
Network Partitioning Problem for Effective Management of
Multi-domain SDN Networks

Hidenobu Aoki, Norihiko Shinomiya
Graduate School of Engineering

Soka University
Tokyo, Japan

Emails: aoki39h@gmail.com, shinomi@soka.ac.jp

Abstract—In Software-Defined Networking, a network with
distributed controllers can be partitioned into sub-networks as
controller’s administrative domains. Network partitioning could
affect various aspects of network performances, such as controller
load and reliability of controller’s domains because network
resources and topology are logically divided into sub-networks.
By focusing on network partitioning, this paper handles the
issue as a mathematical problem based on graph clustering and
analyzes effective network partitioning methods with different
indicators related Software-Defined Networking. The simulation
results indicate the effectiveness of our clustering method in terms
of the load balance of controllers and the reliability of controller
domains.

Keywords—Software-Defined Networking; distributed con-
trollers; network partitioning; graph clustering.

I. INTRODUCTION

This paper extends the conference paper presented in SOFT-
NETWORKING 2015 [1], which evaluates clustering algo-
rithms from diversified standpoints of the network partitioning
in Software-Defined Networking (SDN).

SDN has been emerging as a new networking paradigm.
The fundamental concept of SDN is to achieve programmable
networking by separating the control and the data planes in an
individual network device, such as a switch and router [2]. In
an SDN network, a controller is in charge of generating data
forwarding rules. In contrast, network devices in the data plane
are responsible for forwarding data according to the rules. This
centralized architecture where a controller manages network
devices enables network operators to dynamically configure
network devices and to flexibly manage their networks. Cur-
rently, its applications have been extended to various types
of networks, such as campus, datacenter, and carrier networks
[3].

However, it has been discussed that a single controller has
raised scalability and reliability issues. In large-scale networks,
the load could converge on a single controller even though its
processing capacity could be limited [4]. Moreover, if a failure
occurs on a single controller, an entire network managed by
the controller could take a risk of breakdown [5]. Furthermore,
in wide-area networks, it could cause communication latency
because some switches may be located far away from the
controller. As a result, it might not be feasible to process events
requiring real-time operations, such as failure recovery [6]. To
handle those issues on a single controller, it has been studied

to deploy multiple controllers over a network as one of main
SDN-related research topics [7][8].

In such an SDN network with distributed controllers, there
are mainly two types of control: the hierarchical and flat
controls [9]. The hierarchical control is to organize controller’s
functions vertically. For example, a function dealing with flow
setup messages or maintaining the states of network devices
on data plane while another exchanges network information
with other controllers to keep a global view of a network.

In contrary, the flat control is to partition a network into
sub-networks, and controllers are assigned to one of them as
their administrative domains. Because of the network parti-
tioning, each sub-network can be managed independently by
a controller. Hence, it could reduce the overall complexity of
the whole network management and the computational load of
each controller as well as handling flow setup requests faster
and more efficiently. Moreover, it would be preferable to limit
the scope of network operations for the deployment of new
technology or infrastructure, such as adding or relocating net-
work devices. Furthermore, when a controller failure occurs,
it could alleviate to spread its negative effects to the rest of
the network [10].

On partitioning a network, various aspects of the network
performance could be affected since network resources and
topology are logically divided into sub-networks. For instance,
the load of controllers would be regarded as one of the
major issues. Generally, the controller load is originated from
network provisioning and status collection overhead within
a domain and collaboration load among controllers, and
these overheads could depend on how network resources are
distributed in sub-networks [11]. Additionally, it would be
necessary to consider the reliability of sub-networks as well
as the controller load. In reality, controllers will be located
in the same position as switches, and the control and data
messages are flowed through the same communication links in
the in-band control model. As a result, it would be desirable
to partition a network so that switches in each sub-network
have multiple paths reaching to controllers and other switches
in case of link failures.

Therefore, this paper focuses on the network partitioning
which is related to the flat control. In order to analyze
its effective way, we provide four clustering algorithms and
evaluate them based on the different indicators associated with

171

International Journal on Advances in Networks and Services, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

SDN networks.
The organization of this paper is as follows: Section II

introduces the related work of the hierarchical control of dis-
tributed SDN controllers and network partitioning. Section III
explains the layered architecture of control plane and addresses
the issues of network partitioning. Section IV provides the
definitions of the graphs and formulates Network Partitioning
Problem (NPP). Section V details clustering algorithms as
solutions of network partitioning. Section VI describes the
simulation results and discussions, and Section VII concludes
this paper.

II. RELATED WORK

In this section, the related work of the hierarchical control
of distributed SDN controllers and network partitioning are
presented.

A. Hierarchical Control Plane

Onix [12] describes network topology as a graph. Each
partitioned network is contracted to a logical node and used as
a unit to share network information among controllers. This
enables a controller to communicate with other controllers
without knowing specific network states and topology of other
partitioned networks. In this way, the reduction of the amount
of network information possessed by a controller can be
achieved.

Kandoo [13] provides a hierarchical control method consist-
ing of the root controller and some local controllers. The root
controller manages all local controllers and is responsible for
the events which requires information over the whole network.
On the other hand, local controllers deal with the local events,
such as flow setups and network statistics collections of a local
network. This layered control defines the scope of operations
to process different requests efficiently, which could offload
the burden of the root controller.

Although the ideas of hierarchical control plane have been
proposed in those researches, they do not discuss how to
partition a network to decide controller’s domains.

B. Network Partitioning

On partitioning a network, the major issue to consider would
be the controller load. The controller load is generally thought
to be the overhead to configure and mange network devices
within domains. Simply, the more switches a controller needs
to configure, the heavier load it is imposed on the controller.
Thus, it has been studied to partition a network aiming at
balancing the controller load by equalizing the number of
switches in domains [14][15].

Contrary, Yao et al. in [16] argues that the importance of
switches should be considered for load balance of controllers
because it should differ from each other depending on net-
works. In the research, weight of the switch is given as the
degree of nodes representing the number of flow setup requests
required by the switch. Although the research considers the
new metric for load balance of controllers, the focus of the

research is where to place controllers to satisfy the metric and
does not discuss how to partition a network in detail.

On the other hand, connectivity of a network is considered
as one of the objectives for the controller placement problem
[17][18]. Those researches aim to maximize the number of
disjoint paths between a controller and switches or between
switches so as to ensure the connection between them in case
of link failure. Nevertheless, their approaches do not focus
on network partitioning methods but controller locations to
enhance reliability of domains.

Our previous work [1] proposes a network partitioning
method whose objective is to minimize the number of inter-
domain links in terms of the reduction of the controller load
in sharing topology information. However, the work does
not evaluate the load balance of controllers and reliability of
controller domains. Thus, as the extension of our previous
work, this paper provides clustering algorithms and evaluates
the load balance of controllers, the reliability of each domain
as well as inter-control load.

III. LAYERED CONTROL PLANE

This section discusses the architecture of the layered control
plane and addresses the issues on the network partitioning.

A. Definitions of Two-tier Control Plane

In an SDN network with multiple controllers, the network
can be logically partitioned into sub-networks as controller
domains. In each domain, a controller is mainly in charge
of two roles: (1) control of switches in own domain and (2)
federation of a whole network by communicating with other
controllers. As a result, control plane can be layered in two
tiers: the local and the federation tiers are responsible for (1)
and (2), respectively.

B. Network Topology in Local and Federation Tiers

In the local tier, the local control function abstracts and
possesses the network topology of each administrative domain
as a local graph. Moreover, the local graph is contracted to
a single node, which is used as a unit of communication
with other controllers. In the federation tier, the global control
function gathers the contracted nodes from all controllers and
aggregates them to form a federation graph, which describes
global network topology. Note that edges in a federation graph
correspond to the edges between local graphs, which means
inter-domain links are recognized as global topology infor-
mation. Due to this topology contraction, it can be expected
to reduce the amount of global network information shared
among controllers.

Figure 1 illustrates an example of the layered control plane.
In Figure 1, there are two domains described as local graphs 1
and 2. On the other hand, in the federation tier, the federation
graph has two contracted nodes, and three edges correspond
to the edges between the local graphs.

172

International Journal on Advances in Networks and Services, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Local Graph 1 Local Graph 2

Federation Graph

Fig. 1. Topology contraction in layered control plane.

C. Issues on Network Partitioning

Because a network partitioning decides the distribution of
network resources and topology into sub-networks, it would
have an influence on the aspects of network operations and
performances in SDN [14].

Figure 2 illustrates examples of the network partitioning in
different ways. In Figure 2, comparing (a) and (b), there are
four nodes in each domain in (a) although the domains in (b)
contain different number of nodes: 6 and 2 nodes, respectively.
This implies that the balance of the controller load to manage
switches is determined by network partitioning.

Moreover, there are four edges in the federation graph (a)
while the federation graph (c) has eight edges even though
the domains in both (a) and (b) contain the same number of
nodes. This might indicate the increase of the amount of shared
information and collaboration overhead among controllers.

Additionally, although there are multiple paths between any
pairs of nodes in domains of (a), there is only a single path
connecting any pairs of nodes within domains of (c). As a
result, when a link failure occurs on a link in the domains (c),
even the communication to a switch in the same domain has to
be via a path crossing another domain. This requires the extra
inter-controller communication which leads to additional load
on controllers.

As those examples imply, network partitioning would be an
important issue to address for SDN networks. Therefore, this
paper defines the problem to determine controller domains as
Network Partitioning Problem (NPP) and analyzes effective
way of the network partitioning.

IV. PROBLEM FORMULATION

This section describes the graph definitions related to the
layered control plane and formulates NPP.

A. Definitions

For a network graph G = (V,E), a set of vertices V denotes
network devices, such as routers and switches, and a set of
edges E represents links between those devices. Considering

(b)

Federation Tier

Local Tier

(a) (c)

Fig. 2. Examples of network partitioning.

the network partitioning, sub-networks called local graph are
denoted as

Gl
1 = (V l

1 , E
l
1), G

l
2 = (V l

2 , E
l
2), . . . , G

l
k = (V l

k , E
l
k). (1)

Note that we assume that a node can exclusively belong to
a local graph. In the federation tier, on the other hand, a
federation graph is defined as

Gf = (V f , Ef), (2)

where V f indicates a set of the contracted nodes of the local
graphs, and Ef represents that of the edges between the local
graphs.

B. Clustering

In graph theory, clustering is a fundamental problem in
mathematics and the applied science, which classifies the data
into groups or categories. Graph clustering is defined as a task
of grouping nodes in a graph into subsets called clusters [19].
Based on graph clustering, suppose that a local graph Gl

i in
(1) is a cluster, and a set of local graphs Gl is denoted as a
clustering:

Gl = {Gl
1, G

l
2, ..., G

l
k}. (3)

Generally, the desirable clustering is defined that there are
many edges within each cluster called intra-cluster edges and
relatively few edges between clusters referred to inter-cluster
edges. Considering the network topology treated in the layered
control plane, intra-cluster edges correspond to the edges in
El

i , and inter-cluster edges are equivalent to the edges in Ef .
In addition, a clustering having the less number of inter-cluster
edges and the more number of intra-cluster edges is regarded
as a preferable one [20].

C. Problem Formulation

In this paper, the primal objective of the network parti-
tioning is to balance the load of controllers. The load of
controllers would be composed of several factors, such as
the management of local domains and the communication
with other controllers for a global control. Among them, to
handle flow setup requests might be one of the major loads
of controllers because the potential bottlenecks of a network

173

International Journal on Advances in Networks and Services, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

will be bandwidth, memory, and processor of controllers when
they receive many flow setup requests at a time [21]. In
general, the amount of flow setup requests to a controller
could increase depending on the number of switches it has
to manage. However, since the importance of switches in a
domain would be distinguished from each other, not only the
number of switches in a domain but also the importance of
the switches may also need to be considered as stated in
[16]. Hence, as a measure of the importance of switches, this
paper takes account of the switch weight. In our model, it
is abstracted as the degree of nodes because the number of
flow setup requests required by a switch could be related to
its connection with other devices.

Here, for a graph G, let the weight of node u be given as
its degree, deg(u). Then, the total node weights in a domain
is denoted as

D(Gl
i) =

∑
u∈Gl

i

deg(u). (4)

In order to evaluate the balance of intra-control load among
controllers, the standard deviation of node weights in domains
is calculated as follows:

Gl
σ =

√√√√1
k

k∑
i=1

(D(Gl
i)−D(Gl))2. (5)

Note that D(Gl) stands for the mean value of the sum of
node weights in a cluster, which is calculated as D(Gl) =
P

u∈V deg(u)

k . Therefore, the objective function of NPP is to
find a clustering Gl such that Gl

σ is minimized.

V. CLUSTERING ALGORITHMS

In this section, four clustering algorithms are provided as
solutions of NPP.

A. Conductance Clustering

As one of clustering indices, conductance has been defined,
which compares the sum of the number of inter-cluster edges
and that of all edges yielded by a clustering [22]. By denoting a
set of all edges that have their origin in Gl

i and their destination
in Gl

j as E(Gl
i, G

l
j), conductance of Gl

i is denoted as

Φ(Gl
i) =

|E(Gl
i,G

l \Gl
i)|

min(D(Gl
i), (D(Gl \Gl

i))
, (6)

where D(Gl
i) is the sum of node degree in Gl

i as defined in
(4), and D(Gl

i,G
l \Gl

i) is that of other clusters. Note that a
cluster with smaller conductance represents a better cluster.

In general, finding a clustering with minimum conductance
is known as NP-hard [20]. Hence, as proposed in [1], we
construct Conductance clustering that chooses nodes one by
one based on the conductance value shown in Algorithm 1.
The algorithm begins with a random node. Then, one of
neighbor nodes of the node, which the cluster obtains the
smallest conductance value, is chosen. As this process, it
expands the cluster by recursively choosing a neighbor node of
the nodes in the cluster. If the number of nodes in the cluster

reaches to an upper bound of the number of nodes in a cluster
|V |
k , it starts again to create a new cluster with a random node,

which has not belonged to any clusters.

Algorithm 1 Conductance Clustering.

Input: a graph G=(V,E), the number of node limitation |V |
k

1: Clustering Gl ← φ
2: V ′ ← a list of nodes in a graph G
3: while V ′ 6= φ do
4: Gl

i ← φ
5: Choose a node vr from V ′ at random
6: Add vr to Gl

i and remove vr from V ′

7: while the number of nodes in Gl
i <

|V |
k do

8: Find a neighbor node vn of nodes in Gl
i

which minimizes Φ(Gl
i)

9: Add vn to Gl
i and remove vn from V ′

10: end while
11: Add Gl

i to Gl

12: end while
Output: Gl

B. Spectral Clustering

Spectral clustering has been applied for various fields of
data analysis [23][24]. It is a method to cluster data by using
eigenvectors of the Laplacian matrix of a graph. The Laplacian
matrix describes the structure of a graph where diagonal
components represent the node degree, and others describe
the adjacency relationship between corresponding nodes.

Here, suppose that the adjacency matrix of a graph G be
defined as AG with its elements determined by

AG(u, v) =
{

1 if (u, v) ∈ E,
0 otherwise. (7)

On the other hand, the degree matrix of G is described as
DG which is a diagonal matrix composed of

DG(u, u) = deg(u). (8)

By using AG and DG, the Laplacian matrix of G is denoted
as

LG = DG −AG. (9)

As described in Algorithm 2, Spectral clustering computes
LG of G and its eigenvectors. Then, based on the eigenvectors,
it obtains a clustering by k-means clustering algorithm.

1) k-means Clustering: In Step 5 of Algorithm 2, k-means
clustering is used, which is one of the most commonly used
clustering algorithms [25]. For the k initial cluster centers
obtained in Step 4 of Algorithm 2, each node of a graph is
assigned to one of the closest cluster centers so as to satisfy
the following function:

Minimize
k∑

i=1

∑
u∈Gl

i

|u− ci|2. (10)

174

International Journal on Advances in Networks and Services, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Algorithm 2 Spectral Clustering.
Input: a graph G=(V,E), the number of domains to create

k.
1: Compute the Laplacian matrix LG

2: Obtain the first k eigenvectors u1, ..., uk of LG

3: Let U ∈ Rn×k be the matrix containing the vectors
u1, ..., uk as columns.

4: For i = 1, ..., n
let yi ∈ Rk be the vector corresponding to the i-th row of
U .

5: Cluster the points yi ∈ Rk

with k-means clustering algorithm into cluster, Gl
1, ..., G

l
k.

Output: Gl

C. Betweenness Centrality Clustering

As one of metrics for graph analysis, the betweenness
centrality has been defined [26]. It implies how an edge is
associated with the shortest paths between every pair of nodes
in a graph. Thus, edges with high betweenness centrality are
regarded to be important in the graph.

Here, the edge betweenness centrality is given by

CB(u, v) =
∑

s6=u6=v 6=t

σst(u, v)
σst

, (11)

where σst is the total number of shortest paths from node s
to node t, and σst(u, v) is the number of those paths that pass
through edge (u, v).

In general, the edges connecting different groups tend to
have high edge betweenness centrality. Thus, by removing
these edges, the underlying group structure of a graph would
be revealed [27]. Based on the idea, Girvan and Newman
have developed a clustering algorithm shown in Algorithm 3.
The algorithm begins with an initial cluster Ci containing all
nodes in G. Then, it computes CB(u, v) for all edges in Ci

and removes the edge with the highest CB(u, v) recursively
until Ci is disconnected. For the larger one of two yielded
clusters, start the edge removal process again, and this process
is repeated until the number of clusters reaches to k.

D. Repeated Bisection Clustering

As an application method of k-means clustering, Repeated
bisection clustering has been studied. Generally, it is known
as a faster and more accurate method than k-means clustering
[28]. As stated in Algorithm 4, it recursively separates a
graph into two clusters by assigning each node to a closer
cluster. Note that the Step 2 in Algorithm 4, we select the
nodes with minimum and maximum ID in Ci as two random
nodes. Additionally, the distance of two nodes is defined as
the shortest path length between the nodes.

VI. SIMULATIONS AND RESULTS

In this section, the simulation settings and results are
presented. We have developed a simulator in Python and Net-
workX to conduct our simulations and evaluate the clustering
algorithms presented in Section V.

Algorithm 3 Betweenness Centrality Clustering.
Input: a graph G=(V,E), the number of domains to create

k.
1: Start with an initial cluster Ci containing all nodes in G
2: while True do
3: while Ci is connected do
4: Compute CB(u, v) for all edges in Ci

5: Remove the edge with the highest CB(u, v)
6: end while
7: if |Gl| − 2 = k then
8: Add two yielded clusters to Gl

9: break
10: else
11: For two yielded clusters, add the smaller cluster to

Gl and let the larger cluster be Ci.
12: end if
13: end while
Output: Gl

Algorithm 4 Repeated Bisection Clustering.
Input: a graph G=(V,E), the number of domains to create

k.
1: Start with Ci containing all nodes in G.
2: while True do
3: Select two random nodes va and vb from Ci and create

clusters Ca and Cb containing va and vb, respectively.
4: for each node in Ci do
5: Calculate the distance with va and vb and assign the

node to the closer cluster.
6: end for
7: if |Gl| − 2 = k then
8: Add Ca and Cb to Gl

9: break
10: else
11: For Ca and Cb, add the smaller cluster to Gl, and

let the larger cluster be Ci

12: end if
13: end while
Output: Gl

A. Network Models

Our simulation makes use of two types of random graphs
and four kinds of real network models. As random graphs,
Newman Watts Strogatz (NWS) and Barabasi Albert (BA) are
used because they are flexible to adjust their sparseness and
denseness for theoretical analyses. A NWS graph is formed by
connecting random pairs of nodes with a certain probability
after creating a ring over n nodes, which tends to be sparse
[29]. In contrast, a BA graph is generated where nodes with
higher degree have higher probability to be connected to a
node during its generation process [30].

In addition to NWS ans BA graphs, the clustering algo-
rithms are executed on the real network models: JPN48, BT
North America, China Telecom, and Bell South provided in
[31][32]. Figures 3(a) to 3(f) depict the network models used

175

International Journal on Advances in Networks and Services, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

in our simulations, and Table I describes the parameters of
the network models, such as the number of nodes, edges, and
average degree.

(a) NWS. (b) BA.

(c) JPN48. (d) BT North America.

(e) China Telecom. (f) Bell South.

Fig. 3. Network models for simulation.

TABLE I
SIZE OF NETWORK MODELS.

NWS BA JPN48
of nodes 50 50 48
of edges 62 100 82

Average degree 2.48 3.88 3.41
BT North America China Telecom Bell South

of nodes 36 42 51
of edges 76 66 66

Average degree 4.22 3.14 2.58

B. Evaluation Indicators

In our simulations, three different indicators are evaluated
while the number of controller domains is varied.

1) Load balance of controllers: As mentioned in Section
IV-C, the standard deviation of the switch weight in domains
Gl

σ is evaluated to examine the load balance of controllers.
2) Inter-control load: The amount of topology infor-

mation shared among controllers could be related to Inter-
controller load since they need to synchronize network infor-
mation they possess to keep a global view. As stated in Section
III-C, the amount of shared topology information corresponds
to the size of federation graph |Gf | in the layered control

plane. However, since the number of nodes in a federation
graph |V f | is equivalent to the number of controller domains,
|Gf | varies depending on the number of the edges in a
federation graph |Ef |, which is the number of inter-domain
links.

3) Reliability of controller domains: It might be desirable
for any switches to have multiple paths reaching to other
switches within the same domain in case of failures; otherwise,
the extra inter-controller communication might be required as
addressed in Section III-C. Thus, as a indicator to evaluate the
reliability of controller domains, the average number of edge
disjoint paths for all pairs of nodes in a domain is compared.

Assuming that the number of edge disjoint paths between
nodes u and v is given as ψuv , the average number of edge
disjoint paths in a domain is denoted as

Ψ(Gl
i) =

∑
u,v∈El

i
ψuv

|V l
i |C2

. (12)

Then, the average number of edge disjoint paths of a clustering
as a whole is calculated as

Ψ(Gl) =

∑
Gl

i∈Gl Ψ(Gl
i)

k
. (13)

C. Results and Discussions

This section presents the simulation results and discussions.
In our simulations, the number of controller domains is varied
from 2 to 6 in all simulations, and each simulation is executed
20 times.

1) Load balance of controllers: Figures 4(a) to 4(f)
illustrate the standard deviation of the number of the switch
weight in domains representing the load balance of controllers.
We can see from Figures 4(a) to 4(f) that Conductance
clustering demonstrates better than any other algorithms for
balancing the controller load. This would be because Con-
ductance clustering generates a cluster until the number of
nodes in the cluster reaches to the constraint of the number of
nodes in a cluster, which is set as the number of nodes in an
original graph divided by the number of controller domains. As
a consequence, most clusters include almost the same number
of nodes as the constraint even though last-produced cluster
may contain less number of nodes compared with others. This
depends on whether the number of nodes in an original graph
can be divisible by the number of controller domains.

2) Inter-control load: Figures 5(a) to 5(f) indicate the
number of inter-domain links implying the inter-control load.
Those results show that Spectral clustering could generate
clusters with less number of inter-domain links on NWS,
JPN48, BT North America, and Bell South. On the other hand,
Betweenness centrality clustering performs better on BA and
China Telecom. As Spectral clustering separates a graph based
on graph connectivity, it generally produces dense clusters
and sparse relations among them, which yields less number
of inter-domain links. However, the reason why Betweenness
centrality clustering works better on BA and China Telecom
would be because of their structural feature. Both models in-
clude several hub nodes, and the edges connecting such nodes

176

International Journal on Advances in Networks and Services, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0 1 2 3 4 5 6 7 8
Number of controller domains

0

10

20

30

40

50

60

St
an

da
rd

 d
ev

ia
tio

n
of

 s
w

itc
h

w
ei

gh
ts

 in
 d

om
ai

ns

Conductance
Spectral
Bisection
Betweenness

(a) NWS.

0 1 2 3 4 5 6 7 8
Number of controller domains

0

20

40

60

80

100

120

140

St
an

da
rd

 d
ev

ia
tio

n
of

 s
w

itc
h

w
ei

gh
ts

 in
 d

om
ai

ns

Conductance
Spectral
Bisection
Betweenness

(b) BA.

0 1 2 3 4 5 6 7 8
Number of controller domains

0

10

20

30

40

50

60

70

St
an

da
rd

 d
ev

ia
tio

n
of

 s
w

itc
h

w
ei

gh
ts

 in
 d

om
ai

ns

Conductance
Spectral
Bisection
Betweenness

(c) JPN48.

0 1 2 3 4 5 6 7 8
Number of controller domains

0

10

20

30

40

50

60

70

St
an

da
rd

 d
ev

ia
tio

n
of

 s
w

itc
h

w
ei

gh
ts

 in
 d

om
ai

ns

Conductance
Spectral
Bisection
Betweenness

(d) BT North America.

0 1 2 3 4 5 6 7 8
Number of controller domains

0

10

20

30

40

50

60

St
an

da
rd

 d
ev

ia
tio

n
of

 s
w

itc
h

w
ei

gh
ts

 in
 d

om
ai

ns

Conductance
Spectral
Bisection
Betweenness

(e) China Telecom.

0 1 2 3 4 5 6 7 8
Number of controller domains

0

10

20

30

40

50

60

St
an

da
rd

 d
ev

ia
tio

n
of

 s
w

itc
h

w
ei

gh
ts

 in
 d

om
ai

ns

Conductance
Spectral
Bisection
Betweenness

(f) Bell South.

Fig. 4. Load balance of controllers.

177

International Journal on Advances in Networks and Services, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0 1 2 3 4 5 6 7 8
Number of controller domains

0

5

10

15

20

25

30

Nu
m

be
r o

f i
nt

er
-d

om
ai

n
lin

ks

Conductance
Spectral
Bisection
Betweenness

(a) NWS.

0 1 2 3 4 5 6 7 8
Number of controller domains

0

10

20

30

40

50

60

70

80

90

Nu
m

be
r o

f i
nt

er
-d

om
ai

n
lin

ks

Conductance
Spectral
Bisection
Betweenness

(b) BA.

0 1 2 3 4 5 6 7 8
Number of controller domains

0

5

10

15

20

25

Nu
m

be
r o

f i
nt

er
-d

om
ai

n
lin

ks

Conductance
Spectral
Bisection
Betweenness

(c) JPN48.

0 1 2 3 4 5 6 7 8
Number of controller domains

0

5

10

15

20

25

30

35

Nu
m

be
r o

f i
nt

er
-d

om
ai

n
lin

ks

Conductance
Spectral
Bisection
Betweenness

(d) BT North America.

0 1 2 3 4 5 6 7 8
Number of controller domains

10

15

20

25

30

Nu
m

be
r o

f i
nt

er
-d

om
ai

n
lin

ks

Conductance
Spectral
Bisection
Betweenness

(e) China Telecom.

0 1 2 3 4 5 6 7 8
Number of controller domains

0

5

10

15

20

25

Nu
m

be
r o

f i
nt

er
-d

om
ai

n
lin

ks

Conductance
Spectral
Bisection
Betweenness

(f) Bell South.

Fig. 5. Inter-control load.

178

International Journal on Advances in Networks and Services, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0 1 2 3 4 5 6 7 8
Number of controller domains

2.30

2.35

2.40

2.45

2.50

2.55

2.60

2.65

Av
er

ag
e

nu
m

be
r o

f e
dg

e
di

sj
oi

nt
 p

at
hs

 in
 d

om
ai

ns

Conductance
Spectral
Bisection
Betweenness

(a) NWS.

0 1 2 3 4 5 6 7 8
Number of controller domains

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Av
er

ag
e

nu
m

be
r o

f e
dg

e
di

sj
oi

nt
 p

at
hs

 in
 d

om
ai

ns

Conductance
Spectral
Bisection
Betweenness

(b) BA.

0 1 2 3 4 5 6 7 8
Number of controller domains

2.5

2.6

2.7

2.8

2.9

3.0

3.1

Av
er

ag
e

nu
m

be
r o

f e
dg

e
di

sj
oi

nt
 p

at
hs

 in
 d

om
ai

ns

Conductance
Spectral
Bisection
Betweenness

(c) JPN48.

0 1 2 3 4 5 6 7 8
Number of controller domains

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

Av
er

ag
e

nu
m

be
r o

f e
dg

e
di

sj
oi

nt
 p

at
hs

 in
 d

om
ai

ns

Conductance
Spectral
Bisection
Betweenness

(d) BT North America.

0 1 2 3 4 5 6 7 8
Number of controller domains

0.8

1.0

1.2

1.4

1.6

Av
er

ag
e

nu
m

be
r o

f e
dg

e
di

sj
oi

nt
 p

at
hs

 in
 d

om
ai

ns

Conductance
Spectral
Bisection
Betweenness

(e) China Telecom.

0 1 2 3 4 5 6 7 8
Number of controller domains

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Av
er

ag
e

nu
m

be
r o

f e
dg

e
di

sj
oi

nt
 p

at
hs

 in
 d

om
ai

ns

Conductance
Spectral
Bisection
Betweenness

(f) Bell South.

Fig. 6. Reliability of domains.

179

International Journal on Advances in Networks and Services, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

would have high betweenness centrality. Thus, Betweenness
centrality clustering can reveal the sub-structure of the graph
by relatively a few edge removals. As a result, it may end up
to produce the less number of inter-domain links.

3) Reliability of domains: Figures 6(a) to 6(f) depict
the average number of edge disjoint paths in domains. As
we can see from those results, Conductance clustering yields
clusters with higher average number of edge disjoint paths on
most of network models. Conductance clustering produces a
cluster by choosing a node one by one so that the density
of the cluster becomes high. As a result, it may increase the
possibility to have many edge disjoint paths between nodes
since the algorithm tries to contain many edges within each
cluster.

In Figure 6(d), Betweenness centrality clustering results in
the non-monotonic behavior when the number of controller
domains is varied from 2 to 4. As mentioned in Section V-
C, Betweenness centrality clustering partitions a graph by
removing edges with high betweenness centrality until the
graph is disconnected. Thus, it can be assumed that BT North
America model might contain some dense substructures, and
those might be coincidentally revealed by the edge removal
process when 4 domains are created.

Moreover, in Figure 6(e), Repeated bisection clustering
demonstrates the best result when two domains are created.
However, this would be because it just separates a graph
into two parts: extreme large cluster and small one. In fact,
unbalanced clusters are created by the clustering method as
seen in Figure 4(e). Hence, it could be said that the result is
just originated from a single large cluster.

VII. CONCLUSION AND FUTURE WORK

This paper has focused on the network partitioning for
multi-domain SDN networks. By abstracting an SDN network
as a graph, this paper approached to the issue based on
graph clustering and formulated Network Partitioning Problem
(NPP). Then, four clustering algorithms have been provided
and evaluated with different SDN-related indicators, such
as the balance load of controllers, inter-control load, and
reliability of domains. The simulation results show that Con-
ductance clustering could contribute to better-balanced load
of controllers and higher reliability of controller domains
while Spectral clustering demonstrates less inter-control load.
Our future work will include a comparison of the clustering
methods in terms of the controller placement. Furthermore,
because the current simulations are only theoretical approach,
an examination of different partitioning and its effects on
network performances under realistic SDN scenarios are also
left as our future work.

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grant Num-
ber 26330120.7.

REFERENCES

[1] A. Hidenobu, N. Junichi, and S. Norihiko, “Network partitioning prob-
lem to reduce shared information in openflow networks with multiple
controllers,” ICN 2015, 2015, pp. 250–255.

[2] S. Sezer et al., “Are we ready for SDN? implementation challenges for
software-defined networks,” Communications Magazine, IEEE, vol. 51,
no. 7, July 2013, pp. 36–43.

[3] S. Kuklinski and P. Chemouil, “Network management challenges in
software-defined networks,” IEICE Transactions on Communications,
vol. 97, no. 1, 2014, pp. 2–9.

[4] S. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On scalability
of software-defined networking,” Communications Magazine, IEEE,
vol. 51, no. 2, February 2013, pp. 136–141.

[5] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood,
“On controller performance in software-defined networks,” in Proceed-
ings of the 2nd USENIX conference on Hot Topics in Management
of Internet, Cloud, and Enterprise Networks and Services. USENIX
Association, 2012, pp. 10–10.

[6] B. Heller, R. Sherwood, and N. McKeown, “The controller placement
problem,” in Proceedings of the first workshop on Hot topics in software
defined networks. ACM, 2012, pp. 7–12.

[7] D. Kreutz et al., “Software-defined networking: A comprehensive sur-
vey,” proceedings of the IEEE, vol. 103, no. 1, 2015, pp. 14–76.

[8] B. Pankaj et al., “Onos: towards an open, distributed sdn os,” in
Proceedings of the third workshop on Hot topics in software defined
networking. ACM, 2014, pp. 1–6.

[9] S. Schmid and J. Suomela, “Exploiting locality in distributed sdn
control,” in Proceedings of the second ACM SIGCOMM workshop on
Hot topics in software defined networking. ACM, 2013, pp. 121–126.

[10] H. Xie, T. Tsou, D. Lopez, H. Yin, and V. Gurbani, “Use cases for
alto with software defined networks,” Working Draft, IETF Secretariat,
Internet-Draft draft-xie-alto-sdn-extension-use-cases-01. txt, 2012.

[11] D. Hock, M. Hartmann, S. Gebert, M. Jarschel, T. Zinner, and P. Tran-
Gia, “Pareto-optimal resilient controller placement in sdn-based core
networks,” in Teletraffic Congress (ITC), 2013 25th International. IEEE,
2013, pp. 1–9.

[12] T. Koponen et al., “Onix: A distributed control platform for large-scale
production networks.” in OSDI, vol. 10, 2010, pp. 1–6.

[13] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: a framework for efficient
and scalable offloading of control applications,” in Proceedings of the
first workshop on Hot topics in software defined networks. ACM, 2012,
pp. 19–24.

[14] P. Xiao, W. Qu, H. Qi, Z. Li, and Y. Xu, “The sdn controller placement
problem for wan,” in Communications in China (ICCC), 2014 IEEE/CIC
International Conference on. IEEE, 2014, pp. 220–224.

[15] E. Borcoci, R. Badea, S. G. Obreja, and M. Vochin, “On multi-controller
placement optimization in software defined networking-based wans,”
ICN 2015, 2015, p. 273.

[16] L. Yao, P. Hong, W. Zhang, J. Li, and D. Ni, “Controller placement and
flow based dynamic management problem towards sdn,” in Communi-
cations (ICC), 2015 IEEE International Conference on. IEEE, 2015,
pp. 369–374.

[17] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng, “On reliability-
optimized controller placement for software-defined networks,” Com-
munications, China, vol. 11, no. 2, 2014, pp. 38–54.

[18] L. F. Muller, R. R. Oliveira, M. C. Luizelli, L. P. Gaspary, and M. P.
Barcellos, “Survivor: an enhanced controller placement strategy for
improving sdn survivability,” in Global Communications Conference
(GLOBECOM), 2014 IEEE. IEEE, 2014, pp. 1909–1915.

[19] R. Kannan, S. Vempala, and A. Vetta, “On clusterings: Good, bad and
spectral,” Journal of the ACM (JACM), vol. 51, no. 3, 2004, pp. 497–
515.

[20] S. E. Schaeffer, “Graph clustering,” Computer Science Review, vol. 1,
no. 1, 2007, pp. 27–64.

[21] G. Yao, J. Bi, Y. Li, and L. Guo, “On the capacitated controller
placement problem in software defined networks,” 2014.

[22] U. Brandes and T. Erlebach, “Network analysis.” Springer Berlin
Heidelberg, 2005.

[23] F. Jordan and F. Bach, “Learning spectral clustering,” Adv. Neural Inf.
Process. Syst, vol. 16, 2004, pp. 305–312.

[24] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and
computing, vol. 17, no. 4, 2007, pp. 395–416.

180

International Journal on Advances in Networks and Services, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[25] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means
clustering algorithm,” Applied statistics, 1979, pp. 100–108.

[26] U. Brandes, “A faster algorithm for betweenness centrality*,” Journal of
Mathematical Sociology, vol. 25, no. 2, 2001, pp. 163–177.

[27] M. Girvan and M. E. Newman, “Community structure in social and
biological networks,” Proceedings of the national academy of sciences,
vol. 99, no. 12, 2002, pp. 7821–7826.

[28] S. M. Savaresi and D. L. Boley, “On the performance of bisecting k-
means and pddp.” in SDM. SIAM, 2001, pp. 1–14.

[29] M. E. Newman and D. J. Watts, “Renormalization group analysis of the
small-world network model,” Physics Letters A, vol. 263, no. 4, 1999,
pp. 341–346.

[30] A.-L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” science, vol. 286, no. 5439, 1999, pp. 509–512.

[31] T. Sakano et al., “A study on a photonic network model based on the
regional characteristics of japan (in japanese,” 2013.

[32] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” Selected Areas in Communications, IEEE
Journal on, vol. 29, no. 9, 2011, pp. 1765–1775.

181

International Journal on Advances in Networks and Services, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

