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Abstract—Underwater Wireless Sensor Network (UWSN) is a
group of sensors and underwater vehicles, networked via acoustic
links, which performs collaborative tasks and enables a wide
range of aquatic applications. Due to hostile environment,
resource constraints and peculiarities of the underlying physical
layer technology, providing energy-efficient data collection in
a sparse UWSN is a challenging problem. We consider
mobility-assisted routing technique for enabling connectivity and
improving the energy efficiency of sparse UWSN, considering it
as a Delay/Disruption Tolerant Network (DTN) or Intermittently
Connected Network (ICN). We use analytical models to
investigate the performance of the data collection scheme.
Based on the result that the DTN scheme improves energy
efficiency and Packet Delivery Ratio (PDR) at the cost of
increased message latency, we investigate techniques to improve
its delay performance. The effects of using multiple mobile
elements for data collection and activity-based priority-polling are
investigated. In addition, the suitability of a hybrid architecture
and hierarchical organization of mobile elements for supporting
delay-sensitive applications in the mobility-assisted framework, is
explored. The analytical results are validated through extensive
simulations using NS-2 based Aqua-Sim simulator. The results
show that our model for on-demand data collection can effectively
capture the underwater acoustic network conditions and facilitate
performance evaluation of event-driven data collection in sparse
UWSNs prior to deployment. The improved DTN framework
shows superior performance in terms of energy efficiency and
successful data delivery over ad-hoc multi hop network, and in
terms of message latency, fairness and buffer space requirement
over simple polling-based DTN framework.

Keywords–Underwater Sensor Networks; Delay Tolerant
Network; Mobile Collector; Polling; Exhaustive Service; Fairness;
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I. INTRODUCTION

This paper extends our earlier work [1] presented at
the Tenth International Conference on Wireless and Mobile
Communication (ICWMC 2014), proposing two strategies
for supporting delay-sensitive applications in mobility-assisted
underwater data collection. Compared to the original paper,
it contains more detailed analysis of the system model
and introduces additional proposals for improving latency
performance according to application requirements.

Underwater Wireless Sensor Networks (UWSNs) have
emerged as powerful systems for providing autonomous
support for several activities like oceanographic data
collection, marine surveillance, disaster prediction, assisted
navigation etc. As illustrated in Fig. 1, UWSN consists of a

number of different types of sensor nodes and autonomous
underwater vehicles (AUVs) used for collaborative monitoring
tasks. Ordinary underwater (UW) sensor nodes deployed
at different depths are used to sense the environment and
generate data. UW sink nodes are responsible for collecting
this data and forwarding it to the surface sink. Surface
sinks are equipped with RF communication link with the
on-shore control centre and other surface sinks, acoustic links
with the underwater sensor nodes, and an optional fibre
optic link with the UW sink. Since electromagnetic waves
are heavily attenuated in the salty sea water and optical
signals are affected by scattering, acoustic communication is
the underlying physical layer technology used in UWSNs.
Development of underwater acoustic communication systems
for interesting practical applications are available in [2], [3], [4]
and [5]. Features like high latency, low bandwidth, high error
probability and 3-dimensional deployment make the UWSNs
significantly different from terrestrial WSNs [6].

Figure 1. Underwater Sensor Network

The energy saving/efficiency is a critical issue for UWSN
because of the high cost of deploying and/or re-deploying
underwater equipment. Underwater sensors are expensive,
mainly because of their more complex transceivers, and
the ocean area that needs to be sensed is quite large.
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Hence, UWSN deployment can be much sparser compared
with terrestrial WSNs. Due to sparse deployment, harsh
environment, node mobility and resource limitations, the
network can be easily partitioned and a contemporaneous path
may not exist between any two nodes. This results in sparse
UWSNs that need to be treated as Intermittently Connected
Networks (ICN) or Delay / Disruption Tolerant Networks
(DTN) [7]. At any given time, when no path exists between
source and destination, network partition is said to occur.
DTNs are characterised by frequent partitions and potentially
long message delivery delays. Such networks may never have
an end-to-end contemporaneous path and traditional routing
protocols are not practical since packets will be dropped when
no routes are available.

The primary objective of a DTN routing protocol is
to obtain high message delivery ratios with satisfactory
latency performance, while maintaining low overhead. The
characteristics of DTN are quite different from that of
Internet and hence new system architectures and routing
protocols are required for DTNs. DTN routing protocols can be
generally classified as forwarding-based and replication-based.
Forwarding-based schemes keep one copy of a message in the
network and tries to forward that copy towards the sink at
the earliest possible forwarding opportunity. Replication-based
approaches like multipath routing are resource-hungry and
hence not suitable for resource-constrained underwater
applications. Forwarding-based approaches are limited in their
effectiveness due to instability (or even non-existence) of
routes from any particular node to the destination. To combat
intermittent connectivity in resource-constrained UWSNs, a
natural solution is to extend the store-and-forward routing to
store-carry-and-forward routing. Proactive mobility of special
mobile nodes can be made use of, to improve message delivery
ratio and to reduce energy consumption. Since the next hop
may not be immediately available for the current node to
forward data, it has to buffer the data until it detects a contact
or forwarding opportunity.

The three main approaches reported in the literature
for data collection in wireless sensor networks, in general,
are [8]: (i) Base Station (BS) approach, which uses direct
communication between the source and the sink; (ii) Ad hoc
network, which uses a multi-hop path from the source to
the sink; and (iii) Mobility assisted routing, which makes
use of a mobile sink or mobile relays for data collection.
The first approach provides fast delivery, but suffers from
reduced life time of sensors due to increased requirement
of communication energy when the source to sink distance
is large. The ad hoc multi hop network provides medium
delay with medium power requirement, but suffers from the
‘hot spot’ problem or the sink neighbourhood problem. In
addition, an end-to-end contemporaneous path should exist for
successful data collection, which is not always possible in the
harsh marine environment in which UWSNs are deployed.

Mobility assisted routing approach supports the DTN
concept of store-carry-and-forward and fills connectivity
gaps in the network. Also, it reduces transmit power
consumption and eliminates the relaying overhead. However,
due to the limited travel speed of the mobile elements, data
collection latency will be large, but such large latency may
be acceptable in certain environmental sensing applications
which are not time-critical. Typical example of such an

application is the continuous monitoring and recording of
the behaviour of underwater plates in tectonics, for later
scientific analysis. Compared with periodic data collection
in which the locations are given and fixed, event-driven
data collection can shorten the response time, and can
thereby support delay-sensitive applications. The arrival
of events that require attention need not be deterministic
and planned; instead, they can be online and stochastic.
However, there exists no proper model for analyzing the
performance of mobility-assisted event-driven data collection
scheme in UWSNs. Investigation of event-driven on-demand
data collection using energy-efficient mobility-assisted
scheme in sparse UWSNs and enhancing it for supporting
delay-sensitive applications like pollution monitoring and
earthquake prediction, is the focus of this paper.

We start with a basic DTN framework for energy efficient
data collection in sparse UWSNs using a single mobile
sink; and then augment it with techniques to improve its
data collection performance by: (i) introducing priority; (ii)
employing multiple data collectors; (iii) deploying a hybrid
architecture with both static and mobile sinks; and (iv)
organizing the mobile collectors in a hierarchical structure.
Analytical results for energy efficiency, packet delivery ratio
(PDR), message latency, and sensor buffer occupancy are
presented. The analytical results are validated using our own
simulation model developed in Aqua-Sim [9], an NS-2 [10]
based network simulator, developed by the University of
Connecticut. The major contributions of this paper include:
(i) Investigating an energy-efficient DTN framework for
event-driven data collection in sparse UWSNs; (ii) Analyzing
the performance metrics of the proposed framework; (iii)
Proposing techniques to enhance the latency performance;
and (iii) Developing the simulation model for validation of
analytical results and further research. The rest of the paper
is organized as follows. A brief review of the related work is
given in Section II. The basic system model is presented in
Section III and the expressions used for analytical results with
this model are developed in Section IV. Techniques for delay
performance enhancement of the basic model are discussed
and analyzed in Section V. Section VI discusses the analytical
and simulation results. The paper is concluded in Section VII.

II. RELATED WORK

Several routing protocols have been developed for UWSNs,
most of them suitable only for connected networks. A detailed
review of different routing techniques for UWSNs is given in
[11] and a comparative analysis of routing protocols is done
in [12]. Vector Based Forwarding (VBF) [13] is a typical
geographical routing protocol and Hop-by-hop Vector-based
forwarding (HH-VBF) [14] is its more energy-efficient version,
better suited for sparse networks. Both VBF and HH-VBF do
not support mobility-assisted data collection and they require
the network to be connected. Energy analysis of routing
protocols for UWSNs is presented by Domingo [15] and by
Zorzi et al. [16]. An approach for minimization of energy
consumption in multi-hop UWSNs is proposed by Geethu et
al. in [17]. Javaid et al. have proposed delay-sensitive routing
schemes for UWSNs in [18] and chain based communication
in cylindrical UWSNs in [19].

Recently, considerable effort has been devoted to
developing architectures and routing algorithms for terrestrial
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DTNs. Routing in DTNs is investigated by Jain et al. [20]
and underwater DTN routing is discussed by Tolba et al.
[21]. Adaptive data collection in sparse UWSNs using mobile
elements is proposed by the authors in [22]. A message
ferrying approach for data delivery in sparse mobile ad hoc
networks is presented in [23]. Guo et al. have proposed
an adaptive routing protocol for UWSNs, considering it as
a DTN [24]. Shah et al. [8] have presented a three-tier
architecture based on mobility to address the problem of
energy efficient data collection in a terrestrial sensor network.
The same architecture with an enhanced analytical model
has been presented by Jain et al. [25]. An M/G/1 queueing
model is used by He et al. [26] for mobility-assisted routing,
proposed for reducing and balancing the energy consumption
of sensor nodes. The use of controlled mobility for low energy
embedded networks has been discussed by Arun et al. [27].
AUV-aided routing for UWSNs is discussed by Yoon et al. [28]
and Hollinger et al. [29]. A mobile geocast routing protocol
for efficient data collection from underwater sensor nodes is
proposed by Chen et al. in [30]. Polling-based scheduling
in body sensor networks has been discussed by Motoyama
[31] and the usage of message ferries in ad hoc networks
is considered by Kavitha et al. [32]. Delay and lifetime
performance of mobility-assisted periodic data collection in
sparse UWSNs is presented by the authors in [33].

Even though the development of routing protocols
for dense/connected UWSNs and the adaptation of DTN
approaches for terrestrial sensor networks has already been
addressed thoroughly, the energy-efficient data collection in
resource-constrained sparse UWSNs has not been adequately
investigated. In addition, proper analytical models and
simulation environment for the evaluation of all performance
metrics and for the study of trade-offs in different data
collection schemes are still lacking. Since field tests in
the ocean bottom are costly and mostly infeasible prior
to sensor deployment, realistic models will be extremely
useful for designing application-oriented networks. Also, the
reported DTN schemes in UWSNs are either resource-hungry
or not suitable for on-demand data collection applications.
Most of the mobility-assisted data collection schemes for
sensor networks focus on the offline scenario, where the data
collection is carried out in a periodic manner. A potential
problem with this periodic data collection is that, certain sensor
nodes may not have data to upload, and visiting them just to
find that no data to collect is not efficient.

The adaptation of mobility-assisted schemes for
event-driven on-demand data collection in UWSNs and
the enhancement of DTN schemes for delay-sensitive
applications are still unexplored. In this paper, we first
propose an energy-efficient on-demand data collection scheme
suitable for non-time-critical applications in UWSNs and
then we augment it with techniques to support delay-sensitive
applications.

III. SYSTEM MODEL

We consider large and sparse UWSNs with possibly
disconnected components and with mobile elements used for
data collection. Though both 3-dimensional and 2-dimensional
deployments are possible, we limit our study to 2-dimensional
network as shown in Fig. 2, with sensor nodes anchored to
the ocean bottom. The static sensors monitor the underwater

surroundings, generate data and store it in the sensor buffer.
They have limited non-rechargeable battery power and they
communicate using acoustic links. The underwater sink, acting
like a base station (BS) is responsible for gathering the sensed
data from the static sensors by employing mobile collectors
(MCs) and forwarding the collected data to the surface sink.
MCs are mobile entities with large processing and storage
capacity, renewable power, and the ability to communicate with
static sensors, underwater sink and other MCs (if any).

Figure 2. System Model : 2-D network with static sensors and MCs

When an event of interest occurs, the static sensors
initiate data collection requests to the BS using direct or
ad hoc multi-hop communication. The service request packet
is assumed to be very short compared to data packets and
the former will contain location information of the node,
sensor buffer occupancy, priority of application, and any
other relevant information like packet arrival rate or the
delay-sensitivity of request. The BS will collect the requests
and based on the system load and the delay constraints, it can
decide the number of MCs needed and the sequence of visiting
the nodes by each MC. Accordingly, BS will create one or
more visit tables specifying the order of visiting the nodes
and schedule the required number of MCs with a unique visit
table assigned to each one of it. It maintains a service queue
for the received data collection requests, and serve them with
the first-come-first serve (FCFS) discipline. Serving a request
means, the MC moves into the proximity of the corresponding
sensor node and collects data from it.

As an MC moves in close proximity to (i.e., within
transmission range of) a static sensor, the sensor’s data is
transferred to the MC and buffered there for further processing.
We consider proactive controlled mobility of the MC, as the
random mobility will fail to give latency bounds. Each MC will
visit the sensor, collect the buffered data and proceed towards
the next node in the visit table and this process is repeated.
Sensors’ bulk data communications are limited to transferring
data to a nearby MC, so as to reduce energy consumption.
Since the MCs are assumed to be resource-unconstrained and
the BS (i.e., UW sink) is assumed to have a high speed link
with the surface sink, we restrict our study to the collection of
data from the static sensors deployed at the ocean bottom by
the MC(s) travelling with a constant speed and pausing at the
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vicinity of sensors for data collection. The data is assumed to
have been successfully delivered once it has been collected by
the MCs.

IV. ANALYTICAL STUDY

In this section, we develop the necessary analytical
expressions, the numerical results of which are compared
with the simulation results in Section VI. All the features
of acoustic channel, propagation and devices significantly
affect the performance measures of the UWSN and hence the
performance of data collection schemes.

A. Energy Efficiency

One important motivation for employing a mobile sink
is that it increases the lifetime of the network by balancing
the energy consumption of the sensor nodes. The energy
consumption of the static nodes alone is considered, since the
mobile node is assumed to be rechargeable or having much
higher initial energy compared to the static sensors. The energy
consumed by the static sensor nodes for sensing and processing
is negligible compared with that for underwater acoustic data
transmission, and hence we consider the energy consumption
for data transmission only.

Underwater Channel: Propagation of sound underwater
is at a very low speed of 1500 m/s and it occurs over
multiple paths. Underwater acoustic communication channels
are characterized by a path loss that depends not only on the
distance between the source and the sink, but also on the signal
frequency. Path loss is the sum of absorption loss (due to
the transfer of acoustic energy in to heat) and spreading loss
(due to the regular weakening of a sound signal as it moves
outwards from the source). At shorter ranges, spreading loss
plays a proportionally larger role compared with absorption
loss. Spreading loss is frequency-independent, but depends
on the geometry, where as the absorption loss increases with
frequency.

The SNR of an emitted underwater signal at the receiver
is expressed by the passive sonar equation as [34]

SNR = SL− TL−NL+DI (1)

where SL is the source level, TL is the transmission loss,
NL is the noise level, and DI is the directivity index. A
micro pascal (µPa) is a measurement of pressure commonly
applied to underwater sound. All quantities in (1) are in dB
re µPa where the reference value 1 µPa corresponds to the
intensity value of 0.67×10−18 W/m2. Assuming a target SNR
of 20 dB at the receiver, an ambient noise level of 70 dB
(which is representative of underwater environments), and
omnidirectional antennas for transmission and reception, we
have the required source level SL = TL + 90 dB.

The transmission loss or the attenuation factor A(l, f) of
an underwater acoustic channel for a distance l and frequency
f is given by (2) as [34]:

10 logA(l, f) = k. 10 log l + l. 10 log a(f) (2)

where the first term is the spreading loss and the second term
is the absorption loss. The spreading coefficient k = 1 for
cylindrical spreading (shallow water scenario) and k = 2 for

spherical case (deep water scenario). Thorp’s formula [34] is
used to express the absorption coefficient as:

10 log a(f) =
0.11f2

1 + f2
+

44f2

4100 + f2
+

2.75f2

104
+ 0.003 (3)

The dependence of absorption loss on signal frequency
implies the dependence of available acoustic bandwidth on
communication distance. The resulting bandwidth limitation is
a fundamental one due to the physics of acoustic propagation.
Typical bandwidth of underwater channel is of the order of a
few kilohertz at 10-100 km and 10 kilohertz at 1-10 km.

For a given target signal-to-noise ratio SNRtgt at receiver,
available bandwidth B(l), and noise power spectral density
N(f), the required transmit power Pt(l) can be expressed as
a function of the transmitter-receiver distance l [16]. If Pr is
the receive power, L is the packet size in bits, and α is the
bandwidth efficiency of modulation, the energy consumption
for the single hop data transfer of one packet becomes

Ehop(l) =
Pr + P el

t (l)L

αB(l)
(4)

where P el
t (l) is the electrical power (in watts) corresponding

to Pt(l) in dB re µPa. Compared to Pr, P el
t is very large and

hence its contribution to the energy consumption of sensor
nodes is significant. It is clear that the power consumption
for data transfer over a single hop of length l increases with
l, while the available bandwidth decreases with l. Hence,
short range high bandwidth communication is to be adopted,
whenever possible, to minimize energy consumption.

In order to investigate the superiority of the MC-based
DTN model in conserving energy, let us compare the energy
overhead associated with transferring one packet from the
sensor to the BS using the ad hoc multi-hop approach and
the store-carry-and-forward DTN approach. For this analysis
purpose, we assume the network to be well connected so that
ad hoc multi hop communication is possible from each sensor
to the BS located at the centre. Also, for tractability of analysis,
without losing generality, we assume the network layout to be
circular. In order to quantify the potential savings in energy,
we follow an approach similar to that of [27] with and without
using a mobile node.

Assume N static sensor nodes with transmission range r
are randomly and uniformly deployed over a circular area A of
radius R with the sink located at the centre. We can calculate
the minimum energy requirement of a node for transferring
one packet generated by each node to the sink, using ad
hoc multi-hop approach. Assuming ideal MAC such that no
collisions occur, the packets originated by the nodes within a
distance r from the sink need to be sent to the sink directly,
whereas those generated by nodes at larger distances need to
relayed by the inner nodes towards the sink.

If every static node located in the kth annulus of the
circular area generates one packet, then the minimum number
of transmissions due to packets originated from the kth annulus

is MinTx(k) = N
A(k)

A
k, where A(k) is the area of the

kth annulus and k = 1 for the innermost annulus. In the
mobility-assisted data collection, irrespective of the position of
the nodes, each static node transmits only the packets generated
by it. Instead, in the case of multi-hop architecture, if every
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node generates 1 packet each, for a large value of N , on
an average, the number of receptions and transmissions to
be undertaken by a node in annulus k will be, respectively,

NodeRx(k) =
A(k + 1)

A(k)
NodeTx(k+ 1) and NodeTx(k) =

1+
A(k + 1)

A(k)
NodeTx(k+1), except for the outermost annulus

(

k =
⌈

R
r

⌉)

where the corresponding values are 0 and 1.

The above analysis shows the increased relaying overhead
of a sensor node with its proximity to the sink. If we define the
Energy Overhead Factor (EOF) of a node as the ratio of the
total number of transmissions from the node to the number of
transmissions corresponding to the packets originated at that
node, it is seen that all the sensor nodes have the same EOF
(equal to l with an error-free channel) in MC-based scheme,
while it is approximately equal to NodeTx(k) in multihop
network. High Energy Overhead Factor implies low energy
efficiency.

A natural consequence of this unbalanced usage of stored
battery power by the static sensor nodes in the adhoc multi
hop network is the non uniformity in the residual energy of
the sensor nodes after operation for a fixed amount of time.
If Ei is the initial energy of a node, the maximum number
of packet transmissions over a hop distance l that can be
afforded by it before being completely drained off its energy

will be
Ei

Ehop(l)
. Due to the absence of relaying overhead in

MC-based architecture, the residual energy of all the nodes will
be uniformly distributed in the network. At the same time, in
the ad hoc multi hop network, due to the increased relaying
overhead of the sensors with proximity to sink, residual energy
of the 1-hop neighbours of the sink will be considerably small,
compared to that of the nodes along the periphery of the
network. This sink neighbourhood problem leads to premature
death of the 1-hop neighbours of the sink, thus resulting in the
disconnection of the sink from the rest of the network which
means that the usefulness of the network is lost. Hence, in
applications in which network lifetime is more important than
message delay, mobility-assisted routing is the best option. In
addition, in disconnected or partitioned networks in which both
direct and ad-hoc multi hop communications are too costly in
terms of energy consumption, the proposed mobility-assisted
framework is the only option.

B. Data Collection Latency

Due to the mechanical movement of the MC to provide
connectivity and facilitate data collection from the sensors
located quite far apart, the latency of the sensed data in
the mobility-assisted approach will be much larger compared
to that in the other two approaches. In addition, since the
sensed data is to be buffered till the next visit of the MC,
buffer overflow and packet loss will occur if the sensor
buffer space is not sufficient or if the inter-arrival time of
the MC at a sensor is too high. Realistic estimation of these
parameters using a proper analytical model is essential to
assess the suitability of the proposed scheme for a particular
application, based on the requirements of the application and
the resource constraints of the network. A model matching
the mobility-assisted on-demand data collection framework is
a multiple-queue single-server queueing model or a polling

model; a system of multiple queues accessed in cyclic or other
specified sequence by a single server.

The traditional polling system consists of N infinite size
queues and a single server that serves them one at a time [35].
The arrival process to queue i is assumed to be an independent
Poisson process with rate λi. The customers arriving to queue
i are assumed to have service time Xi, which is a random
variable with first and second moments E[Xi] and E[X2

i ],
respectively. After being served at queue i, the customer is
assumed to leave the system. In the basic polling model, the
server visits (or polls) the queues in a cyclic order and after
completing a visit to queue i, it incurs a switch over period
or walk time. The period during which the server continuously
serves queue i is called the service period of queue i and the
preceding period is called the switch over period of queue i.
Mobile Collector and the static sensor buffers in our model
correspond to the single server and queues of the polling
model, respectively. Packets buffered in the sensor buffer,
waiting for a transmission opportunity, are analogous to the
customers waiting for service in the polling model. Travel time
of the MC to move from one location to the next is modelled as
the walk time and the sojourn time at each location to transfer
data from the near by sensor’s buffer to the MC is modelled
as the service time.

According to the instant at which the MC leaves the sensor,
different service policies are available, which prescribes how
the packets (if any) from each sensor buffer will be collected.
The important service policies applicable to on-demand data
collection are: Exhaustive, Gated and 1-Limited. In the
1-Limited policy, at most one packet is collected from a sensor
buffer at each visit. In the Exhaustive service, upon visiting a
sensor, the MC collects all the packets until no more packets
are available at that sensor buffer. In gated service, MC collects
only those packets which are queued at its arrival instant. In
other words, the packets that arrive during the course of the
current data collection operation are not considered, where as
under Exhaustive service policy, the MC collects the packets
buffered so far plus the packets being generated when the
already buffered packets are being transferred.

The inter-arrival times of service requests are assumed to
be independent of MC travel time and data collection time.
Assuming Poisson arrival of packets at rate λi at sensor buffer
i, the traffic load at sensor i is defined by ρi = λi E[Xi] ,
1≤ i ≤ N , and the total offered load in the system is given by

ρ =
∑N

i=1 ρi, where E[Xi] is the mean packet transfer time.
For system stability, ρ should be less than 1. If the mean of
the total walk time is denoted by R, the mean cycle time of
the MC is given by [35]

E[C] =
R

1− ρ
(5)

For system stability, all packets that arrive during a cycle of
the MC must be served during a cycle time. Hence, the mean
service period for sensor buffer i during a cycle time will be

E[Si] = E[Xi]λiE[C] =
ρiR

1− ρ
(6)

and the mean number of packets collected from sensor buffer
i in a polling cycle will be

E[Φi] = λiE[C] (7)
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Using (5) and (6), the average inter-arrival time of the MC at
a sensor buffer can be evaluated as

E[Ii] = E[C]− E[Si] =
(1− ρi)R

1− ρ
(8)

We assume that the stability condition is achieved and
the system is in steady state. The main performance measure
in data collection is the mean waiting time of a packet in
the sensor buffer, the exact analysis of which is difficult.
Hence, we resort to the pseudo-conservation law based
on the stochastic decomposition of unfinished work in an
infinite-buffer polling system [35]. For analytical tractability,
we assume a symmetric system with equal data generation
rate λ and equal mean packet service time X at all sensors.
Let the MC travel time between two consecutive locations
be a random variable with mean and variance E[Y ] and ∆2,
respectively. Under the assumption of exhaustive service, The
mean waiting time of the packet in the sensor buffer before
the MC approaches it for data transfer can be obtained as [35]:

E[WQ]exh =
∆2

2E[Y ]
+

NλE[X2] + E[Y ](N − ρ)

2(1− ρ)
(9)

With gated and 1-Limited service policies, the expressions for
mean waiting time become

E[WQ]gated =
∆2

2E[Y ]
+

NλE[X2] + E[Y ](N + ρ)

2(1− ρ)
(10)

E[WQ]lim =
∆2

2E[Y ]
+

NλE[X2] + E[Y ](N + ρ) +Nλ∆2

2(1− ρ−NλE[Y ])
(11)

At light loads (ρ approaching 0), the packet queueing delay
is dominated by the travel time of the MC, and at heavy
loads (ρ approaching 1) it is dominated by the sojourn time of
the MC at the sensors. With exhaustive and gated service,
ρ should be less than 1 to ensure stability of the system.
For stable symmetric systems with a single MC and same
parameters, the mean waiting time of the packets is smallest
with exhaustive service policy and largest with 1-Limited. Also,
ensuring stability with 1-Limited service requires the mean
travel time of the MC to be smaller than the service time,
which is not practically feasible. Exhaustive service policy is
the optimal one as far as the average packet delay is concerned.

However, the effectiveness of data collection can not be
quantified using the mean waiting time of packets alone.
Another important parameter that matters, especially in
delay-sensitive environments, is the fairness of data collection.
Under the assumption of symmetric queues with equal data
generation rates, the mean waiting time is independent of
sensor location and packets generated by all sensors receive
same treatment. Now, let us consider a situation in which
the packet generation rates differ considerably among sensors,
resulting in unequal loads offered by them. Let ρi = λiE[X ]
be the load at sensor i. By following the approach used in [36],
we observe that the dependence of mean waiting time at sensor
i on the load offered by node i under the exhaustive, gated and
1-limited service policies, can be expressed, respectively as

E[WQi]exh ∝ (1− ρi) (12)

E[WQi]gated ∝ (1 + ρi) (13)

E[WQi]lim ∝ (1 − ρ+ ρi) (14)

Equations (12), (13), and (14) reveal that the packets
generated by different nodes are treated differently, based on
the service policy. In exhaustive service, packets arriving to
light-traffic sensors have longer average waiting time than
those arriving to heavy traffic sensors. But in gated and
1-limited service schemes, it is in the other way. The 1-limited
service policy is usually considered to be a fair policy since
only one packet is collected from each sensor in a cycle of the
MC. Exhaustive service is less fair since one heavily loaded
sensor can dominate the system, and will occupy the MC for a
long time. This means that, although the average waiting time
may be smaller for exhaustive service compared to the other
two service policies, the maximal waiting time at the lightly
loaded sensors may be larger. Hence, though exhaustive service
gives optimum performance for delay-tolerant applications, it
is not the optimum one for delay-sensitive applications. In
delay-sensitive applications, if the packets are not collected
before their deadline or expiry time, they will have to be
discarded, thus reducing the number of packets receiving
on-time service.

Computation of the average queueing delay of packets
using (9) requires the knowledge of the mean and variance
of MC travel time. To evaluate these parameters, we follow
an approach similar to that in [26]. In our system model,
the BS maintains a queue to store the received requests and
serve them according to its service discipline, the simplest
one being first-come-first-served (FCFS). We assume a square
sensing field with static sensor nodes uniformly distributed in
the network. The arrival of data collection requests to the BS
is assumed to be a Poisson process and the communication
is assumed to be loss-less. Due to the assumption of
uniform distribution of node deployment, the locations of
data collection requests can be treated as random points in
the square sensing field, based on which the travel time of
the MC between two consecutive locations can be evaluated.
The probability density function of the distance between two
arbitrary points in a unit square is given by

fD(d) =























2d(π − 4d+ d2) 0 ≤ d ≤ 1

2d[2sin−1( 1
d
)− 2sin−1

√

1− 1
d2

+ 4
√
d2 − 1− d2 − 2] 1 ≤ d ≤

√
2

0 otherwise

(15)

Using this, if the MC moves at a constant velocity V, the
mean and variance of the MC travel time between two arbitrary
points in a unit square area can be obtained as 0.4555/V and
3.95/V 2, respectively.

Once the mean queueing delay of the message has been
determined, the expected response time of the message, being
the sum of its queueing delay in the sensor buffer plus service
time by the MC (packet transmission time) can be obtained as

E[T ] = E[WQ] + E[X ] (16)
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The sensor buffer occupancy of a tagged sensor will be
maximum (equal to λ times the MC cycle time) when the MC
approaches it for data collection and minimum (equal to zero
for exhaustive service) when it leaves the sensor. The average
sensor buffer occupancy

E[NQ] = λE[WQ] (17)

and the number of messages in the system (in queue and in
service)

E[N ] = λE[T ] (18)

The message latency and sensor buffer occupancy increase
with the number of nodes N , packet arrival rate λ and the
size of the deployment area, where as it decreases with the
speed of the MC. However, the speed of the MC can not
be increased beyond a limit (of the order of 20 m/s) due
to practical limitations. Thus, the delay performance of the
MC-based DTN scheme with a single mobile element is not
at all comparable with that of ad hoc multihop network (of
the order of several minutes for the former, while a few
seconds for the latter). Correspondingly, the buffer requirement
of static sensors is negligible in an ad hoc network, while
it is considerably high in the MC-based scheme. Hence,
the MC-based data collection approach, as such, is suitable
only for delay-tolerant applications. Techniques to improve
the delay performance so as to extend its suitability for
delay-sensitive applications will be discussed in Section V.

C. Packet Delivery Ratio (PDR)

The Bulk Service Queueing model for mobility-assisted
data collection as used by Jain et al. in [25] permits us to
evaluate the success ratio of data collection. Here, the data
generation and MC arrival processes are assumed to be renewal
processes with average rates λ and µ respectively. It is also
assumed that when an MC visits a sensor, no other sensor is
near-by and contending for service. A maximum of K packets
is transferred from the sensor to the MC in each visit. Data
transmission does not incur any loss and the only loss (if any)
is due to sensor buffer overflow.

Since a maximum of K packets are collected in one visit
of the MC, the net service rate is Kµ. If the random variable
Q represents the queue length at the MC arrival instant, the
average of Q is used as a measure of the sensor buffer
occupancy, which in turn, decides the Packet Delivery Ratio
(PDR). As the service size is K packets, and if Q (queue length
at MC arrival instant) is less than K then only Q packets are
served, clearly

PDRMC =
µE [min(K,Q)]

λ
(19)

Assuming exhaustive service policy, all the data generated
and buffered so far is transferred when the MC visits the
sensor. Hence the amount of data in the sensor buffer when
the MC approaches it, will be the minimum of : (i) the amount
of data generated in one cycle time of the MC, and (ii) the
sensor buffer size. For Poisson data generation, the amount of
data generated in an interval depends only on the length of the
interval and hence the expected sensor buffer length becomes

E[Q] =
λ

µ
(20)

For a fixed service size K , E[Q] increases with λ and
decreases with µ.

In a stable system, with the assumption of large K and
infinite buffer space, and on substituting the value obtained
from Eqn. (20) into (19), we get the Packet Delivery Ratio to
be 1 with this model. If the sensor buffer space or the service
size K is not sufficiently large to accommodate the incoming
traffic without buffer overflow, packets will be dropped and
PDR is reduced. Hence the sensor buffer size SB and service
size K should be designed such that no packet is lost due to
buffer overflow, for a given data generation rate λ and the MC
arrival rate µ. However, sensor buffer size SB is limited by
the size and hardware cost of the sensor memory.

Assuming ideal channel, no MC failures, and sufficiently
large buffer space to avoid buffer overflow, the PDR will be
theoretically 1 for delay-tolerant applications. But practically,
there exists a probability that a node is not visited by the MC
within a specified time period or deadline. In such situations,
the significance of the data may be lost if the application is
delay-sensitive, or the data itself may be lost due to buffer
overflow. Since these two factors limit the PDR in MC-based
data collection, care is to be taken to ensure that the sensors
are equipped with sufficient buffer space as dictated by the
load conditions, and the buffered packets are collected before
their significance is lost, in delay-sensitive applications.

In the case of ad hoc multi hop network, the PDR is
dependent on the node density, since a contemporaneous
source-to-sink path should exist for successful packet delivery.
To investigate the impact of node density on PDR, we assume
the use of Vector-based Forwarding (VBF) as the routing
protocol and follow the approach similar to the one used in [13]
with appropriate modifications for 2-dimensional deployment.
Assuming N nodes each with transmission range r, uniformly
deployed in a square area of side A, the density d of nodes

in the network =
N

A2
. Now, if B represents the radius of the

routing pipe in VBF, and Pl represents the loss probability
of packets, it can be shown that the probability of successful
delivery of a packet over h hops

PDRadhoc =
[

1− P
1

3
πBr3d2

l

]h

(21)

Equation (21) shows that, for a fixed packet loss probability
Pl, probability of successful packet delivery increases with
node density, width of routing pipe, and transmission range of
sensor nodes in the ad hoc multi hop network that uses VBF.
Increase in the width of routing pipe or the transmission range
of sensor nodes will result in increased energy consumption,
where as high node density is not feasible due to cost
constraints and deployment restrictions. Thus, achieving a
reasonably good delivery performance using ad hoc multi
hop approach for event-driven data collection in sparse and
energy-constrained environments is almost impossible. At
the same time, probability of successful packet delivery is
independent of node density in MC-based data collection,
thus making it the better option for sparse and constrained
networks, as far as successful data delivery is concerned.

V. PERFORMANCE ENHANCEMENT

In this section, we investigate techniques to improve
the delay and delivery performance of the basic DTN
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scheme with a single MC. Based on the study of latency
performance in Section IV, we propose four techniques to
reduce data collection latency and to enhance the support
for delay-sensitive applications: (i) Use of multiple mobile
collectors, (ii) Activity-based periodic polling, (iii) Hybrid
architecture with both static and mobile sinks, and (iv)
Hierarchical organization of mobile collectors. In the first
technique, more than one mobile collectors are used, thus
increasing the effective service rate, thereby reducing the
message waiting time. In the second one, different priority
is assigned to different nodes (based on data generation rate,
traffic class, etc.), and the order and/or frequency of polling
or visiting the static sensor nodes is modified to account
for the differing activity conditions. The third technique
uses a hybrid architecture of both ad-hoc multi-hop and
mobility-assisted schemes, exploiting the advantages of both.
In the fourth one, the MCs are organized in a hierarchical
manner such that application-oriented differentiated packet
delivery is made possible. We present these four techniques,
as well as analytical expressions for the evaluation of their
latency and delivery performance.

A. Multiple Mobile Collectors

In our basic polling model, there is only a single server,
servicing a number of queues in a cyclic manner, which has
been found to be unsuitable for delay-sensitive applications.
When the input load is too high or the deadline requirements
of the application are quite demanding, the BS may decide
to schedule multiple MCs with different visit tables assigned
to each. When the number of MCs is increased, the model
is converted to a Multi Server Multi Queue (MSMQ) system
or multi server polling model, the exact analysis of which
is not available. Assuming independent MCs, symmetric
Poisson-distributed data arrivals, independent and identically
distributed service times and walk times and no server
clustering, an approximate expression for the mean waiting
time can be derived following the approach used in [37]. The
total average amount of work arriving to the MSMQ per unit
amount of time remains unchanged (= NλE[X ]) as in the
single server system. At steady state, the MCs evenly share
this load and if S is the number of MCs, the utilization factor
of any one MC becomes

ρs =
NλE[X ]

S
(22)

The time interval between two consecutive arrivals of any one
MC at a tagged sensor buffer q can be evaluated as

E[Cq] =
R

S −NλE[X ]
(23)

for q = 1..N .

Since stability is guaranteed by the finiteness of average
cycle time, to ensure stability, the number of MCs

S > NλE[X ] (24)

In other words, the packet arrival rate

λ <
S

NE[X ]
(25)

To get the mean message waiting time in the multiple
MC case, the expression for mean waiting time in single MC

case as given by (9) can be modified by substituting E[X ]/S,
E[X2]/S2, E[W ]/[S−(S−1)ρ], and E[W 2]/[S−(S−1)ρ]2 in
place of, respectively, E[X ], E[X2], E[W ], and E[W 2]. Thus,
the mean waiting time in the multiple MC situation becomes

E[Wq] =
E[W 2]

2E[W ][S − (S − 1)ρ]
+

N
[

λE[X2]
S

+ E[W ](S−λE[X])
S−(S−1)ρ

]

2(S −NλE[X ])

(26)

Similar to the basic single MC network, here also, the expected
waiting time of the packet in the sensor buffer and the
average sensor buffer occupancy increase with the packet
arrival rate λ, number of sensors N and the size of the
deployment area and reduces with the speed of MCs. However,
both performance metrics decrease with the number of MCs
S, thus making the model better suited for heavy input
load conditions, memory-limited sensors, and delay-sensitive
applications. While the delay and delivery performance are
improved by the use of multiple data collectors, energy
consumption and network lifetime are not affected, since the
number of transmissions and the range of transmission are
not changed by the use of more number of MCs. Taking
into account the higher cost of MCs compared to ordinary
sensor nodes, minimum number of MCs that satisfy the
application-specific latency constraints may be used.

B. Activity-based Priority Polling

In practical situations, all the sensor nodes may not
be generating data at the same rate and hence our earlier
assumption of symmetric queues may not be valid always.
More packets will be generated in some areas having high
activity that require immediate attention, while some other
areas may be generating very few packets only. In such
situations, it will not be efficient and fair to visit all the sensors
in a cyclic manner. When the data generation rates among the
static sensor nodes vary considerably, it will be better to visit
the nodes with higher arrival rates more frequently, rather than
following the cyclic order. In cyclic polling, the server visits
the queues in the order Q1, Q2, ...., QN , Q1, Q2, ...., QN , .... In
Periodic polling, the server visits the queues in a fixed order
specified by a polling table in which each queue occurs at least
once [38].

Consider the single server polling model with the difference
that the arrival rates at the queues are not equal, instead
the packet arrival intensity at sensor i is λi, i = 1,...N. The
offered load at sensor i is ρi = λiE[Xi], where E[Xi] is the
mean service time at sensor i. The total offered load in the
network ρ =

∑N
i=1 ρi. The MC visits the sensors according

to a periodic - not necessarily cyclic - polling scheme. The
approach followed in [38] can be used to minimize the
workload in the system and to ensure fairness among the
sensors by using optimum visit frequencies. For exhaustive
service, assuming Wi to be the switch-over time from queue
i− 1 to queue i, the visit frequency at node i becomes

fexh
i =

√

ρi(1− ρi)/Wi
∑N

j=1

√

ρj(1− ρj)/Wj

(27)

Now, all the nodes are not visited equally in a cycle, instead
the nodes having more buffered data waiting for transmission
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(due to higher packet generation rate) will be visited more
often than those with less buffered data. Assume that sensor i
is visited ni times in a cycle of the MC and these visits are
spread as evenly as possible. Considering the interval between
two successive MC visits to a node i as a sub cycle, the mean
residual time of a sub cycle of i will be

ERSCi ∝
E[C]

ni

(28)

where E[C] is the mean time for one complete visit cycle of
the MC according to the polling table. Now the mean waiting
time at node i will be [38]:

(Wq)i ∝ (1− ρi)
E[C]

ni

(29)

which shows that the sensor nodes with high data generation
rates (having high values of ρi and ni) get better treatment
and majority of the generated packets get good treatment, in
terms of waiting time and buffer requirement.

C. Hybrid Architecture

The scheme of employing a hybrid architecture of both ad
hoc multi-hop and mobility-assisted data collection approaches
is proposed here to provide application-oriented packet
delivery. As illustrated in Fig. 3, there exist both static and
mobile sinks in the network, the former one for collecting
delay-sensitive critical data and the latter one for delay-tolerant
bulk data. While setting up the network, the static sensors
are organized in to a number of routing trees rooted at the
static sink located at the centre of the deployment area. Mobile
sink (MS) covers the entire network by following a trajectory
suitable for periodic data collection, as shown in the diagram.
It sojourns at predefined locations so as to collect buffered
data from the near by sensors. The number of sojourn points
and the transmission range of sensor nodes can be adjusted
according to the node energy constraints and the message
deadline requirements.

Figure 3. Hybrid architecture with static and mobile sinks

Each sensor node always keeps up to date information
about its static path to the static sink. Any emergency

information that requires immediate attention like disaster
warning, hazard detection, etc., is transferred to the static sink
using the ad hoc multi hop path, provided such an end-to-end
contemporaneous path exists. If not, the sensor has to either
transmit at a higher power level to improve connectivity at
the expense of increased energy consumption. If that too fails,
the node has to wait for the arrival of the MC. Because ad
hoc multi-hop communication is used only for applications
with tight deadline requirements, the sink neighbourhood or
hot-spot problem is not expected to be as severe as in the pure
ad hoc multi-hop approach. Hybrid architecture permits us to
achieve trade-off between network lifetime and timeliness of
data collection, though with increased complexity of keeping
two data collection approaches in the same network.

The performance metrics like energy consumption, energy
balancing, packet latency, and sensor buffer occupancy
depend on the type of communication (ad hoc multi-hop
or mobility-assisted), which in turn, depends on the
nature of application: delay-sensitive or delay-tolerant. For
delay-tolerant applications, mobility-assisted data collection
with a single MC is made use of. The MC visits the sensors
as discussed in the basic model in Section III for event-driven
data collection or by following a trajectory as illustrated in
Fig. 3, covering the entire deployment area in a cyclic fashion
for periodic data collection. For symmetric queues, the delay
performance of data collection can be evaluated using (9),
(10), (16), and (17). For delay-sensitive applications, ad hoc
multi-hop connection to the static sink is used, whose delay
is negligible compared to MC-based approach, thus ensuring
timely delivery of emergency data. However, for successful
packet delivery, end-to-end connectivity is to be ensured,
failing which packets will be dropped. We use VBF protocol
[13] for multi hop routing. In VBF, the PDR is dependent on
the density of nodes, width of routing pipe and transmission
range of sensor nodes.

D. Hierarchical Architecture

This architecture is suitable for large networks with
periodic and event-driven data collection, supporting both
delay-tolerant and delay-sensitive applications. Unlike the
hybrid architecture, there is no static sink here. The static nodes
as well as the mobile collectors are organized into a number of
tiers forming a hierarchical architecture. We have considered
three tiers, which can be extended further according to the
size of the network and the requirements of the application.
As illustrated in Fig. 4, the entire network is organized into
four non-overlapping clusters and three hierarchical tiers. All
static sensor nodes have the basic responsibility of sensing
the environment and buffering the sensed data. Additionally,
they selectively forward delay-sensitive traffic to nodes that are
more frequently visited by the MC.

The entire network area is divided into 16 equal square
partitions (not shown in the diagram). During the set up phase
of each round of data collection, Tier-3 nodes in each partition
select one of them as a Tier-2 node based on residual energy;
and Tier-2 nodes belonging to each cluster select one of them
as a Tier-1 node based on proximity to the centre. Hence, there
will be a maximum of 16 Tier-2 nodes and four Tier-1 nodes
in the network under consideration. Tier-1 MC (MC1) cycles
among the Tier-1 nodes alone, while the Tier-2 MC (MC2)
cycles among the Tier-2 nodes. Tier-3 MC (MC3) follows a
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Figure 4. Hierarchical architecture

trajectory passing through the centres of all the 16 partitions,
sojourning at the 16 locations for collecting delay-tolerant data
(if any) from the Tier-3 nodes. Cycle time of the MC1 will be
very small compared to its counterparts in other tiers. In other
words, Tier-1 nodes are visited more often than Tier-2 nodes,
while the latter is visited more often than Tier-3 nodes.

Based on the urgency of the sensed data, packets may be
buffered at the originating node or forwarded to a node in the
next tier. Upon receiving a packet, a Tier-3 node will check
its delay-sensitivity. If it is delay-tolerant, it will be stored
in the sensor buffer, to be collected by MC3. Otherwise, the
packet will be forwarded to the respective Tier-2 node, where
it will be buffered, to be collected by MC2. Tier-2 node will
check whether the packet is time-critical and if so, it will be
immediately forwarded to the Tier-1 node. Since the Tier-1
nodes are visited quite frequently, the latency performance will
be good. Data is assumed to have been successfully delivered
once it has been collected by any one MC.

For performance evaluation, we consider a square
deployment area of size 2000m × 2000m and velocity of all
the MCs to be 15 m/s. MC3 follows a trajectory as shown in
Fig. 4 and for analytical tractability, trajectories of MC2 and
MC1 are approximated by square paths of side 1000m and
500m, respectively, around the centre of the deployment area.
Packet generation is assumed to be Poisson and symmetrical,
with 10% of the generated packets being time-critical and
30% of the generated packets being delay-sensitive, but not
time-critical. The maximum and average waiting times of each
category of packets can be evaluated using (9) and (10). Unlike
the hybrid architecture, here no multi-hop communication is
used and hence PDR is independent of node density.

VI. ANALYTICAL AND SIMULATION RESULTS

Extensive simulations were done to validate our analytical
results using the NS-2 based network simulator for underwater
applications, Aqua-Sim. The unique characteristics of UWSNs
like acoustic attenuation model, acoustic channel model,
3-dimensional deployment and very slow propagation make
the existing terrestrial network simulators unsuitable for
UWSN simulation study and resulted in the development

of Aqua-Sim. Aqua-Sim is an event-driven, object-oriented
simulator written in C++ with an OTCL (Object-oriented Tool
Command Language) interpreter as the front-end. Following
the object-oriented design style of NS-2, all UWSN entities are
implemented as classes in C++. Several interesting works like
[39] and [40] have already been implemented in this simulation
system.

The codes simulating underwater sensor nodes, traffic,
acoustic channels, MAC protocols, and a few routing protocols
are already available in Aqua-Sim. We have incorporated in
it, the DTN concepts of beaconing, contact discovery and
store-carry-and-forward and the polling based (exhaustive
service) data collection. Energy model with tunable transmit
power and latency minimization techniques like the use
of multiple mobile collectors, visit-frequency based priority
polling, hybrid architecture with static and mobile sinks, and
the hierarchical organization of sensors and mobile collectors
were also implemented.

We have used the VBF routing protocol for implementing
the multi hop network for comparison purpose and the
MC-based DTN protocol developed by us in Aqua-Sim for the
mobility-assisted short-range data collection purpose. We have
employed the Broadcast MAC protocol with carrier sensing
and collision avoidance, in which the MAC first senses the
channel when a node has packet to send. If the channel is
found to be free, the node broadcasts the packet, otherwise it
backs off. If the number of back off exceeds a limit, the packet
is discarded.
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Figure 5. Transmission Losses in the deep water scenario (Analytical):
AL - Absorption Loss, TL - Transmission Loss

Fig. 5 illustrates the impact of frequency of operation and
distance between the sensor nodes on the total transmission
loss in deep water, as expressed by (2). We have assumed
a target SNR of 20 dB and noise level of 70 dB for this
result. Transmission loss is the sum of spreading loss and
absorption loss. Spreading loss is independent of frequency
and its variation with distance is quadratic in deep water.
Absorption loss increases with frequency and distance between
nodes.

Higher transmission loss at larger source-to-sink distance
leads to increased energy consumption as illustrated in Fig. 6
for the deep water scenario. Assuming tunable transmit power
Pt, receive power Pr fixed at 0.075 W, and packet length L
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Figure 6. Hop Energy Consumption for varying hop length and bandwidth

fixed to 400 bits [9], the effect of hop length, target SNR,
and channel bandwidth on per-hop energy consumption as
expressed by (4) is plotted here. Decreasing the source to
sink distance reduces the transmission loss and increasing the
bandwidth reduces the time required for transmission. Both
situations lead to reduced transmit energy consumption, thus
validating the suitability of short range communication in
energy-constrained environments.
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Figure 7. Transmit Energy Overhead of static sensor nodes with multi-hop
and MC-based schemes for different PERs

Assuming static sensor nodes having transmission range
250m uniformly distributed in a circular area of radius 1000m,
a comparison of the Energy Overhead Factor (defined in
Section IV.A) in mobility-assisted and ad hoc multi-hop
approaches is illustrated in Fig. 7. The variation of EOF of
a node with its proximity to sink is also shown. As expected,
nodes in the mobility-assisted approach have reduced and
balanced overhead, irrespective of their location relative to
the sink. At the same time, the relaying overhead of a sensor
increases with its proximity to sink in the ad hoc multi hop
network. The impact of packet error rate (PER) on the energy
overhead due to non-ideal channel is also shown in this figure.
Due to increased relaying overhead, the nodes nearer to the
sink will deplete their battery power soon. If we define the
lifetime of a network as the timespan till the first node dies

due to energy depletion, it is evident that the use of mobile
elements for data collection leads to enhanced lifetime of the
network due to reduced and balanced energy consumption
among the sensor nodes.
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Figure 8. PDR with multi-hop and MC-based data collection
(Delay-tolerant application)

The variation of PDR with node density is shown in Fig.
8. Assuming infinite buffer size and no communication errors,
ideally the PDR should be 1 for the MC-based data collection
scheme, irrespective of the number of nodes in the network.
For ad hoc multi-hop network, as indicated by (21), delivery
ratio is very small for low node density due to end-to-end
connectivity issues. As the node density is increased, PDR
increases initially and finally reaches a maximum value and
then remains almost constant. For the MC-based scheme,
delivery ratio is independent of node density. Hence, it is
the ideal one for sparse and disconnected networks, provided
the network lifetime and successful data delivery are of prime
concern and the application is not time-critical. If the sensors
are not equipped with sufficient buffer space to avoid buffer
overflow at high loads, packets will be dropped and PDR
reduced. Also, in delay-sensitive applications, if the packets
are not received before the application-specified deadline,
significance of the data will be lost, which is equivalent to
loss of packets that leads to reduced PDR.

Assuming controlled motion of a single MC with speed
15 m/s for on-demand data collection in a square area of
size 2000m × 2000m with 10 nodes randomly and uniformly
distributed in this area, analytical results illustrating the
variation of mean waiting time of a packet, mean cycle time of
MC, mean travel time of the MC in a cycle, mean sojourn time
of the MC in a cycle and the inter-visit time of the MC at a
tagged sensor node were obtained for varying load conditions
using our basic model and plotted in Fig. 9. The sensors are
visited by the MC based on FCFS policy as indicated by the
visit table assigned to it and the sensor buffers are serviced
according to the Exhaustive service policy. As expected, the
waiting time of packets, cycle time of the MC, sojourn time
of the MC in a cycle, and the inter-visit time at a tagged node
increase with the system load. However, the walk time of the
MC is independent of the load. At light loads, the cycle time
of the MC and the waiting time of the packets are dominated
by the travel time of the MC, while at heavy loads, they are
dominated by the sojourn time (pause time of the MC near
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Figure 9. Mean packet waiting time / Cycle time /Data Transfer Time /
Inter-visit Time with polling model (Analytical)

the sensor for data transfer). When the system load approaches
unity, stability is lost and the delay values grow exponentially.
This situation should be avoided, otherwise delay will not be
bounded and sensor buffers will overflow. The results also act
as a guide to decide when to go for multiple mobile collectors
for meeting the delay constraints specified by the application.
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The variation of mean response time of a packet, as
evaluated using (16) for varying input load under the
exhaustive and gated service policies, is illustrated in Fig. 10.
Compared to gated service policy, exhaustive service policy
results in smaller mean waiting time and response time, and
hence more optimal. For a fixed input load, response time
increases with the mean travel time of the MC. Hence, efficient
MC scheduling policies can be employed to reduce the travel
time and to improve the latency performance of data collection.

Assuming exhaustive service policy of the MC, the impact
of factors like input load, MC speed, number of sensors and
dimensions of the sensor deployment area on the average cycle
time of the MC is illustrated in Fig. 11. As expected, the MC
cycle time increases with the number of nodes and area of
deployment, whereas it decreases with MC speed. The sensor
buffer occupancy, shown in Fig. 12 also exhibits a similar
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Figure 11. Mean Cycle time variation with load, speed and deployment area
(Analytical)

behaviour. The buffer occupancy is zero when the MC leaves a
sensor and maximum when the MC approaches it. If the sensor
buffer space is not sufficiently high, packets will be lost due
to buffer overflow, resulting in reduced PDR.
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Simulations were done with the same network conditions
and fixing the packet size at 50 Bytes and data rate at 10
Kbps. The mean waiting time obtained for different values
of data generation rate and different speeds of the single
MC are plotted in Fig. 13. The sensors are equipped with
sufficient buffer space so that packets are not lost due to
buffer overflow. For a fixed number of nodes, deployment
area, packet size, and MC speed, the variation in input load
is effected by varying the packet generation rate. The mean
waiting time increases with the input load and decreases with
the speed of the MC. Analytical and simulation results show
close agreement, validating the suitability of our model.

The analytical results showing the impact of input load
and MC speed on the mean sensor buffer occupancy in the
basic framework has been illustrated in Fig. 14. Similar to
the waiting time of packets, the average number of packets
in the sensor buffer awaiting their turn for transmission also
increases with input load and decreases with MC speed. This
result gives us an idea about how to decide the buffer size of
the sensors, considering the load conditions and MC speed.
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Figure 15. Delay Performance with Multiple MCs

Since it is not practical to have MC speeds above 20
m/s, use of multiple MCs is to be adopted for heavy traffic
environments, delay-sensitive applications, and very limited
sensor buffer situations. Keeping the same network conditions

as used in our basic model, the results showing the impact of
number of MCs on packet delay performance is plotted in Fig.
15. As expected, for a fixed number of MCs, the mean waiting
time increases with input load. Also, for a fixed load and MC
speed, as the number of MCs is increased, the queueing delay
is decreased. The sensor buffer occupancy also shows the same
behaviour, as illustrated in Fig. 16. Simulation results related
to mean waiting time and sensor buffer occupancy have shown
close agreement with the analytical ones.

However, the cost of MCs is much larger compared to
that of ordinary sensor nodes and a large number of MCs
will lead to interference problems and increased complexity
of implementation. Hence, the optimum number of MCs may
be selected based on the delay constraints of the application
and the cost considerations of MC deployment. In the scenario
we have considered, it is observed that the performance gain
obtained by using 3 MCs over 2 MCs is much less compared
to that obtained by using 2 MCs over a single one. The
results act as a guide to decide the number of MCs, based on
the application-specified delay constraints and sensor-specific
buffer space constraints.
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Figure 16. Sensor Buffer Occupancy with Multiple MCs

To demonstrate the improvement in delay performance
due to activity-based priority polling, we have considered the
same network conditions with 10 sensor nodes randomly and
uniformly distributed in a square area of size 2000m×2000m,
generating packets (of size 50 bytes) at different rates, a single
MC moving at 15 m/s, and the channel having a data rate 10
kbps. Table I gives the visit frequency and the mean waiting
time for different packet arrival rates. Based on simulation for
a fixed finite amount of time, the packets failing to get service
due to the single MC not arriving within a fixed time interval
is also noted.

With same packet size and data transmission rates, the
nodes with high packet generation rate contribute more to
the system load. In our activity-based priority polling scheme,
nodes with higher load receive preferential treatment in terms
of number of visits in a single cycle of the MC. The more
the frequency of MC visits at a sensor node, the less the
queueing delay of packets in the buffer and higher the chance
of being collected before their application-specified deadline.
In the scenario we have considered, node G generates 8 packets
per minute, and these packets experience an average queueing
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TABLE I. MEAN MESSAGE WAITING TIME AND PDR AT
DIFFERENT NODES

Node Arrival Rate MC PDR Waiting Time
id (Pkts/min) Visits (%) (Minutes)
A 0.01 3 16.7 23

B 0.1 10 33.3 18.7

C 0.25 17 38.2 11.5
D 0.5 24 46.3 10.7

E 1.0 34 54.5 8.78

F 4.0 69 91.1 8.1
G 8.0 96 99.6 7.0

H 0.2 15 35.7 13.9

I 5.0 77 92.6 7.5
J 2.0 49 74.4 8.3

delay of 7 minutes. At the same time, node A generates
only 0.01 packets per minute and they experience an average
queueing delay of 23 minutes. Similarly, fixing the packet
collection deadline at 7 minutes, very few (only 0.4 %) packets
generated by the highly active node G miss the deadline.
Though the deadline miss ratio is high (83.3 %) in the case
of node A, A can naturally be assumed to be placed in a
relatively inactive region of the network generating very few
packets, the successful collection of which does not contribute
considerably to the overall functioning of the network. Thus,
the scheme provides support for delay-sensitive applications
and differentiated packet delivery, by reducing the packet
waiting time and deadline miss ratio in the areas of high event
activity.

Due to unequal visit frequency at different nodes, each
node receives its share of service from the MC proportional
to its sensing activity or the load offered by it. In addition,
by reducing the unnecessary travels of MC to the low data
rate regions in the network, the overall system utilization is
improved and the fraction of packets getting collected within
the specified deadline is increased. However, this performance
enhancement is at the cost of increased waiting time and
deadline misses at the low load nodes. Thus, though the
scheme ensures fairness by means of allocating service of MC
proportional to the offered load, the scheme appears to be not
fair in terms of the mean waiting time and deadline miss ratio
at all nodes in the network.

The results demonstrating the impact of using a hybrid
architecture for data collection in delay-sensitive applications
are illustrated in Fig. 17. As expected, the PDR for
delay-sensitive applications depends heavily on the node’s
end-to-end connectivity with the static sink, which in turn
depends on the density of nodes in the area and the
transmission range of nodes. As the network becomes sparse,
connectivity gaps occur and sensors get isolated from sink,
resulting in increased deadline miss ratio. The option available
is to communicate at a higher transmit power for critical
situations, of course at the expense of increased energy
consumption. Thus, the results exhibit two trade offs: (i)
between the probability of on-time service completion and
cost of deploying large number of sensor nodes; and (ii)
between the probability of on-time service completion and
energy consumption due to higher transmission range. Delivery
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Figure 18. Delay performance using Hierarchical Architecture

performance for delay-tolerant applications are similar to that
of the basic MC-based model. Latency performance is not
shown, since the latency of delay-sensitive packets is negligible
due to the use of ad hoc multi hop approach and that of
delay-tolerant packets has already been discussed.

The latency performance of the architecture with
hierarchical organization of sensor nodes and MCs is
illustrated in Fig. 18. Packets belonging to different
applications receive differential treatment in terms of average
waiting time. Since good latency performance implies
good delivery performance in MC-based delay-sensitive data
collection, packet miss ratio will be minimum for all
the three types of applications supported: Delay-tolerant,
Delay-sensitive and Time-critical. Compared to the hybrid
architecture, the advantage is the independence of delivery
performance on node density. However, the scheme suffers
from increased complexity of maintaining 3 MCs with
hierarchical organization.

VII. CONCLUSION

Application-oriented event-driven data collection in sparse
underwater acoustic sensor networks has been investigated
in this paper. First, a mobility-assisted framework for
energy-efficient on-demand data collection for delay-tolerant
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application has been proposed. Analytical models for
performance metrics like energy efficiency, message latency,
packet delivery ratio, and sensor buffer requirement have
been evaluated. The basic mobility-assisted data collection
framework for event-driven data collection has been found to
exhibit superior performance over ad-hoc multi-hop network
in terms of energy efficiency and packet delivery ratio at the
cost of increased latency. Thus, it is more suited for sparse
or disconnected networks and in situations where network
lifetime is more important than message delay.

We have augmented the basic model with techniques
for improving the latency performance so as to support
delay-sensitive applications also. Techniques like multiple
mobile collectors and activity-based priority polling have
been found to improve the delay and delivery performance.
Hybrid architecture with static and mobile sinks as well
as the hierarchical architecture of mobile collectors have
been proposed to support application-oriented differentiated
packet delivery. The basic DTN framework for delay-tolerant
applications and the enhanced models for delay-sensitive
applications have been implemented in the NS-2 based network
simulator, thus enhancing the scope for further research in
this area. As a future work, we plan to extend this study
to 3-dimensional networks and to investigate techniques for
optimizing the network performance adaptively based on
application requirements and network constraints.
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