X(3)

15



PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Figure 1. Wrong solution because perform 3D registration with two
shapes in different groups.

IV. 3D REGISTRATION

Suppose {PO7, PO3,} {PO35 PO3;} {PO%, POj3} and
{PO}, P0O},} are matchings between cameras which we
obtained in Section II. And we can find {X;, X5}
{X23 X35} {X34 X43} {X41 X14}, which are 3D points
corresponding to them.

We take X;, from Camera 1 and X,; from Camera 2 as
example to describe 3D registration. The transformation
between X, and X, is:

X, =SXRXXp +t (16)

where s is non-zero number called scale factor, R is
rotation matrix, t is translation vector. We compute R as:

R = Uxdiag (1, 1, 1, det (UV))*V' (17)
We compute U, D, V in (17) from
UDv = SVd(Z?ﬂ(Xlz,- — X124)(Xo1; — X214))) (18)
where X;,4 X214 are the center of gravity of X;, X,;:
Xi2a = %E?:lXIZi; Xo14 = %Z?=1X21i (19)

We obtain s from

c'

= T e Xzial? 0)
where C in (20) compute as (21).

C'=D(1,1) +D(2,2) + det(UV) *D(3,3). (21)
We obtain t by substituting s, R into (22).

=N Xig, — S+ R ¥ Xy Xy, 22)

n

Finally we accomplish 3D registration according to
(23).

Xb,=sxRxXX)+t (23)

V.  EXPERIMENTAL ANALYSIS AND RESULTS

In this Section, we will show the processes of our
experiments and analyze the results.
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Figure 2. Original images

We use four static uncalibrated cameras to take photos
simultaneously of the moving object. Each camera takes
three photos on the object with small-scale movement.
Figure 2 shows two of the images taken by different
cameras. We implement our method in MATLAB, and
then display the model with texture in OpenGL.

Reprojective error is an important criterion which
represents the reconstruction accuracy. Table 1 shows the
main reprojective error of middle image of each part which
are reconstructed from images taken by each camera after
3D registration. We can see the reconstruction error of our
method is small and acceptable. Because we translate the
other parts to part 1’s coordinate system in our experiment,
the mean reprojective error in part 1 is a little lower than
other part.

In order to enhance the accuracy of 3D registration, we
using guided matching technique in step ‘match in camera’
to obtain more common points for 3D registration. Table 2
compares the mean registration error and quantity of
common points obtained in 3D registration with guided
matching technique with those obtained without guided
matching technique. We transform the 3D coordinate into
a normalized one before registration, in which each
component (X, yorz) of 3D points falls into [—1,1].
From Table 2, we can see our method obtain more
common points than the method without guided matching
technique, and the mean registration error computed by
our method is much smaller than the other one.

TABLE 1. MEAN REPROJECTIVE ERROR AFTER 3D REGISTRATION

Partl Part 2 Part 3 Part 4

Meanerror | ) |54 0.362 0.406 | 0.572
(pixel)

Max error |, ¢ 1.220 1.966 234
(pixel)

TABLE 2. MEAN REGISTRATION ERROR AND QUANTITY OF COMMON
POINTS IN REGISTRATION

Obtain common Obtain common
points with guided points without
matching guided matching
. Mean . Mean
Quantity Quantity
error error
Part 1 with 103 0.0129 11 0.0259
Part 2
Part 1 with 122 0.0109 23 0.0207
Part 3
Part 2 with
Part 3 and 4 197 0.0198 24 0.0551
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Figure 4. Match in groups

Figure 3 shows the result of ‘matching between
cameras’. The points in there are matched accurately each
other and there are enough matching points for 3D
registration. Figure 4 shows one result of “matching in
camera”. There are three parts matching points in this
figure: the points detected by multi-scale Harris corner
detection algorithm are the basic matchings; the points on
lines and corners prevent the edge and corner information
loss of the 3D model; the points corresponding to the
matchings in “matching between cameras” step increase
the quantity of common points in 3D, which lead to the
increase the accuracy of 3D registration.

Figure 5 shows the detected lines on image with white
color. Figure 6 shows the mesh of the 3D points generated
by performing 3D triangulation algorithm. From that we
can see the edges and corners of the box are accurate and
complete.

Figure 7 shows the result of 3D reconstruction without
line detection technique. There is a lot of edge and corner
information loss of the model and the display effect is
unsatisfactory.

Figure 8 shows the 3D model reconstructed by our
method. Apparently our method prevents the edge and
corner information loss effectively and shows a
satisfactory display.

Figure 5. Image with detected lines

Figure 6. 3D mesh
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Figure 8. Reconstruction result of our method

VI. CONCLUSION

Several conclusions can be drawn from the experiment
results. Firstly, line detection algorithm using in our
method insures the accuracy and completeness of the
edges and corners on reconstructed model. Secondly, the
algorithm we proposed in Section III eliminates the
ambiguity in Euclidean reconstruction effectively. Thirdly,
since we increase the quantity of common points in 3D
using guided matching technique, we obtained high
accuracy results of 3D reconstruction and 3D registration.
The display effect of the model reconstructed from our
method is satisfactorily.
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