
148

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Peer-to-Peer Collaboration in PeCoCC Framework

Mais Hasan, Robbi Golle, Maik Debes, Jochen Seitz
Communication Networks Group
Technische Universität Ilmenau

Ilmenau, Germany
{first.last}@tu-ilmenau.de

Agnieszka Lewandowska
Staatliche Studienakademie Thüringen

Berufsakademie Eisenach
Eisenach, Germany

lewandowska@ba-eisenach.de

Abstract - Computer-supported collaborative learning is an
important domain of e-learning dealing with researching
efficient methods to encourage people to learn together with
the help of their computers. Many learning environments
support this kind of collaboration and provide several
applications to fulfill the needs for efficient learning. These
learning environments are usually client-server based
solutions, where the users have to access the responsible server
to get the services and data they need. This fact leads to two
main problems of scalability and single point of failure.
Because of its structure, which is similar to the collaborative
learning network, the peer-to-peer technology is suggested as a
solution for these problems. This paper introduces a
framework for using Peer-to-Peer communications, protocols
and services in the area of computer-supported collaborative
learning. It consists of four layers and includes different Peer-
to-Peer modules, which will be selected according to the
application requirements. It also provides a messaging system,
which uses the overlay-multicasting protocols of the supported
Peer-to-Peer modules. This paper shows the advantage of the
proposed framework.

Keywords - Peer-to-Peer communications; computer-
supported collaborative learning; Scribe overlay multicasting
protocol.

I. INTRODUCTION

During the last decade, online learning has gained
enormous interest in most educational institutes. E-learning
can be defined as the process of using electronic media,
information and communication technologies in education.
E-learning includes numerous forms of educational
technology in learning and teaching and can be used jointly
with conventional face-to-face learning. E-learning can occur
in or out of the classroom. It is suited to distance and flexible
learning and can be asynchronous or synchronous. As a
result of the rapid improvement in the areas of education,
information and communication technologies, various e-
learning methods have evolved. This evolution started with
using the information technology in Computer Based
Training (CBT) and developed in the direction of exploiting
the Internet and social interaction in Virtual Learning
Environments (VLE) and Computer-Supported Collaborative
Learning (CSCL) applications.

The most used learning environments have been based
on the client/server approach. A server is the source of
services and information, several clients have access to.
However, the approach suffers from two main problems:

scalability and single point of failure. Thus, different
approaches have been developed to overcome these
problems. One of these is a paradigm shift to the Peer-to-
Peer (P2P) model, which offers better load balancing and
robustness compared with the conventional client-server
model. In this approach, the communication partners act as
servers and clients at the same time. They all offer a part of
the information and retrieve information from other nodes
known as peers. The more peers take part in a P2P network,
the better this network scales and the higher its reliability is.
Several application fields have utilized this P2P approach so
far. In this paper, we introduce a framework to apply this
approach to computer-supported collaborative learning.

Therefore, the paper is organized as follows: Section II
shortly deals with computer-supported collaborative
learning and reviews some CSCL-tools based on P2P
technology. Different P2P technologies and their properties
are analyzed in Section III. Section IV presents our designed
CSCL-tool; the peer-to-peer communications for computer-
supported collaborative learning (PeCoCC) framework and
its functioning [1]. A description of the used software and a
primary implementation of Scribe overlay multicasting
protocol in the P2P simulator PeerfactSim.KOM follows in
Section V. Section VI gives an overview of the current state
of the work and summarizes the paper.

II. PEER-TO-PEER COMPUTER-SUPPORTED

COLLABORATIVE LEARNING

Computer-supported collaborative learning is an
emerging branch of e-learning allowing several students to
cooperate with each other and with the teaching staff online
in order to solve shared tasks or to exchange their skills.
Computer-supported collaborative learning is related to
collaborative learning and Computer Supported Cooperative
Work (CSCW). By collaborative learning, we generally
mean that a group of students work together to discuss,
solve or evaluate teaching materials; on the other hand,
computer supported cooperative work addresses the
technologies and tools supporting people in their work.
Hence, computer supported collaborative learning refers to
the use of CSCW-technologies and tools by a group of
collaborative students in a learning process. These
technologies and tools have been developed to provide an
efficient learning process. Woodill [2] gives an overview of

149

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

all the different technologies used to support collaborative
learning (see Fig. 1).

Figure 1. Information technologies used to support
collaborative learning [2]

Generally, collaboration among the students is
accomplished by many scenarios, which offer team work
and the distribution of teaching materials among the users
themselves. People participating in such teams need to be
able to access the offered resources and services regardless
of their current location. They also need effective means to
communicate and cooperate with each other. In general, we
can recognize three collaborative scenarios according to
three attributes, the time, the place and the tasks of the
collaboration. The first scenario can be called ad-hoc
scenario, which provides collaboration in a limited
geographical area and enables the users to interact and
communicate with limited collaborative functionalities.
Typical examples are conferences where people meet,
exchange contacts and ideas, but do not work together on a
shared task. The second possible cooperative scenario is the
short-term collaboration, which covers a limited time period
and enables the group members to collaborate in order to
achieve a shared task, e.g., work on a paper, or integrate
software components. Such collaboration requires access to
shared resources as well as knowledge and data exchange. It
is also based on a trust relationship among the members,
who do not have to be in the same place. The third scenario
presents the long-term collaboration, which is used by teams
for longer time periods, e.g., within a project. In this case, it
is necessary to offer flexible and different interaction and
cooperation possibilities and services. Usually, a centralized
infrastructure is used for this scenario.

In all these scenarios, the user must be able to find and
access the required resources and services. In this case an
efficient distributed search based on the semantic
description of the according data, users, services, etc. is
needed. Moreover, distributed storage and a secure access to

the resources are really important in these collaborative
systems. Furthermore, a team membership management
service, which should be associated with a trust model as
well as a cooperative messaging scheme among the users, is
necessary to provide a flexible interaction among the group
members [3].

P2P systems as one of the technologies, which are used
in the collaborative systems, provide the efficient, scalable
distributed search, while the semantic search in P2P
networks embodies one of the important current research
areas. Some more research work has been done to provide
distributed storage and cooperative messaging to some P2P
technologies. Furthermore, educational P2P applications
like, e.g., COMTELLA, EDUCOSM, Edutella, and Groove
have been developed for some specific needs and they are
still under development. A brief description with a
comparison between these applications will be highlighted
in the following.

COMTELLA is a P2P file sharing system that allows
students to contribute and share class-related resources with
their community [4]. The shared papers are annotated with
respect to their content in categories. COMTELLA uses a
modified version of the standard Gnutella P2P protocol and
instead of sharing the actual files, only their URLs are
shared. A list of the shared articles, their URLs in the web
and the corresponding comments are distributed among the
users. There is one list for every category. If a student
searches for a paper, he should only search the list of the
matching category. Students can view and read the papers
without downloading them by clicking on the “Visit” button
in the COMTELLA user interface, which starts the default
browser with the URL of the paper.

EDUCOSM is a web-based learning environment
providing a shared view to the Web [5]. It consists of a
collection of server-side scripts and an HTML and
JavaScript based client that runs inside a web browser. The
role of the server is to store the data and act as a proxy
between the client and the rest of the web. The principles of
EDUCOSM and COMTELLA are similar with the
difference that the storage of the data in COMTELLA is
distributed among the users.

Edutella is an educational P2P network built on Sun
Microsystems JXTA Framework [6]. Edutella is an open
source P2P application for searching semantic Web
metadata. It uses the resource description framework (RDF)
for presenting information in the web. Edutella deals with
metadata about content, not with content itself. It adds a
search service to the JXTA framework, so that any node that
carries metadata about some resource can announce an
Edutella search service to the network. The nodes in
Edutella have at least one of three types of roles: provider
(provides a query service), consumer (asks questions) and
hub (manages query routing in the network).

The previously mentioned three P2P collaborative
systems offer only one collaborative tool, mostly a file-
sharing application, which is not sufficient for efficient
collaboration among the users. These systems suffer the

150

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

absence of a coordinative tool like a group calendar, which
is typical for team or group software. They also do not
support cooperation applications like a whiteboard or a text
editor.

These problems have been tried to be solved in one of
the popular collaborative environments, Groove. It is a
collaborative groupware based on the principle of a shared
workspace [7]. Tools like a shared browser, a shared
drawing board or a file archive are used to operate in this
shared workspace. Groove provides servers that are used to
detect new peers in the network and to store content if one
or more peers are offline and cannot see the changes made
at that time. Using server-based services threatens the
availability of these services if one of these servers fails.

Groove is targeted at small workgroups and has its own
protocols. It is only available for the windows platform, so it
suffers interoperability problems. Table І presents a brief
comparison between the previously mentioned collaborative
systems.

TABLE І. A COMPARISON BETWEEN SOME P2P COLLABORATIVE

SYSTEMS
P2P based

CSCL
Applications

Pure P2P
Connectivity
and Services

Collaborative
Applications

Coordinat-
ion and

Awareness

Interoper-
ability

COMTELLA + o - +
EDUCOSM - o - +
Edutella + o - +
Groove - + + -

The comparison is based on four attributes, which reflect
the flexibility and the effectivity of any P2P collaborative
application. The first attribute represents the usage of pure
P2P communication and services, which is supported by
COMTELLA and Edutella, while the other systems need the
functions of servers to provide some services like saving the
profiles of users or offering the collaboration space
awareness.

The second attribute embodies the effective support of
collaborative applications, which is performed very well in
Groove, while the other systems offer only one application
like a file sharing application or a semantic search
application, which is not enough for an efficient
collaboration among the users. Unlike Groove, the other
three systems do not support any collaboration space
awareness or coordination among the users, which is an
important attribute to improve the efficiency of the
collaboration. The fourth attribute is the availability for
different operating systems or in other words the
interoperability, which is considered only in COMTELLA,
ADUCOSM and Edutella.

The previous comparison manifests the need for a
collaborative platform providing many collaborative and
coordinative tools, supporting interoperability and work
space awareness, and basing on fully distributed server-
independent P2P communications and services. However,
there is no open source software having the mentioned
functionalities available at the moment.

To be able to understand the need of the previously
mentioned structures for efficient using of P2P networks in
a collaborative scenario, an overview on the P2P
technologies with some examples is highlighted in the
following section.

III. PEER-TO-PEER TECHNOLOGIES

In contrary to the client-server model, all the members
of a P2P network are equally offering and requesting
services. Generally, we can assert that every P2P network is
established on an overlay network, mostly based on
Transmission Control Protocol (TCP) or on Hypertext
Transfer Protocol (HTTP) connections. Thus, the overlay
and the physical network can be separated completely from
each other. Hence, the overlay connections do not reflect the
physical connections. Nevertheless, it is possible to match
the overlay to the physical network if necessary. P2P
networks can be divided into two classes: structured and
unstructured P2P networks.

A. Structured P2P networks

In a structured P2P network, the network topology and
the location of content is determined by employing a P2P
protocol. In these networks, the content and the participating
nodes share the same address space, which makes it easy
and expeditious to reach any content in this space.
Structured P2P networks are based on a Distributed Hash
Table (DHT) and have no central entities. Frequent
signaling traffic is necessary to maintain the network
awareness of the nodes [8]. Pastry, Chord and Content
Addressable Network (CAN) are examples for this class,
two of them, which are used in the PeCoCC framework will
be briefly highlighted in the following.

Pastry is a distributed hash table (DHT) algorithm that
empowers Internet nodes to build a structured P2P overlay
network. It serves as a basis to build up distributed network
applications on the top of it [9]. Additionally to its IP
address, a Pastry node possesses a unique 128-bit nodeId. It
is randomly assigned from a circular nodeId space, ranging
from 0 to 2128-1. The assignment is performed in a way, so
that nodeIds are uniformly distributed among the nodeId
space. As a result, nodes with adjacent nodeIds differ in
characteristics such as geography, network attachment or
ownership. Routing in Pastry is performed with the help of
key values. A corresponding command looks as follows:
route (msg, key). A message msg will be routed to the (still
alive) node with nodeId numerically closest to the key
value. Assuming N nodes are alive within a network, Pastry
routes as described within 	 steps. Delivery of a
message is guaranteed when less than L/2 nodes fail at the
same time. L and b are configuration parameters, where
typically b = 4 and L = 16 or 32. Every key and nodeId in
Pastry is a sequence of digits with base 2b. During a route
step, a pastry node routes the message to another node
whose nodeId has a prefix, which is one digit (2bbits) longer
than the prefix the key shares with the current node´s

151

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

nodeId. If there is no such node, the message will be
forwarded to a node, whose nodeId shares a prefix with the
key as long as the current node´s, but numerically closer to
the key than the nodeId of the current node. If still there is
no such node, then the message has arrived at its
destination. Fig. 2 shows a simple routing example [10].

Figure 2. Message routing in Pastry nodeId space [10]

The routing tables of Pastry nodes contain (2b-
1)*	 	 entries. Each entry maps a nodeId to the
associated node´s IP address. In the case of node arrival,
departure or failure, the routing tables needs to be updated.
That can effectively be done by exchanging O()
messages. In addition to the routing table, a node supervises
a leaf set. In this leaf set, the node stores the L/2 numerically
closest larger and smaller nodeIds. Within any network
type, inconsistences, like node´s joining, leaving or failing,
happen. These inconsistences have to be considered by
maintaining the routing table and leaf set of nodes. Special
messages are exchanged when some of these events happen,
so that the nodes of a pastry network maintain up-to-date
routing tables and leaf sets.

Since the PeCoCC framework uses Scribe, which is one
of the important Pastry applications, a short overview is
introduced in the following paragraph.

Scribe has been defined by its developers as a “scalable
application-level multicast infrastructure built on the top of
Pastry” [11]. With its help, Pastry nodes can create groups
and exchange multicast messages among group members. It
is possible to create, join and leave multiple groups. Scribe
is able to maintain large amounts of groups with possibly
large amounts of group members.

If a node wants to create a group, it determines a group
name string, which is mostly the topic of the shared task of
the group, and calculates a hash value from it. The groupID
is created by concatenating the hash value of the group
name and the nodeId (which already is a hash value). The
creating node may furthermore decide on group credentials
which determine the node characteristics that have to be
fulfilled in order to allow this node to join the group. The
create message will be sent using the route method of
Pastry, where the key in this case is the groupID. The create

message will be delivered to the node with nodeId
numerically closest to the groupID. This node that is now
called the root of the group, then adds the groupID to a list
of groups it already knows about.

If a node wants to join a group, it routes a join message
through the network. The key of the route method is in this
case also the groupID of the group the node wants to join.
At each hop in the network, Scribe´s forward method will be
invoked. If a node receives the join message, it will look up
its groups table if it already knows the group. If not, it adds
the group to its groups table. It also terminates the join
message and routes a new one on its own, again, with the
groupID as a key. Furthermore, it adds the nodeId of the
sending node to its children list of the group. This procedure
is repeated at the next hops until the message arrives at the
root of the group, which in turn adds the nodeId of the last
node to its children table of the group.

By terminating the join message and routing a new one
at each hop, all nodes will store only the nodeId of the
previous nodes in their children lists of groups. This
behavior will create a tree-like structure to which multicast
messages can be delivered.

If a node wants to distribute a multicast message to a
certain group, it routes the message to the root of the group.
The message will arrive at the root, which will first deliver
its IP address to the sender of the multicast message. In this
way, the sender can use the IP address of the root to directly
send multicast messages to it in the future, which saves
repeated routing. Now, the root sends the message to all the
children of the group it is aware of (which are only one hop
away). These children will then route the message to the
children of the group they are aware of. This behavior is
repeated until the message arrives at the leaves of the
multicast tree. These leaves are the members of the group.
The nodes along the multicast tree are called forwarders of
the group, as they forward multicast messages through the
tree. Forwarders can also be members of the group. Fig. 3
illustrates a multicast group, which has a root with nodeId
(1100) that is numerically closest to the groupID (in this
case 1100 too) [12].

If a node wants to leave a group, it locally deletes its
nodeId from its children table of the group. If the children
table of that group is empty, it sends a leave message to its
parent in the multicast tree (the next hop of a route
message). The parent deletes the sender’s nodeId from its
children table of the group. If the children table is empty,
the parent sends a message to its parent nodes. This
behavior is repeated until the leave message arrives at a
node, which has more than one entry in the according
children table.

The second used P2P overlay is the Content Addressable
Network (CAN), which is also a structured P2P network
based on the distributed hash table concept [13]. The key
space in CAN is organized as a virtual d-dimensional torus
with Cartesian coordinates. This coordinate space is
completely logical and has no relation to any physical

152

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

coordinate system. It is partitioned among the participating
nodes, so each node is responsible for an area of key
identifier space, called a zone. This node also maintains
information like a coordinate routing table with IP addresses
and a virtual coordinate zone of each of its adjacent
neighbors in the coordinate space.

Figure 3. Sending a multicast message to the group with a groupID (1100)

The coordinate space in CAN is used to save (key, value)
pairs by mapping the key onto a point P in the coordinate
system using a uniform hash function. The corresponding
(key, value) pair is then stored at the responsible node of the
zone within which the point P lies. To retrieve any entry
relevant to any key, any node can apply the same hash
function to map that key onto point P and then retrieve the
corresponding value from the responsible node of the point
P. A CAN message includes the destination coordinates.
Using its neighbor coordinate set in its routing table, a node
forwards a message to the neighbor with coordinates closest
to the destination coordinates. For a d dimensional space
divided into n zones, the average routing path length is
(d/4)*(n1/d) hops and every node maintains 2d neighbors.
Taking into account that many different paths exist between
two points in the space, a node can automatically route
along the next best available path, if one or more of its
neighbors failed. One method to improve the performance
of CAN includes using multiple hash functions to map a
single key to several points of the coordinate space and
hence increase the availability. Another method to reduce
the routing delay in CAN is maintaining several
independent coordinate spaces called realities.

B. Unstructured P2P networks

The distribution of nodes and content in unstructured
P2P networks is executed randomly. The position of content
can only be resolved in a local proximity of a node and only
by flooding the request to a particular extent. In this way,

these networks consume the bandwidth, which has been
saved by their random distribution. Unstructured P2P
networks can be centralized with an index server like
Napster, hybrid with dynamic super nodes like Gnutella 0.6
and JXTA, or pure without any central entities like Gnutella
0.4 and Freenet [8]. The following paragraph gives a brief
overview of the Gnutella 0.4 protocol, which supports pure
P2P connection and presents the simplest form of P2P
function in unstructured networks.

Gnutella 0.4 is a decentralized Peer-to-Peer file sharing
protocol. Every node in a Gnutella network performs the
tasks of client and server at the same time. For this reason
these nodes are referred to as servents and the Gnutella
protocol defines the way in which these servents
communicate over the network. The Gnutella protocol uses
ping message flooding to discover hosts on the network. If a
servent receives a ping message, it has to respond with one
or more pong messages, which include the address of a
connected Gnutella servent and information regarding the
amount of available data it is sharing on the network. Once
the address of a connected servent on the network is
obtained, a TCP/IP connection to this servent is created.
Thereby, a new servent will be able to take part in a
Gnutella network. If one of the servents wants to search for
file-based data in the network, it sends a query with some
search criteria to its neighbors, which forward this query to
their neighbors too, if they do not have the researched file.
The forwarding of the query will be continued till the file-
based data is found or the time to live field (TTL) in the
query, which will be decreased by every hop, is found to be
zero. If a servent has the research data, it responds with a
QueryHit message, which contains enough information to
acquire the data matching the corresponding query. This
information includes the IP address and the Servent
Identifier of the responding host as well as the port number
on which the responding host can accept incoming
connections and the result set, which identifies file name,
file size and file index in the responding host [14].

The servent that receives the queryHit as an answer of
its query will initiate a direct download of the requested file,
i.e., a direct connection between the source and the target
servents is established in order to perform the data transfer.
To solve the problem that can arise when the responding
servent is situated behind a firewall blocking incoming
connections to its Gnutella Port, the servent, which received
the queryHit sends then a push message to the servent that
sent the queryHit and is supposed to have the researched
file. The receiver of the Push message should try to establish
a connection to the requesting servent, identified by IP
address and port number included in the push message. If
the requesting servent is behind a firewall, a connection in
the context of Gnutella protocol is not possible.

IV. THE PECOCC FRAMEWORK

The important properties of P2P technologies make them
an attractive searching approach to improve performance of

1100

Multicast
Message

1

2

3

4

4

1101

1001

0111

0100

Root of the
multicast Group

Forwarder 1

Forwarder 2

Leaf2

Leaf1

153

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

some collaborative systems. Until now, most P2P
collaborative environments are developed for specific needs
and a central entity is used in most of them. Therefore, we
have developed a P2P framework for computer-supported
collaborative learning, which we called PeCoCC. The
PeCoCC framework has been designed to be used in short-
term scenario, which serves a limited number of users within
a limited time period. It uses different P2P overlays to
support different applications. This characteristic of the
PeCoCC framework enables completely separate working of
the applications, which increases the robustness of the
system. The PeCoCC framework has a layered architecture
depicted in Fig. 4 [1].

According to the requirements of an efficient
collaboration in the short-term scenario, the main services
that this framework has to provide are as follows:

Collaborative Tools – The PeCoCC framework provides
three applications, which are important to cooperate
efficiently. A shared calendar will be used to allow the users
to organize their regular meetings; a distributed text editor
can be used to jointly make notes on a given subject or to
brainstorm about a topic and P2P file sharing allows users to
access the distributed contents they need to cooperate.

Session Management Service – Participants in a
particular application session, e.g., text editor session, have
to be able to get a list of the other members in this session.
In this case, a session management unit in the application
layer saves a profiles-list of the registered participants for
every provided application. This list contains the UserIDs as
well as the registered role and priority of every user in the
corresponding application. A session management unit also
maintains the last case of the application and implements an
“Initiation” mechanism to consistently provide the
information for latecomers to enable them to participate in
the ongoing session. This is typically achieved by getting
the state of the distributed application from the current
participants and by initializing the application of the
latecomer with this information.

Membership Management Service – To be able to use
the framework, the user has to be identified by the
membership management unit. This unit has to be
associated with a trust model, which provides every
registered user with an application-ID number (APP-ID
number). This number identifies the message traffic in the
framework, so that only the registered user can send legal
messages.

Repair Mechanism – If a participant in a session
suddenly or with intent is going offline, or if the connection
of a session member is broken because of technical
problems, this mechanism has the task to repair the overlay
topology of the network, so that the ongoing session should
not be disrupted. This mechanism covers also a late join
service, which maintains the overlay topology in the case of
newcomers.

Synchronization – For some application modules (e.g.,
distributed text editor), the group members need to be
synchronized to interpret the events in the correct time and

order. Furthermore, the most repair algorithms are based on
the estimate of the network delay.

Security – As it is mentioned previously, the PeCoCC
framework provides many collaborative tools, which based
on the exchange of knowledge and data. Therefore, a
reliable security mechanism, which controls the
participation of a session and takes into account the
individuality of the data and documents, is needed. Also, the
framework provides security mechanisms (e.g., encryption)
to keep personal data secure.

Group Management – Beside the membership
management and the session management services, the
framework must include functions to manage the
communication among collaborative group members in the
overlay network. These functions are achieved in the
PeCoCC framework using the concepts of overlay
multicasting and the cooperative messaging scheme among
the peers in the overlay topology.

PeCoCC Messaging System – The PeCoCC framework
uses its own message scheme and identifies thereby its used
massages in the network and between the layers of the
framework. Having an own messaging scheme makes it
possible for one user to be member in more than one session
and one application. It helps by connection between two
overlays, which a user is member in.

The PeCoCC framework also presents the concept of
combination between a specific application and the most
appropriate P2P overlay for this application. This concept
will improve the robustness of the overall system and secure
the availability of the other applications in case of attack of
one overlay by some possible malicious peers.

Figure 4. The PeCoCC framework [1]

Therefore, the PeCoCC framework consists of four
different layers, which provide its main functionalities and
services. The layers are introduced in the next subsections.

Application
 Layer

Peer-to-Peer
Middleware

Layer

Transport
Layer

Graphical User Interface

Application1 Application2

(MC) Module

Security Synchronicity (OS) Module

.... P2P Module1 P2P Module2 P2P Module m

Group Manager

Supplementary Services
(Retrieve, Late Join, Repair, etc.)

.... TCP UDP

Session
 Layer

154

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Application Layer

The application layer consists of three main parts. The
graphical user interface allows the interaction between the
user and the framework. It facilitates a consistent operation
of all the desired CSCL services. The PeCoCC Management
and Control (MC) module is responsible for controlling the
data flow through the framework and the work flow among
the users. It embodies the user’s membership management
and the session management services in the PeCoCC
framework. The MC module influences the application
program and also saves a list of the cooperating participants,
their application-dependent roles and their priorities. The
peers should be identified by the MC module to be allowed
to enter the system. The rights of the users can be defined by
the applications themselves. In a file sharing application, for
example, all the users have equal rights, while in a text
editor; the teacher should have more possibilities to
manipulate the entered information than the students.
Furthermore, in sessions without a dedicated chair, the MC
module is responsible for defining the user that has the
according rights of a chair.

The third part is composed of application modules.
These can be freely chosen and added on demand. As stated
above, the first modules of our choice are a distributed text
editor application, a calendar, and a file sharing application.
These modules interact with the graphical user interface and
the MC module.

B. Session Layer

The session layer provides general mechanisms that are
necessary for the offered applications. Currently, we have
concentrated on two mechanisms. The security module is
responsible for securing private user data and the
synchronicity module provides a mechanism to synchronize
the different group members so that all of these receive the
events in the same order. This service is necessary for real
time applications like a distributed text editor. Since the
usage of a P2P overlay in the PeCoCC framework is
application dependent, the session layer includes the
Overlay Selection (OS) module, which is responsible for
saving the information about the appropriate P2P overlay
for each application. This information will be obtained by
several experiments according the latency and load of the
network taking into account the requirements of each
application.

C. Peer-to-Peer Middleware Layer

As P2P technologies exist with respective advantages
and disadvantages, the PeCoCC framework allows the usage
of different pure P2P technologies. Each technology is
encapsulated in a P2P module and offers its communication
functionality. Which module should be used is selected by
the OS module in the session layer according to the needs of
the application. To illustrate the functionality of this layer,
we have started with two well-known P2P approaches.

The first overlay is the content addressable network
(CAN), which can be used for an efficient distribution of
information and teaching materials. As it is mentioned in
Section III, it is a structured P2P network based on DHT.
CAN offers high scalability and reliability and provides
more load balancing than any other pure P2P overlay [15],
but it does not take into account the underlying network
conditions. Therefore, it is not suitable for real-time
applications due to the fact that it does not make any
correlation between the overlay distance and the actual
number of unicast hops between the hosts in the underlying
network.

The second overlay is the structured P2P network Pastry,
which considers the underlying network topology and
supports a scalable and distributed object location and
routing in application layer [8]. Pastry provides an overlay
multicasting protocol and collaborative messaging scheme,
thus it can be integrated in a P2P module for applications
like a distributed text editor and instant messaging.

The Peer-to-Peer Middleware layer also comprises a set
of supplementary services that extend the P2P modules with
late join, retrieval and repair functions

Furthermore, in each overlay network, the users
belonging to one user group have to be managed. This is
done in the module called group manager. This module is
responsible for forming and supervising a collaborative user
group in the overlay network. It uses the concept of overlay
multicasting to achieve these tasks.

Overlay multicast implements a multicast service at the
overlay network layer. Peers participating in a multicast
session use the routing and messaging structure of this
overlay. Overlay multicast is achieved through message
forwarding among the members of the multicast group at the
overlay network using unicast across the underlying
network or Internet. So the hosts in overlay multicast handle
group management, routing, and tree construction, without
any support from the conventional Internet routers, which
makes overlay multicasting much easier to deploy than IP
multicasting [16].
As Pastry and CAN have been selected as first two P2P
overlays in the PeCoCC framework, two overlay multicast
protocols built on the top of these overlays have been
investigated. CAN-based multicast uses the flooding of
messages to all the participating nodes in the group. The
members of the multicast group first form a group-specific
“mini” CAN and then multicasting will be achieved by
flooding over this mini CAN [17]. Scribe is a tree based
overlay multicast mechanism built on top of Pastry. It builds
a single multicast tree for the whole group. Every tree has a
root that is responsible for distributing the message among
the multicast tree, which is created by combining Pastry
paths from each group member to the tree root [11]. The
implementation of our work has been started with Scribe
protocol, which is described in more detail in the following
section.

155

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. Transport Layer

The transport layer embodies the known transport layer
in the OSI model, which provides access to different
commonly used transport protocols. In PeCoCC framework,
an appropriate transport protocol will be selected accordingly
to the requirements of the opened applications. For example,
the distributed text editor utilizes the Transmission Control
Protocol TCP, which provides a reliable transport service.

E. Functioning of the System

To understand the functioning of the PeCoCC
framework, a collaborative scenario will be presented in the
following.

A user starts an application and wants to create a
collaborative session with other users, who he knows. The
peer then, which is used by this user, will send an
announcement with a defined groupID, which can be a hash
value of the topic of the session, in the network. In this way,
the other peers will be able to find it and join the
collaborative session or group. The users how join a
collaborative group, receive from one of the group members
the all information, which is needed to be able to interact in
the ongoing session (e.g., UserIDs of the other group
members, the current state of the opened application and its
corresponding data, etc.). Every user has its role and
priority, which are registered in its profile in the framework.
Only the user with an administrator role can change these
registered data. According to this scenario, the functioning
of the framework will be highlighted in the following.

When the user starts one of the available applications
(e.g., a distributed text editor), the MC module is activated
and sends a CHOOSE message to the OS module in the
session layer containing information about the opened
application. The OS module then decides on the basis of the
opened application which P2P module is more appropriate
for this application and replies to the MC module in the
application layer with an OVERLAY message. The OS
module also activates the necessary services for the opened
application.

The MC module receives the OVERLAY message and
retrieves the saved list of the expected participants (the
participants of an application should be previously
registered by the MC module and saved in a specific list).
The MC module then sends a START message to the
corresponding P2P module in P2P middleware layer. In the
P2P middleware layer, the selected module starts the P2P
connection and takes part in the P2P network. The group
manager sends a DISCOVERY message with a group ID to
find out if the collaborative group with group ID in the P2P
network has already been built or not. If it receives a
positive answer, the group manager then sends a JOIN
message with the group ID using the overlay multicasting
protocol to join a collaborative group and retrieve the
information about the participating peers as well as the
important data to interact in the current session. This case is
illustrated in Fig. 5.

The information retrieved by the group manager is
returned to the MC module to specify the role and the rights
of the peer in the session. The role of the peer will appear in
form of active or inactive interaction possibilities in the user
interface.

Figure 5. Joining the already built session group

If a collaborative group does not exist, the group
manager will send a CREATE message in the P2P network
to create a collaborative group with a specific group ID. It
will also wait for any join message sent by other peers,
which want to join the group. Fig. 6 shows the whole
process in this case.

Figure 6. Creating a new session group

Which rights and roles the user has, is managed in tables
and saved in the MC module. One table is defined for each

Application1

Application2

(MC) Module

Security Synchronicity (OS) Module Session
Layer

Transport Layer

P2P Middleware
Layer

Supplementary
Services

Group Manager P2P
Module2

TCP UDP …

CHOOSE Overlay
START

DISCOVERY JOIN

Application1

Application2

(MC) Module

Security Synchronicity (OS) Module

CHOOSE Overlay

P2P
Module2

START

Group Manager Supplementary
Services

Session
Layer

P2P Middleware
Layer

DISCOVER

…TCP UDP

CREATE

Transport Layer

156

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

application. In the case where all users have the same rights,
a mechanism to manage and identify the roles will be used.

This mechanism can take into account the registering
sequence of the participants or the alphabetic order of the
user ID names, etc.

V. SOFTWARE AND IMPLEMENTATION

The PeCoCC framework is still in implementation
phase. It supports the interoperability and is being
implemented in Java to be independent from the underlying
platform. Three P2P simulators have been studied to select
the most suitable one, which cover the main structures of
our framework. These simulators are FreePastry [18],
PeerSim [19] and PeerfactSim.KOM [20]. These three
simulators have been chosen because they are popular
among the P2P research community. Furthermore, all three
are implemented in Java, the programing language of our
framework. In this work, the PeerfactSim.KOM simulator is
used because of its visualization capabilities and detailed
documentation, which are not available in the other both
simulators. In this section, we give a brief overview of the
used PeerfactSim.KOM simulator and present the
implementation of one of the missing structures in this
simulator, which is necessary for the evaluation process of
our framework.

A. PeerfactSim.KOM

PeerfactSim.KOM is a stand-alone simulator created for
simulating P2P Networks. It is a purely event-based
simulator and has a layered architecture. This layered
architecture is similar to the layered structure of the
PeCoCC framework and comprises an application layer, a
service layer, an overlay layer, a transport layer and a
network layer. At the network layer churn, jitter and latency
can be modeled and adjusted. The transport layer currently
supports UDP and TCP. The overlay layer contains the
different P2P overlay protocols, which PeerfactSim.KOM is
capable of simulating. The service layer offers additional
services, the most important one is monitoring. The
application layer hosts P2P applications. Currently, only a
file sharing application is implemented [20].

PeerfactSim.KOM simulator as mentioned above
provides implementation of numerous P2P protocols like
Pastry, CAN, Gnutella, etc. It also offers a user-friendly
graphical user interface (Fig. 7).

For every P2P protocol, that shall be simulated, there is
an XML-based configuration file, which specifies the used
layers, the P2P protocol, and the maximum number of
nodes, as well as the maximum simulation time and the
classes for data collection.

For gathering data arising from the simulation, the
PeerfactSim.KOM simulator offers logging and statistic
functionality. The logging is responsible for recording the
events during a simulation like nodes joining and failing.
The statistic functionality gathers a considerable amount of
statistical data from the simulation, such as number of failed

messages, sent messages and received messages, as well as
data from every participating node, such as number of
neighbors, number of leafs, messages sent per second, etc.

Together with the considerable amount of gathered
information, the simulator is able to give a visualization of
the simulation with rich data in the GUI. Fig. 8 shows a
screenshot of the visualization´s main window in case of
Pastry-simulation.

Figure 7. PeerfactSim.KOM ´s Graphical user interface

After the simulation is finished, a window is opened,

showing an interface where the simulation can be reviewed
in a media player-like fashion. A graphical view displays
the nodes and their inter-network connections.

Figure 8. Visualization´s main window in case of pastry simulation

157

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Various parameters can be viewed and displayed for the
nodes and their connections like nodeId, number of
neighbors, type of messages, etc. The time variant process
can be started, stopped, paused, fast forwarded and
rewound. The execution speed can be slowed and
accelerated. Another valuable feature of the simulator is the
Gnuplot-Export. The previously mentioned parameters can
be plotted with the help of Gnuplot and displayed as
functions over simulation time. A convenient visualization
can be achieved this way.

PeerfactSim.KOM simulator offers the main block for
testing and evaluating the functioning of the PeCoCC
framework. It can be run in the eclipse environment and
extended with more applications and protocols, which
present the work of PeCoCC framework. As it is mention in
the previous section, the Pastry overlay has been chosen to
serve some real time applications like a distributed text
editor and a shared calendar. The PeerfactSim.KOM
simulator provides an implementation of the Pastry overlay
but lacks some more important functions, which are known
as applications of pastry itself. These functions are needed
to fulfill the requirements of running real time applications
on the top of the Pastry overlay. They comprise SCRIBE,
the overlay multicasting protocol as well as POST, the co-
operative messaging system, which extent the functionality
of Pastry algorithm.

B. Pastry implementation in PeerfactSim.KOM

As one of DHT algorithms, Pastry is implemented in the
package impl/overlay/dht/pastry at overlay
network layer in PeerfactSim.KOM simulator. The
implementation consists of many sub packages that define
the components, messages and operations of Pastry. Fig. 9
shows a hierarchy presentation of the implementation of
Pastry´s sub packages in PeerfactSim.KOM simulator.
Some important classes in these sub packages will be
described briefly in the following paragraphs.

Figure 9. Pastry implementation in PeerfactSim.KOM simulator

Many important components of the Pastry overlay
network are declared in the sub package pastry/
base/component. For example, the class PastryID
represents the overlay ID used by Pastry. Also the class
PastryNode is used to represent node of the Pastry
overlay and how it manages its leaf and neighbor sets as
well as routing table. The method route(msg, key) is
also declared in this class. The class
PastryMessageHandler handles incoming messages
and dispatches or processes them. The method send(msg,
IP) is declared in this class.

All the messages of Pastry overlay are declared in the
sub package pastry/base/messages. For example,
the class LookupMsg is used to find the responsible node
for a given target ID. Also the class JoinMsg represents
the message sent by a node to join the pastry overlay.

In the sub package pastry/base/operations
many operations of the pastry overlay are declared; e.g.,
look up and join operations. The following paragraph
presents the primary implementation of Scribe in
PeerfactSim.KOM simulator, which is still under
development.

C. SCRIBE

As it is mentioned in Section ІІІ, Scribe is built on the
top of Pastry; it heavily relies on its functionality. With the
help of Pastry´s methods route(msg, key) and
send(msg, IP), the four messages types of Scribe can
be distributed in the network. These messages are

 create(credentials, nodeId),
 join(credentials, nodeId),
 leave(credentials, nodeId) and
 multicast(credentials, nodeId,

message).
All Scribe messages use the route or send method of

Pastry, where the key is the according groupID of the
message, which will be described later. Scribe also has its
two own methods, which instruct the nodes of the network
how to handle Scribe messages. These methods are
forward and the deliver.

In order to implement application specific behavior of
Scribe, changes and extensions of the code have been
performed on the application layer and overlay layer of the
simulator. On the application layer, the behavior of the
application encountering a certain event of the simulation is
defined. On the overlay layer, the pastry implementation has
been adapted to process and react to Scribe application
behavior. Furthermore, a scenario triggering certain
application behavior (called actions) has been defined in a
file, as well as the simulator configuration in a configuration
file.

1) Adaption of the Application Layer: The application
has been divided into three functional units ensuring the
desired behavior. The core of the Scribe application, which

158

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

comprises the first functional unit, consists of the two java
classes ScribeApplicationFactory and
ScribeApplication. The first class ensures that every
participating node of the network runs an instance of the
Scribe application. In the second class, the methods join
and leave, which enable the node to join and leave the
Scribe application in the overlay network, are defined. Also,
all basic methods, which realize the application specific
behavior (createGroup, joinGroup, leaveGroup,
sendMulticastMsg) are declared in
ScribeApplication class. These methods in turn call
specific corresponding operations that form the second
functional unit of Scribe implementation.

These operations are
 ScribeLeaveOperation,
 ScribeCreateGroupOperation,
 ScribeJoinGroupOperation,
 ScribeLeaveGroupOperation
 ScribeMulticastOperation
 ScribeJoinOperation

Fig. 10 presents an UML diagram of this part of
implementation. Basically, all operations call the methods of
functional unit three with the help of the method
executeOne. The third functional unit adapts the general
application specific behavior to the Pastry overlay. The class
PastryHandler contains all Pastry specific methods,
which are called by the method executeOne of the
according operation: join, leave, createGroup,
joinGroup, leaveGroup and sendMulticastMsg.
These methods execute the route method of Pastry, which
contains the according key and Scribe message defined by
the user of the application. The information, which key and
Scribe message type to use are passed down from the user to
the methods of the application layer. With these
specifications in the application layer, the simulator is
enabled to trigger the behavior of Scribe application
according to incoming events specified by the user. In order
to process and react on this behavior, the Pastry
implementation needed to be adapted on the overlay layer as
well.

Figure 10. UML diagram for operation classes of Scribe´s implementation in application layer

159

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2) Adaption of the Overlay Layer: The implementation
of Pastry on the overlay layer contains several functional
units, of which only two needs to be adapted.

 In the first functional unit, the four kinds of Scribe
messages, which use the method route, need to be defined
at the overlay layer implementation of Pastry. The
definitions of the messages are realized in the following java
classes SCRIBEcreateGroupMsg, SCRIBEjoinMsg,
SCRIBEleaveMsg, and SCRIBEmulticastMsg. The
second functional unit defines the basic components and
functionalities of the Pastry algorithm. The Processing of
the Scribe messages are defined in the class
PastryMessageHandler, which handles incoming
messages and dispatches or processes them in every Pastry
node. The forward and deliver methods of the original
Scribe specification are also implemented there for every
Scribe Messages. Fig. 11 presents the UML diagram of a
part of Scribe implementation in overlay network.

Furthermore, the class PastryNode has been adapted
in order to maintain the message groups and children.

Hence, the class PastryMessageHandler reacts on
incoming Scribe messages and calls group management
methods of PastryNode. Thus, the Pastry implementation
of the simulator has been enabled to process and react on
incoming Scribe messages.

3) Simulation Scenario: In order to adapt the
simulator to the newly implemented application, a
configuration file had to be created. In configuration files,
every component of the simulator can be defined. For the
desired Scribe application, an entry of the Scribe application
had to be added to the application component of the
simulator, as well as an entry of the Pastry overlay to the
overlay component. Furthermore, basic parameters of a
simulation scenario can be defined, such as total number of
nodes or overall simulation time. Since our implementation
aims to create collaborative group up to 20 members in a
short-term scenario, the variable size, which presents the
number of the nodes, has been set to value 20. Fig. 12
illustrates the variables of the Scribe configuration file.

Figure 11. UML diagram for SCRIBEcreateGroupMsg and SCRIBEmulticastMsg classes at overlay layer

160

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Every simulation scenario comprises several events,
which need to be simulated. In the case of Scribe these
could be: a node creates a group, another node joins the
group, a third node sends a multicast message to the group,
etc. In order to trigger these events in the simulation, an
action file must be created. In the action file, all events are
described by according nodeId, simulation time, application
tag, and the events themselves. The simulator then processes
the action file and triggers the according behavior at the
application-layer by directly calling the methods of the class
ScribeApplication.

Figure 12. The variables of the Scribe configuration file

To test the implementation of Scribe, which is still in
progress and need to be analyzed with better monitoring
tools by the simulator, the following simple scenario has
been accomplished. In the Fig. 13, the action file, which
contains the simulation scenario of Scribe application, can
be shown. In the scenario, there is a node called one as well
as nineteen nodes called world summarized to a group
called all. In the first minute of the simulation, node one
joins the Scribe application. Between the minutes 2 and 40,
the nineteen remaining nodes join the Scribe application. At
minute 45, node one creates a group with groupID 200dec,
which is randomly generated. Between the minutes 50 and
80, all remaining nodes join the created group. Finally, the
node one sends a multicast message to the created group in
the minute 90.

Figure 13. Scribe Simulation Scenario

To be able to investigate the functions of the new
implemented Scribe application, PeerfactSim.KOM
simulator provides the possibility to collect the output data
and write them into a file that can be used for plotting with
the tool Gnuplot. The Fig. 14 presents a line graph

showing the number of initiated operations in the simulation
scenario according to the time of simulation.

Figure 14. The number of initiated operations of Scribe application in
the time of simulation scenario

After all nodes joined the Scribe application at the
minute 40, one operation is executed in the minute 45,
which is supposed to be the operation of creating a
multicasting group. The operations of joining the
multicasting group by the host group all, which consists of
nineteen nodes, have taken place between the minutes 50
and 80 as it is explained in the action file. Whereas, the last
prong at the minute 90 embodied the sending of multicast
message.

On the other hand, the Fig. 15 shows the number of
messages sent by the peers themselves to maintain the
overlay and to join the Scribe application during the time of
the simulation scenario.

Figure 15. The number of sent messages in the time of simulation scenario

161

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

As mentioned in the action file of Scribe, all nodes have
to be joined the Scribe application before the minute 40.
That means the messages traffic during this time will be
more active than after minute 40, which is illustrated in the
Fig. 15.

The first results of this implementation showed some
needs for more monitoring and analyzing functions of
Peerfactsim.KOM simulator like the existence of a
visualization analyzer and multicast message analyzer.
Furthermore, the implementation has to be improved by
extending the multicast message and testing it with many
created groups.

VI. CONCLUSION AND FUTURE WORK

In this paper, an overview of the current P2P
collaborative environments and their use case has been
presented. The P2P technologies have been briefly
highlighted. We have also introduced our PeCoCC
framework to allow computer-supported collaborative
learning based on pure P2P networks that provide fully
distributed and server-independent P2P communications and
services, which increase the availability of these services
and solve the problem of single point of failure present in
server-based systems. The PeCoCC framework is currently
in implementation phase. It supports interoperability and is
being implemented in Java using the integrated development
environment eclipse. To evaluate the performance of the
framework, a P2P simulator named PeerfactSim.KOM is
used. This simulator has a similar layered architecture like
the PeCoCC framework and supports many forms of
messages to communicate among the layers in the host. It is
also implemented in Java and it offers a user-friendly
graphical user interface. This simulator lacks some
important protocols and components that will be needed to
evaluate the PeCoCC framework. One of these protocols is
the Scribe overlay multicasting protocol, which is also
highlighted in this paper. The main components of the
Scribe multicasting protocol have been implemented in the
PeerfactSim.KOM simulator environment.

In the future, more extensive simulations of Scribe will
be performed, i.e., simulations with a large amount of
created groups, adding churn to the network, extending the
multicast message to be able to contain more complicated
content and investigating the network load and message
routing latency by some collaborative scenarios.
Furthermore, the structure of the PeCoCC framework, i.e.,
management and control module, overlay selection module
and the PeCoCC collaborative messaging scheme have to be
refined.

REFERENCES
[1] M. Hasan and J. Seitz, “Peer-to-peer communication for

computer-supported collaborative learning. The PeCoCC
framework,” In the Sixth International Conference on Mobile,
Hybrid, and On-line Learning (eLmL2014) IARIA, Mar.
2014, pp. 25-29, ISSN: 2308-4367, ISBN: 978-1-61208-328-5

[2] G. Woodill, “Computer supported collaborative learning in
education and training: Tools and Technologies,” Phil. Trans.
Brandon Hall Research. San Jose. CA. USA, 2008.

[3] M. Hauswirth, I. Podnar, and S. Decker, “On P2P
collaboration infrastructures,” Proc. 14th IEEE International
Workshop on Enabling Technologies: Infrastructure for
collaborative Enterprise, IEEE Press, June 2005, pp. 66-71,
DOI: 10.1109/WETICE.2005.47.

[4] J. Vassileva, “Harnessing P2P power in the classroom,” Proc.
7th International Conference, ITS, Aug. 2004, pp. 305-314,
doi:10.1007/978-3-540-30139-4_29.

[5] M. Miettinen and J. Kurhila, “EDUCOSM – Personalized
writable web for learning communities,” Proc. Information
Technology: Coding and Computing, ITCC, Apr. 2003, pp.
37-42, DOI:10.1109/ITCC.2003.1197496.

[6] C. Qu and W. Nejdl, “Interacting the edutella/JXTA peer-to-
peer network with web services,” Proc. IEEE Symp.
Application and the Internet, 2004, pp. 67-73,
doi:10.1109/SAIT.2004.1266100.

[7] T. Smith, “Sharepoint 2013 user´s guide: learning microsoft´s
business collaboration platform,” 4th ed, Apress, 2013, ISBN:
978-1-4302-4833-0.

[8] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A
survey and comparison of peer-to-peer overlay network
schemes,” Communications surveys & tutorials, IEEE, vol. 7,
2005, pp. 72-93, DOI:10.1109/COMST.2005.1610546.

[9] A. Rowstron and P. Druschel, “Pastry: scalable, decentralized
object location and routing for larg-scale peer-to-peer
systems,” In 18th IFIP/ACM International Conference on
Distributed Systems Platforms, Nov. 2001, pp. 329-350,
ISBN: 3-540-42800-3.

[10] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S.
Wallach, “Secure routing for structure peer-to-peer overlay
networks,” Proc. 5th Symposium on Operating Systems
Design and Implementation, ACM Sigops Operation Systems
Review, 2002, pp. 299-314, DOI: 10.1145/844128.844156.

[11] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron,
“Scribe: A large-scale and decentralized application-level
multicast infrastructure,” IEEE Journal on Selected Areas in
communications, vol. 20, pp. 100-110, Oct. 2002, DOI:
10.1109/JSAC.2002.803069.

[12] J. Nogueira, “A large-scale and decentralised application-
level multicast infrastructure,”. [Online]. Available from:
http://www.gsd.inesc-id.pt/~ler/docencia/tm0607/slides/Scrib
e-JoaoNogueira.pdf, 2014.12.01.

[13] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.
Shanker, “A scalable content-addressable network,” Proc.
conference on Applications, technologies, architectures, and
protocols for computer communications, SIGCOMM 01,
2001, pp. 161-172, DOI: 10.1145/383059.383072.

[14] S. Ertel, “Unstructured P2P networks by example:
Gnutella0.4, Gnutella0.6,“. [Online]. Available from:
http://ra.crema.unimi.it/turing/materiale/admin/corsi/sistemi/l
ezioni/m3/m3_u2_def/ceravolo_file2.pdf. 2014.12.01

[15] D. Boukhelef and H. Kitagawa, “Efficient load balancing
techniques for self-organizing content addressable networks,”
Journal of Networks, vol. 5, Mar. 2010, pp. 321-334,
doi:10.4304/jnw.5.3.321-33

[16] M.F.M. Firdhous, “Multicasting over overlay networks – a
critical review,” International Journal of Advanced Computer
Science and Applications, vol. 2, pp. 54-61, Mar. 2011, ISSN
2156-5570.

[17] S. Ratnasamy, M. Handley, R.M. Karp, and S. Shenker,
“Application-level multicast using content-addressable
network,” In the third International COST264 Workshop on
Networked Group Communication, Oct. 2001, pp. 14-29,
ISBN:3-540-42824-0

162

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[18] “The FreePastry tutorial,”. [Online]. Available from:
https://trac.freepastry.org/wiki/FreePastryTutoriaal, 2014.12
.01

[19] A. Montresor and M. Jelasity, “PeerSim: a scalable P2P
simulator,” Proc. IEEE Ninth International Conference on
Peer-to-Peer Computing, 2009, pp. 99-100, DOI:
10.1109/P2P.2009.5284506.

[20] “PeerfactSim.KOM documentation,”. [Online]. Available
from: https://sites.google.com/site/peerfactsimkom/documen
tation, 2014.12.01.

