
262

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Moving Towards Distributed Networks of Proactive, Self-Adaptive and

Context-Aware Systems: a New Research Direction?

Remus-Alexandru Dobrican and Denis Zampunieris

Computer Science and Communication Research Unit

University of Luxembourg

Luxembourg, Grand Duchy of Luxembourg

Email: {remus.dobrican, denis.zampunieris}@uni.lu

Abstract—Instead of being static and waiting passively for

instructions, software systems are required to take a more

proactive approach in their behaviour in order to anticipate

and to adapt to the needs of their users. To design and develop

such systems in an affordable, predictable and timely manner

is a great software engineering challenge. Even though there

have been notable steps for modelling self-adaptive and

context-aware systems, there is still a lack of a generic model

agreed by the research community for developing smart

applications. The goal of this study is to explore the idea of

having multiple networks of proactive context-aware adaptive

systems working together for achieving common goals. To

support our vision, we introduce a context-aware self-adaptive

software model for mobile devices capable of learning from the

user’s behaviour by using Proactive Computing. The novelty

comes from the possibility of developing smart applications

that would benefit from the proposed properties. Moreover, we

discuss a motivating scenario that led to this work and propose

a case study where a collaborative e-Learning application is

implementing our model.

Keywords-smart applications, self-adaptive systems, context-

aware systems, proactive computing, distributed networks.

I. INTRODUCTION

This paper is an extension of the work-in-progress
presented in [1], where we introduced a vision showing the
tendency of moving towards various networks of context-
aware, proactive and self-adaptive systems. In this extended
version, we support our vision by analyzing the latest
proposed middleware, architectures and applications that try
to incorporate the mentioned properties, by providing a
motivating scenario and by proposing a model for software
systems capable of integrating all the above properties.

The demand for devices and applications that are able to
adapt their behavior at run-time, as a response to the
increasing demands of users, has risen considerably in the
last couple of years [2]. Giving instructions to complex
software systems is becoming quite a difficult task for the
users, as it requires their continuous involvement, a set of
advanced technical skills and a lot of knowledge about the
system. As a consequence, our model is leading the users
towards new ways of interacting with smart systems that will
be able to perform a variety of automated tasks on users’
behalf. Three main properties are to be distinguished when
speaking about systems that dynamically adapt themselves

according to the context variation or the requirements
change: Self-Adaptation, Proactivity and Context-Awareness.
Modeling such systems is a difficult task because important
aspects like the user’s needs, the settings of the environment
in which they are deployed and the all the other requirements
have to be taken into account. There is no standard model
agreed upon by the research community, which could serve
as a common basis for developing smart applications.

Self-adaptation in software systems comes in many
different aspects. Self-adaptive mechanisms provide the
necessary means to make changes either at an architectural
level or at a behavioral level. Systems that possess this
property can be characterized by their operating mode that
permits them to fulfill easily their goals in a modified
context.

Feedback loops provide an architectural solution for self-
adaptation. In [3], the authors indicate that feedback loops
usually include four key activities: collecting, analyzing,
deciding and acting. These activities are essential for
achieving self-adaptability, context-awareness and
proactivity. In Fig. 1, a generic model of a unidirectional
feedback loop is given. It shows the inputs or the outputs of
each state but the data flow between the states is omitted.
During the first stage of the feedback cycle, the collection of
data, relevant context information can be acquired by the
system from the environmental sensors and from other
internal and external sources. Then, the data is analyzed by
the system according to its policies and constraints, while
taking in account the user’s preferences. The process of
transforming raw data into relevant context-information is

Figure 1. Autonomic control loop [4]

263

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

quite problematic and complex because of many errors and
broken sensors. A solution for this particular problem was
proposed in [5]. Once the system reaches the third phase it
will reason if future actions are needed or the system can get
back in its initial state of collecting information. If future
actions are required, then the system enters in the fourth
state, were the actual adaptation happens. And here comes
one of the biggest challenges: should the system have
enough authority to perform adaptation in all cases?

The above feedback loop was inspired from IBM’s four-
stage cycle for autonomic computing called MAPE-K [6].
One of the main differences is that the MAPE-K model uses
a knowledge base shared between all the stages.

Context-aware systems open new dimensions and

opportunities for developers to create smart applications,

especially for mobile devices. These systems are designed to

continuously analyzing contextual information, which is a

key feature for determining the occurrence or the lack of

events. When a system is aware it means it acquired

knowledge about the surrounding environment by its own

means. Awareness refers to the state of being aware in

which a system can be found. Various sensors capture the

data that creates context information. They can be classified

in three categories: physical, virtual and logical [7]. Physical

sensors are the most frequent used type of sensors and they

can provide data about location with the help of GPS, GSM,

RFID tags, optical data from the cameras and IR sensors,

motion data from accelerometers and gyroscopes, and

ambient data collected from thermometers and barometers

[8]. Virtual sensors can capture context data from

applications and services including operating system events,

application data and network events. Logical sensors

combine data received from the other two types of sensors

and they provide higher-level context information.
Events play a central role in the lifecycle of software

systems. They range from simple request for different
services to serious incidents that prevent the well functioning
of a system. Events can be divided into three main
categories: foreseen (taken care of), expected (planned for)
and unexpected (not planned for) [9].

Tennenhouse [10] first introduced Proactive Computing
as a new mode of operation that was crucial for moving
towards human-supervised computing. The essential features
of proactive systems, as seen in [11], are taking decision for
their users and acting on their own initiative. Proactive
Computing is a solution for foreseeable events, while
Context-Awareness and Self-Adaptation handle unforeseen
events, which are seen as deviations from normal situations.

The contribution of this paper is three-fold. First, it
examines the most relevant work in several research fields
like Proactive Computing, Context-Awareness and Self-
Adaptation, for pointing out current research direction, what
is missing and what are the next steps to be taken. Second, it
offers an middleware architecture for supporting smart
mobile applications, capable of performing automated tasks
for the user, of analyzing large quantities of data and of
making decision in different contexts. And third, it provides

an analysis of a distributed network of mobile proactive
systems that are implementing our model.

The rest of the paper is organized as follows: Section II
provides an overview of related work relevant to our
research, in Section III we describe a motivating scenario
that lead to this work, Section IV describes the main
components and the characteristics of a Proactive Engine,
Section V investigates the possibility of having multiple
distributed networks of Proactive Engines, Section VI
provides an example of a smart application based on our
model, Section VII proposes multiple domains where
applications using our model could be developed, Section
VIII contains a brief implementation overview and, in
Section IX, we conclude and we emphasize the potential of
Proactive Engines.

II. RELATED WORK

In this section, we focus mainly on previous work done in

the area of Proactive Systems, Context-Aware Systems and

Self-Adaptive Systems, which indicates an intensive effort to

develop middleware, architectures, frameworks and

prototype applications that would serve in dynamic

environments. These research initiatives show the growing

interest for developing a new kind of intelligent systems that

will be able to perform complex tasks. Our contribution in

this paper has been to find a platform that unifies multiple

research efforts in the above research fields.

A. Proactive Systems

The concept and the structure of the first Proactive

Engine (PE) were created in 2006 [12]. It was among the

first systems specially conceived to use Proactive

Computing for achieving its goals. The PE was designed as

a complex mechanism for running Proactive Rules. A

Proactive Rule is a structure conceived to perform specific

actions in case a special situation was detected or in case of

the lack of an event. The detection of students that did not

submit their online assignment and the notification of their

professor as a consequence, is a concrete example of a rule,

which was used in a real-case scenario, when the initial

Proactive Engine was deployed aside a Learning

Management System (LMS) [13]. Results showed that

major limitations of a LMS such as the restricted interaction

and limited collaboration between learners and educators

inside courses could be overcome with the help of a

Proactive Computing [14].

In [15], a mechanism for creating, organizing and

developing Communities of Practice (CoPs) inside a LMS

using Proactive Computing was proposed. Three types of

virtual CoPs were developed: for students coming from the

same country, for students living in the same cities and for

students enrolled in the same study program. The LMS was

capable of automatically enrolling students in these

communities, creating tools like forums, chat and folders for

stimulating collaboration inside the CoPs and adjusting the

size of the CoPs. The Proactive System performed these

264

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

operations without any explicit command from the

administrator of the LMS.

Previous works [15], [16], focused until now on applying

Proactive Computing on a single system, thus exploring

only the possibility of having only one centralized Proactive

System. But a centralized solution can become quite fast

non-scalable in many scenarios where a Proactive Engine

handles a big number of devices and applications. Using a

single Proactive System presents certain limitations and

cannot benefit from the advantages that multiple Proactive

Systems, working together and collaborating, would have to

offer.

The possibility of having multiple networks of connected

Proactive Engines, which are able to communicate, to create

a shared knowledge base, to perform joint actions and to

learn from each other, was not yet explored.

B. Context-Aware Systems

Even though there is an intensive effort to define a

standard context-aware model for developing smart

applications [17]-[20] there is a lack of precise guidelines on

how to integrate context-aware mechanisms into these

applications. A basic approach for modeling the adaptation

requirements, SOTA, is presented in [21]. In particular, it

was conceived to enable early requirements verification, the

identification of knowledge requirements and the most

suitable self-adaptive patterns. Cinemappy, a location-based

application that is able to compute contextual movie

recommendations [17], is a simple example how contextual

information related to the temporal and spatial position of

the user is exploited for obtaining personalized

recommendations results for each user. Pushing relevant

application to mobile devices, according to the user’s

location, using a context-aware architecture called MoBe

[18] is another example for addressing cases where the

location of the devices is constantly changing. MoBe

allowed data exchange and joint actions for reaching a

common goal between the cooperating devices. The design

process of OnRoute, a context-aware mobile travel

application for handling navigation in public transportation

was studied in [19]. A smart way of using location

information for facilitating navigation was incorporated in

the application, which was able to learn from the user’s

behavior and propose other route alternatives. Museum

Guide, an indoor location-based, context-aware and video

on demand application [20], was able to detect if a user was

moving, and, based on this contextual information, to play a

certain video, related to the nearby exhibit.

Furthermore, the role of context-information for

improving collaboration between mobile devices by

delivering relevant information to the participants involved

in the cooperation process is investigated in [22].

C. Self-Adaptive Systems

In many disciplines, ranging from Artificial Intelligence

to biology, self-adaptation of software systems has been

studied and only recently the software engineering

community has realized the major role this property plays in

developing and implementing software systems that are able

to comply with important changes in the environment and in

the requirements [23].

In the latest research literature many approaches study

adaptive systems. However, a great amount of them are

concentrated on architectural adaptation [24][25][26],

parametric adaptation [27][28] or implementation adaptation

[29]. More precisely, they focus on changing the internal

structure of a software system, on modifying the necessary

parameters of the system and on changing the

implementation of different components of a software

system without changing the interface. In comparison, we

propose a model that allows developers to reason about

adaptation at a higher level of abstraction, without having to

take care of the low-level implementation details.

Multiple studies investigate how to apply adaptation

mechanisms for mobile applications. For example, in [30], a

battery-efficient architecture was proposed for building

battery-aware applications. More recent work [31] studied a

mechanism for an effective adaptive real-time multimedia

content delivery for smartphones using a hybrid mobile

application development platform. A mobile learning case

study was discussed based on the hybrid learning

application.

D. Context-Aware Adaptive Systems

Event though many researchers are treating Context-

Awareness and Self-Adaptation as two separated research

fields there have been numerous studies aimed to provide

applications, tools and frameworks that can incorporate and

provide both properties.

In [32], the authors acknowledge that embedding

mechanism for achieving context-awareness and self-

adaptation in pervasive systems is crucial. They propose a

model-driven engineering approach able to integrate such

mechanisms. A separated context model but related to the

adaptive model is proposed in [33] for modeling and

realizing context-aware adaptive software systems.

Management context is differentiated and separated from

operational context in order to obtain run-time adaptation. A

tool, CAST, was recommended for modeling the system’s

implementation and of verifying and validating the system’s

context-aware adaptive behavior.

In order to address problems like the high complexity of

modeling the behavior of context-specific application and of

structuring application code for efficient switching between

various functions of the system, a mobile middleware was

discussed in [34]. This middleware system was created on

top of the Android operating system as tool for building

adaptive, context-aware ubiquitous mobile applications. A

prototype application, i.e., a context-aware Instant

Messenger, was set up using the proposed middleware and

compared with previous versions of Instant Messenger. A

generic adaptation model was analyzed in [35] for helping

265

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

designers to develop ambient assisted living applications

that enabled elderly people to live longer in their residential

homes. Furthermore, a context-aware and adaptive learning

scheduling framework for supporting the student’s daily

routines was introduced in [36].

III. MOTIVATING SCENARIO

The following scenario has motivated the need of having

groups of proactive context-aware adaptive systems capable

of communicating and sharing information in a transparent

way. When scheduling a meeting, the users have to give

many complex instructions for arranging the exact time,

location and group of participants. They have to be involved

in each steep of the selection process, which requires certain

technical skills. Also, they have to manually check other

applications like the integrated agenda or calendar to be sure

there are no overlapping activities. Below, the motivating

scenario is presented with the help of several scenes.

Scene 1: A professor, the head of a research department

at a university, receives an email from the human resource

department about the budget for the next year. As a

consequence, he/she would like to arrange a meeting with

his colleagues, also professors from the same research

department, for discussing and who would the budget be

spited to cover the expenses of each professor and his/her

team of assistants for research materials, for traveling

purposes and for participating at different

conferences/workshops.

Scene 2: He/she then uses the smart meeting application

on his/her smartphone for scheduling a meeting with the

other professors. Inside the application, he/she can select

different users or different target groups of users for

proposing a meeting. These groups are either arranged

manually or automatically, based on previous activities

performed together with various users. Then, he/she would

select the period when he/she would like for the meeting to

take place. For instance, the time interval would be the next

2 days, starting from the moment of the proposal. At this

stage, the application would start the communication

process with the other smartphones for finding a possible

date and time for the meeting.

Scene 3: The application starts to perform internal and

external processes for finding relevant information that

would allow it to find a possible solution for the meeting.

Internally, the application would look for information on

other applications like the integrated calendar application or

the Google Calendar, in case the users have a Gmail

account, or in the Outlook Calendar where the users could

have additional information about future meetings.

Externally, requests are sent by the application to the mobile

phones and tablets of the other participants. These requests

start to be processed locally by the other devices that start to

look for relevant context information that would allow them

to find if their users are available or busy in the interval of

time proposed by the initiating device. And so, a

negotiation process starts between devices for finding the

best solution to arrange the meeting.

Scene 4: Devices start to share information about the

potential time slots that are available for the meeting as

illustrated in Fig. 2. For instance, the application detects that

the user of device 4 is at a remote location for the next 24

hours and cannot participate in any meeting close to the

location of the other users. The user of device 2 is busy all

the days of the week in the morning because he/she has to

give classes from 8 am until 10 am. The two other users do

not have anything scheduled in the next 2 days and are

available for a meeting. After several rounds of negotiation,

they find a free time slot in the next day where everyone can

attend the meeting.

Scene 5: At the end of negotiation process, after an

optimal solution is found and agreed upon by all the

devices, a confirmation request is sent to all the users for

making them aware of the meeting and to get their final

approval. If there are users that do not agree with the

solution then new rounds of negotiation begin until either

another solution is found or the user that initiated the

meeting stops the whole process.

Scene 6: If an agreement was reached about the day and

the hour of the meeting, the application can start to finalize

scheduling the meeting by proposing different locations.

Locations can be either introduced manually by the users or

can be proposed by the application based on multiple factors

like previous locations or available conference rooms on the

campus, information that can be found on the research

department’s server.

Possible issues can arise from the fact that some users

could not be reached because their devices are either offline

or they are turned off. In these cases, where a universal

solution involving all the participants could not be found,

the application either proposes a partial solution, for a

meeting with the users that were found available, or the

meeting is postponed until all the users will be available. In

both cases, the user that initiated the meeting procedure will

be notified about the outcome of the negotiation process and

he/she could take additional measures, and the other

participants would receive mails and/or SMS to be informed

that they were requested to join a very important meeting.

Figure 2. Establishing a meeting between smartphones

Busy all mornings from 8 am – 10 am In a business trip

Device4

Device3

Device2

Device1

266

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Our goal, in this scenario, was to present an application

capable of performing automated actions on behalf of the

user, e.g., automatically search for possible free time slots

for organizing a meeting. Therefore, the following model

proposed in the next section allows the creation of such an

application that implements all the above features.

IV. THE APPROACH

We propose a new version of the Proactive Engine for

mobile devices, called Mobile Proactive Engine (MPE),

where processes are divided between the sub-parts of the

model. Before, Proactive Rules were taking care of data

acquisition, activation guards, conditions, actions and rules

generation. In the current model, each step is assigned to a

specific component. A major benefit of separating these

processes is that they are handled by structures that are

focusing only on particular tasks.

In order to develop a proactive context-aware adaptive

system, an infrastructure that combines and uses all three

properties is required. The MPE is an advanced mechanism

that could be easily integrated into new software systems

because it provides means for gathering data from the

internal and external sensors, for detecting context changes,

for processing and modeling contextual information, for

executing adaptive tasks and for providing an adequate

system behavior in any situation. The term “sensor” refers

not only to the hardware parts being able to sense but also to

the various data sources that may give contextual

information.

Thus, the architecture of a MPE is composed of a set of

interconnected components, including a Context-Manager, a

Rules Engine connected to a set of Queues and a local

database, and a Notification Manager, as seen in Fig. 3.

These components are able to communicate, sending and

receiving messages or specific commands from the other

components. For example, a Proactive Rule in the Rules

Engine may require some additional information for

responding to a situation, and would be able to activate the

Awareness Engine. Then, additional information would be

acquired from the sensors and, after verifying local

constraints and conditions, it would be send back to the

Proactive Rule that asked for additional data. The

components of a MPE cannot perform structural adaptation

processes. They are oriented for helping the MPE to

perform a behavioral adaptation, where the initial

functionalities of the MPE can be changed.

A. The Context-Manager

This component is very important, as it behaves as a filter

for the majority of the data acquired by the MPE. The need

of a Proactive Filter is justified by the huge amount of

unnecessary data gathered by a MPE. Data coming from

different sources can contain many errors or mistakes.

Detecting inconsistency in the data, allows the Context-

Manager to find possible broken sensors or, even more,

avoid unpleasant situations where precise information is

needed. The Context-Manager is mainly responsible for

detecting and handling context changes that appear, and as a

result, taking the proper actions. Another important task for

the Context-Manager is to acquire user input and to decide

if it is relevant or not. It is composed two elements: the

Awareness Engine and the Adaptation Engine.

1) The Awareness Engine

It is the main component of the Proactive Filter. It is

managing the data coming from sensors, which are in

charge of detecting possible context changes. For

smartphones, physical sensors are providing important

information about the user’s location, motion and mobility.

Also, other information that comes from logical and virtual

sensors like the user’s interests, activities and set of used

applications is constantly analyzed. Accessing this kind of

information should be limited to some extend and controlled

as it represents a privacy issue.

2) The Adaptation Engine

This component is crucial, as it is used for dealing with

unexpected events and for ensuring that adaptive actions are

Figure 3. The structure of a Proactive Engine for mobile devices

Other networks of MPEs

267

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

performed in a smooth cooperation between the main sub-

parts of the Proactive Engine. Also, it has to check the

constraints and the conditions of the system before

adaptation and if the system will still behave according to its

policies. For example, adaptation could involve the interface

of an application that can be modified according to the

needs of the user. If a user is on the move and the

application detected a speed higher than 10 km/h while the

user is using the application, the interface would be change

to contain a layout with bigger button, bigger writing and

brighter colors.

B. The Rules Engine

The Rules Engine is responsible for maintaining a precise

overview of the system’s goals and for running Proactive

Rules. It keeps a list of required actions that would come as

a response in case expected events occur. It is also used for

storing the state of the system. Executing multiple Proactive

Rules in parallel is due to its integrated Queue System and it

is one of the great functionalities of the Rules Engine. The

Rules Engine executes Proactive Rules in Iterations. A

constant time interval is set between two consecutive

Iterations. It has a default value, but it can be adjusted

depending on the performance of the device that is running

the MPE. For example, initially, the time interval is set to 5

seconds, as there are cases where the MPE needs to check

for events in a periodic manner. If at one Iteration, the Rules

Engines has to execute a big number of Proactive rules, the

time interval can be modified accordingly in order to allow

resources to be efficiently shared between multiple threads

and processes that are running on the MPE.

Proactive Rules can be used for serving multiple

purposes: for checking context situations, for detecting

special events, for analyzing contextual information, for

synchronizing sub-parts of the model, for saving useful data

into the Local Database, for sending rules and commands to

other PE and for sending content to the Notification

Manager. The Awareness Engine and the Adaptation Engine

also posses the ability of activating Proactive Rules as well

as the other way around. Another important property of

WProactive Rules is that they can run at each Iteration of

the Rules Engine or, in case they perform only simple

actions, they can run only once and then finish their

execution.

C. The Notification Manager

The purpose of the Notification Manager is to deliver
informative content to the user. The content can take various
forms like hints, messages, notifications or alarm. This is a
crucial part of the entire model as it helps in achieving
his/her goals, guides him/her in multiple situations and
informs the user about certain events. The Notification
Manager is in a close cooperation with the device’s
Operating System for handling messages. Proactive Rules
prepare the content of the message, which is then forwarder
to the user through the Notification Manager. For mobile
phones, notifications can appear on the screen for short

periods of time, messages can be registered by the Operating
System and can be read later on by the user, hints are
displayed as short text boxed for guiding the user when
he/she is interacting with different applications and alarm,
which can also be set by Proactive Rules, are registered in
the integrated calendar and triggered for announcing the user
in case of an upcoming important event.

V. NETWORKS OF MOBILE PROACTIVE ENGINES

MPEs are designed to work both offline and online. Having

a network of distributed MPEs that communicate and

exchange data provides a great opportunity for these

systems to gain useful information. This way, MPEs are not

only gathering data from their internal sensors but also from

other MPEs. By design, information sharing between

devices using MPEs is conceived to be done in a transparent

way, without the implicit command of the user. Only in case

of special situations and because of privacy issues, where

sensible data is involved, the users should be asked to take

over and decide what would be the next action the MPE

should take. The most significant aspect to be taken into

consideration is the actual information that is gained by a

MPE when it gets data from other MPEs. One case is to find

common interest or preferences between users that are

working with applications having an integrated MPE. For

example, a user could be looking for a ride on a car-sharing

web site. Another user, which would be located nearby,

maybe from the same city, would be looking for a ride

having the same destination and exactly on the same dates.

The MPEs would notify both users and would propose to

share a ride for reducing the costs. Another case where data

exchanging is useful is when a MPE is not sure what action

to take and how to adapt its behavior when unexpected

events happen. Requesting feedback from other MPEs that

have more information is a possible solution for taking the

right decision.

If we take, for example, two MPEs, one that was offline

for a long period of time and one that was online during the

Figure 4. A possible network of distributed MPEs

Local Area Network

Direct Connection

 WiFi Connection

268

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

same period of time. And now, both of the MPE should be

able to share information because they would be having

access to a communication channel between them. The MPE

that was offline could learn a lot from the online MPE that

stored information about its previous tasks and about the

older state of the system, without using the Adaptive

Engine, the Awareness Engine and the Rules Engine to

process similar data and to go through the same adaptation

process. As a consequence, local resources and time could

be saved.

A special aspect to taken into consideration is the

interaction of the users with their MPEs. Their behavior can

be analyzed by the MPEs and stored for future decisions. If

a MPE would detect, for instance, that its user is changing

the mode of the phone each morning on the first day of the

week, due to certain activities, it could start performing this

action automatically on behalf of the user. The user is

important as it still remains in the processing loop, but only

for supervising purposes and for providing input in cases

where information cannot be acquired from different

sources. Sometimes access to personal information like the

location of the user, his/her local preferences, his/her status,

the applications that he/she is using or his/her list of

contacts should be only granted with the special consent of

the user.

Fig. 4 shows a possible scenario of a network of

distributed MPEs. Three devices, with a running MPE,

located on the same LAN, are connected to the Internet

through a WiFi connection. A direct connection can be also

established via Bluetooth, via Near Field Communication

(NFC) techniques or via Android’s WiFiP2P library for

smartphones. The advantage of having a direct connection

between the devices, illustrated in Fig. 3 with a straight line,

is that Proactive Rules are exchanged immediately, without

having to be sent firstly to a server. This means that each

device equipped with a MPE will be acting like a server,

being able to receive and send data to other devices having

an integrated MPE.

Different network topologies can be employed for

creating groups of MPEs: centralized, hybrid and peer-to-

peer. The centralized topology means that a server can be

used to handle the connections and the communication of

MPEs. This is the easiest way to ensure their

communication but it has a major flaw, a single failure

point, the server. In order to address this issue, a hybrid

topology can be used, where multiple servers are available

over the network. However, this method increases the

complexity of the communication between MPEs as they

have to reason about the synchronization part between the

servers. Complex algorithms should then be used to be sure

that all the MPEs got the necessary information in case of

collaborative actions. The complexity and workload

distribution rapidly increase when the number of MPEs

increases. In case of peer-to-peer networks, MPEs would be

able to exchange information directly. This can happen

however when the devices are close to each other and can

send are receive bigger amount of data. For example, in a

smart home, MPEs could be arranged into a peer-to-peer

network. The devices could stay connected and be aware of

all the other devices in their network.

VI. CASE STUDY: AN E-LEARNING MOBILE APPLICATION

To better illustrate the behavior of a MPE and the
usefulness of having a network of MPEs, we created an
example of a possible scenario for its practical
implementation. For simplicity, we focused more on
describing the possible situations that highlight the benefits
of having a network of MPEs and not on the implementation
details. All around the world, students are using online e-
learning platforms, like Moodle™ [37], for accessing
educational content, completing assignments and
participating in discussion related to their courses. These e-
learning platforms are quite static as they are waiting for
instructions or commands from their users. This is why an e-
learning application for mobile devices, i.e., smartphones
and tables, with an integrated Proactive Engine, would come
in hand. We assume that the application would be directly
connected with the web platform and would have access to
all the data from the student’s account on the LMS.

The application would include an advanced mechanism for
displaying notifications and questions for the user, provide
hints and trigger alarms. Hints would be used for guiding the
user, questions for asking for specific instructions,
notifications as short messages to inform the user and alarm
to alert him/her in case of extraordinary situations or events.
On one hand, even though these features have been
integrated in other E-Learning applications, the way they are
created and handled represents the novelty in this case. On
the other hand, they are already addressing some of the
major issues when using an online e-learning platform.
These issues appear because of the lack of an immediate
notification channel between the students or between the
students and the professors in case extraordinary situations
appear. Certain online platform have an online mechanism
for enrolling to an exam, and students often miss these
deadlines, resulting in a big problem both for the student and
the administration of universities and schools. More issues
include missing deadlines for assignments and
nonparticipating in forums.

For instance, the scenario of an instructor that has to give
an exam on a specific date, at a specific hour and would be
late due to traffic is an example of a foreseen event. The
logical sensors of the MPE would know that there is an exam
approaching soon based on the calendar of the LMS, where
the exact date and hour of the exam would be set. The MPE
would send alerts to the instructor and he/she could post a
short message, via his/her smartphone, on the forum of the
course announcing that he/she will be late. Not only will the
students be notified of this, but a person from the
administration could also alert the students in person if they
would not have their device with them. The physical sensors
of the MPE would sense that he is moving and so, would
adjust the graphical user interface for writing messages.

269

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

More advance actions would include setting an alarm for
deadlines, putting the events into an integrated calendar,
proposing to students to collaborate on solving assignments
with other classmates, which are close to their location or ,
even more, automatically download documents or course
material directly to the smartphones of the students. The
majority of these actions are not currently provided by any
existing LMS and, adding plugins or third party applications
will not change the overall behavior of the system. These
actions represent collaborative actions between the LMS and
the clients. However, MPEs allow another type of
collaboration, where each MPE is part of the process. In
addition to traditional forms of communication between
mobile devices like calls and messages, MPEs are capable of
exchanging relevant context information, checking if there
are any errors or mistakes on the data acquired from their
local sensors, reaching for remote data, sharing resources and
of allowing synchronous/ asynchronous communication.
This type of innovative collaboration allows MPEs to
provide sophisticated real-time services and to support
complex mobile applications.

In Fig. 5, an example of a Proactive Rule, which would
be used for this case study, is illustrated in pseudo-code.
More specifically, this Proactive Rule would run at each
iteration of the Rules Engine and would get activated only
when there would be at least two MPEs on the same
network. Its purpose is to invite the users of the MPEs, in
case they are working on the same assignment, to collaborate
and share their knowledge. The proactive aspect comes from
the fact that this situation is anticipated by the MPEs,
without any specific intervention or command from the users
of the MPEs.

First, Proactive Rules would check for constraints on the
LMS to see if the assignment was made as a collaborative
assignment or as an individual assignment. In case the
assignment is open to cooperation between students, the
Awareness Engine would be alerted. It would then be in
charge of two main tasks: detecting from the internal virtual
sensors of the MPE that a user is actively working on the
assignment and discovering other MPEs that are available on
the same network and open to collaboration. Then, Proactive
Rules, like the one illustrated in Fig. 5, would get activated
and would start analyzing and deciding if there were any
real-time possibility of collaboration between the two MPEs.
If yes, the Adaptation Engine would trigger different actions,
like messages to the users to ask them if they want to
collaborate remotely or meet and solve the assignment in
case the MPE would detect that they are close to each other,
e.g., both MPEs would be connected to the same Wi-Fi
network in the campus.

In Fig. 6, a second example of a Proactive Rules is given
to illustrate that several Proactive Rules can be generated and
executed at the same time by a MPE. Rule R002 was
activated by the rule R001 for checking, at every iteration of
the Rules Engine, if there were any updates in the deadline of
assignment or if additional learning material was added on
the LMS. In case these events occur, the users are notified
immediately via email or via messages sent trough the
Notification Manager and, the alarm that was automatically

Figure 5. An example, in pseudo-code, of a Proactive Rule

Proactive Rule R001
Description: This Rule is designed to run on each
MPE in order to check for new connections in the
same network with which the current MPE could
share information if they are working on the same
assignment.

data acquisition

conn [] = getConnectionsOnSameNetwork()
activation guards
 conn.size != 0
conditions
 conn.assignment.isStillValid()
actions
 foreach connection in conn []

if(usersWorkOnSameAssignment(
connection.assignemnt.ID))

 sendMessageToMPE(conn.ID, message)
inviteOtherMPEforCollaborativeWork(
connection.assignemnt.ID)

 end if
 end foreach
rules generation
 if(!activationGuard)
 createRule002(conn.ID, conn.assignment.ID)
 end if
 cloneRule (R001)

Figure 6. A second Proactive Rule in pseudo-code, generated by the first
Proactive Rule R001

Proactive Rule R002
Description: This Rule is designed to constantly
check if the was any update in the deadline or
additional documents were added for this assignment.

data acquisition

connID = getConnectionID()
assigID = getAssignmentID()

activation guards
 return deadlineIsStillValid(assigID)
conditions
 return contentWasAdded(assigID)
actions
 if(conditions())
 extractAdditionalContent(assigID)
 alertUsersAboutAdditionalContent (users[])
 updateAlarmOfAssignment(assigID)
 end if
rules generation
 if(!activationGuard)
 cloneRule (R002)
 end if

270

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

set by the MPE will be updated in order to announce the
users in advanced about their deadline. Rule R002 will not
activate any other Proactive Rule, it will just clone itself until
the deadline of the assignment has been reached.

VII. OTHER FIELDS OF APPLICATIONS FOR MPES

The previous case study indicated that MPEs could be
used in education, in a computer supported collaborative
work scenario. MPEs could also be implemented into
application in other domains, which could benefit from the
possibility of having multiple networks of systems capable
of performing collaborative actions, like medicine, public
transportation, tourism, business and many social networks
platforms.

In hospitals, for instance, MPEs could be integrated into
various medical systems with computing capabilities that
would communicate for providing better services to the
patients. All these interconnected devices would have access
to a variety of sensors, which could lead to a better
anticipation of emergencies and a better response from the
medical staff. In transportation, for instance, MPEs could
help preventing traffic jam, based on the experiences of other
MPEs. If the system would detect that multiple devices are
moving very slowly on a section where the high speed is
allowed it could alert the other MPEs about the situation and
an alternative route would be proposed. In tourism, users
could experience new ways of connecting with the
surrounding environment though the use of MPEs that could
obtain relevant information based on their location.

VIII. MPE IMPLEMENTATION

The architecture proposed for mobile devices in this

paper is currently under development for the iOS-based

devices. A basic working prototype application for

smartphones and tablets running an Android Operating

System has been already created and is already being tested

with basic sets of Proactive Rules. The Rules Engine was

implemented using Java and it is capable of running

Proactive Rules. The local database and the connection

between the Rules Engine and the database were

implemented using SQLite™ [38] and ORMLite™ [39].

The MPE is able to communicate with other MPEs via

Google’s GCM framework [40] that allows devices to

exchange messages over the same connection. The

Adaptation Engine and the Awareness Engine will run on

single background threads that are capable of monitoring the

environment, capture data from various sensors that are

integrated into mobile devices and performing adaptation at

the level of the interface. The Notification Manager is using

the notifications built-in libraries of the Android Operating

System. The graphical user interface is still subject to

modifications, as it depends on the specific requirements to

which the application will serve. A complete description of

its implementation and of its performance will soon follow,

after the prototype will be finalized.

IX. CONCLUSION AND FUTURE WORK

In this paper, we have outlined that we are heading
towards various distributed networks of proactive, context-
aware and self-adaptive systems. Our reasoning is supported
by the continuous intensive research initiatives of many
laboratories in the fields of Context-Awareness, Proactive
Computing and Self-Adaptation.

Our work opens new substantial research possibilities
and new perspectives on how future smart applications will
behave, communicate and collaborate. To support our vision,
we proposed a model for mobile devices that is able to
integrate all the discussed properties. Designers can now
focus more on high-level implementation planning and on
the functionalities that their applications will provide, than
on architectural design, configuration details and on
compatibility issues.

Adaptability is provided at a behavioral level, using the
model of feedback loops, and at the level of the
communication between the different components of our
model. Awareness comes from the fact of taking into
account different contexts and Proactivity is achieved by
using a rules-based engine for handling foreseen events.
With the proposed model, the user is focusing more on how
to interact with the application and not how to manage and
configure the system.

A. Challenges Ahead

Two of the most challenging points in the close future

are to develop techniques for communication and

collaboration between MPEs and to design and develop

smart applications based on the proposed model taking in

account important factors like user mobility, different

computing capabilities of various devices and privacy

issues.

B. Future work

A case-study based evaluation will follow for validating

all the characteristics of the presented model and for

answering to some research questions such as whether or

not the model is correctly providing routines in a context-

adaptive manner, or if the parts of the model are really

taking into account the user’s preferences, or if the model

has self-adaptive properties that allows it to modify its

behavior. In the upcoming case study, the application

presented as the motivating scenario in this paper will be

implemented for mobile devices. Proactive Rules will be

developed to take care automatically of the tasks that can be

performed by the application without asking for specific

commands from the user.

Important research is still to be done for exploring the

computing capabilities of other intelligent devices that could

support proactive context-aware adaptive applications, not

only mobile devices. Networks of wearable devices,

ubiquitous devices and other computing systems could be

thus connected to form a global distributed intelligent

network.

271

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES

[1] R. A. Dobrican and D. Zampunieris, “Moving Towards a
Distributed Network of Proactive, Self-Adaptive and Context-
Aware Systems, ” in Proc. of the 6th International Conference
on Adaptive and Self-Adaptive Systems and Applications,
(ADAPTIVE), May 2014, pp. 22-26.

[2] M. Salehie and L. Tahvildari, “Self-adaptive software:
Landscape and research challenges,” ACM Transactions on
Autonomous and Adaptive Systems, 2009, vol. 4, pp. 1-42.

[3] Y. Brun, G. M. Serugendo, C. Gacek, H. Giese, H. Kienle, M.
Litoiu, H. Muller, M. Pezze, and M. Shaw, “Engineering Self-
Adaptive Systems through Feedback Loops,” in Software
Engineering for Self-Adaptive Systems, Lecture Notes In
Computer Science, Springer, 2009, vol. 5525, pp. 48-70.

[4] S. Dobson, S. Denazis, A. Fernandez, D. Gaiti, E. Gelenbe, F.
Massacci, P. Nixon, F. Saffre, N. Schmidt, and F. Zambonelli,
“A survey of autonomic communications,” ACM Trans.
Auton. Adapt. Syst., 2006, vol. 1, pp. 223-259.

[5] I. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli.
“Model evolution by run-time parameter adaptation, ” in Proc.
of the 31st International Conference on Software Engineering,
ICSE 2009, IEEE, pp. 111-121.

[6] IBM Corporation: “An Architectural blueprint for autonomic
computing,” White paper, 4th edn., IBM Corporation, 2006.

[7] J. Indulska and P. Sutton, “Location management in pervasive
systems,” in Proceedings of workshop conference on the
Australasian information security ACSW frontiers, vol. 21,
January 2003, pp. 143-151.

[8] S. Kurkovsky, “Location-dependent and Context-Aware
Computing,” Next Generation Mobile Networks and
Ubiquitous Computing, 2001, 156.

[9] B.H.C. Cheng, R. de Lemos, H. Giese, P. Inverardi,J. Magee,
J. Andersson, B. Becker, N. Bencomo, Y. Brun, B. Cukic, G.
M. Serugendo, S. Dustdar, A. Finkelstein, C. Gacek, K.
Geihs, V. Grassi, G. Karsai, H. M. Kienle, J. Kramer, M.
Litoiu, S. Malek, R. Mirandola, H. A. Muller, S. Park, M.
Shaw, M. Tichy, M. Tivoli, D. Weyns, and J. Whittle,
“Software Engineering for Self-Adaptive Systems: A
Research Roadmap,” in Software Engineering for Self-
Adaptive Systems, Lecture Notes In Computer Science,
Springer, 2009, vol. 5525, pp. 1-26.

[10] D. Tennenhouse, “Proactive Computing,” Communications
of the ACM, 2000, vol. 43, issue 5, pp. 43-50.

[11] A. Oulasvirta and A. Salovaara, “Six modes of proactive
resource management: a user-centric typology for proactive
behaviors,” in Proc. NordiCHI 2004, ACM Press, pp. 57-60.

[12] D. Zampunieris, “Implementation of a Proactive Learning
Management System,” in Proc. E-learn 2006, AACE Press,
pp. 3145-3151.

[13] S. Coronado and D. Zampunieris, “Towards a proactive
learning management system using early activity detection,”
in SITE08, AACE Publishing, 2008, vol. 1, pp. 306-311.

[14] R. Dobrican, S. Reis, and D. Zampunieris, “Empirical
Investigations on Community Building and Collaborative
Work inside a LMS using Proactive Computing,” in Proc. E-
learn 2013, vol. 1, pp. 1840-1852.

[15] R. Dobrican and D. Zampunieris, “Supporting collaborative
learning inside communities of practive through proactive
computing,” in Proc. EDULEARN13, 2013, pp. 5824-5833.

[16] D. Shirnin, S. Reis, and D. Zampunieris, “Experimentation of
Proactive Computing in Context Aware Systems: Case Study
of Human-Computer Interactions in e-Learning
Environment,” IEEE CogSIMA, Feb. 2013, pp. 269-276.

[17] V. C. Ostuni, T. Di Noia, R. Mirizzi, D. Romito, and E. Di
Sciascio, “Cinemappy: a Context-aware Mobile App for

Movie Recommendations boosted by DBpedia,” in SeRSy,
October 2012, pp. 37-48.

[18] P. Coppola, V. Della Mea, L. Di Gaspero, S. Mizzaro, I.
Scagnetto, A. Selva, L. Vassena, and P. Riziò, “MoBe:
context-aware mobile applications on mobile devices for
mobile users,” in Proc. of the International Workshop on
Exploiting Context Histories in Smart Environments, 2005,
Munich, Germany, pp. 8-13.

[19] E. Bertou and S. Suleman, “OnRoute: A Mobile Context-
Aware Public Transportation Planning Application,” in HCI
International 2013-Posters’ Extended Abstracts, Springer
Berlin Heidelberg, 2013, pp. 299-303.

[20] J. Yim and C. Le. Thanh, “Museum Guide, a Mobile App,” in
Computer Applications for Software Engineering, Disaster
Recovery, and Business Continuity, Springer Berlin
Heidelberg, 2012, pp. 36-41.

[21] D.B. Abeywickrama, N. Bicocchi, and F. Zambonelli,
“SOTA: Towards a General Model for Self-Adaptive
Systems,” 21st International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises
(WETICE), IEEE, June 2012, pp. 48-53.

[22] J. Hakkila, and J. Mantyjarvi, “Collaboration in context-aware
mobile phone applications,” in Proc. of the 38th Annual
Hawaii International Conference on System Sciences, 2005.
HICSS'05, IEEE, 2005, pp. 33a-33a.

[23] B.H.C. Cheng, R. de Lemos, P. Inverardi, and J. Magee (Eds),
“Software engineering for self-adaptive systems,” in Dagstuhl
Seminar, 2009, vol. 5525.

[24] W. Heaven, D. Sykes, J. Magee, and J. Kramer, “A case study
in goal-driven architectural adaptation,” in Software
Engineering for Self-Adaptive Systems, 2009, Springer Berlin
Heidelberg, pp. 109-127.

[25] A. A. Mansor, W. M. W. Kadir, and H. Elias, “Policy-based
approach for dynamic architectural adaptation: A case study
on location-based system,” in 5th Malaysian Conference on
Software Engineering (MySEC), IEEE, December 2011, pp.
171-176.

[26] M. M. Islam, M. A. Sattar, M. F. Amin, X. Yao, and K.
Murase, “A new constructive algorithm for architectural and
functional adaptation of artificial neural networks,” in
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE
Transactions on, vol. 39, no. 6, 2009, pp. 1590-1605.

[27] Z. Yang and Z. Jin, “Modeling and Specifying Parametric
Adaptation Mechanism for Self-Adaptive Systems,” in
Requirements Engineering, Springer Berlin Heidelberg, 2014,
pp. 105-119.

[28] G. Tamura, N. M. Villegas, H. A. Müller, L. Duchien, and L.
Seinturier, “Improving context-awareness in self-adaptation
using the DYNAMICO reference model,” in Proc. of the 8th
International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, IEEE Press, 2013, pp.
153-162.

[29] H. Klus, D. Niebuhr, and A. Rausch, “A component model for
dynamic adaptive systems,” in International workshop on
Engineering of software services for pervasive environments:
in conjunction with the 6th ESEC/FSE joint meeting, ACM,
2007, pp. 21-28.

[30] R. Mizouni, M. A. Serhani, A. Benharref, and O. Al-Abassi,
“Towards Battery-Aware Self-Adaptive Mobile
Applications,” in Proc. of the 9th International Conference on
Services Computing (SCC), IEEE , June 2012, pp. 439-445.

[31] A. Karadimce and D. C. Bogatinoska, “Using hybrid mobile
applications for adaptive multimedia content delivery,” in
Proc. of the 37th International Convention on Information and
Communication Technology, Electronics and
Microelectronics (MIPRO), May 2014, pp. 686-691.

272

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[32] T. Ruiz-López, C. Rodríguez-Domínguez, M. J. Rodríguez, S.
F. Ochoa, and J. L. Garrido, “Context-Aware Self-
adaptations: From Requirements Specification to Code
Generation,” in Ubiquitous Computing and Ambient
Intelligence. Context-Awareness and Context-Driven
Interaction, Springer International Publishing, 2013, pp. 46-
53.

[33] M. Hussein, J. Han, and A. Colman, “An Approach to Model-
Based Development of Context-Aware Adaptive Systems,” in
Proc. of the 35th Annual Computer Software and
Applications Conference (COMPSAC), July 2011, IEEE, pp.
205-214.

[34] L. David, M. Endler, S.D.J. Barbosa, and J.V. Filho,
“Middleware Support for Context-Aware Mobile
Applications with Adaptive Multimodal User Interfaces,” in
Proc. of the 4th International Conference on Ubi-Media
Computing (U-Media), July 2011, pp. 106-111.

[35] M.T. Segarra and F. Andre, “Building a Context-Aware
Ambient Assisted Living Application Using a Self-Adaptive
Distributed Model,” in Proc. of the 5th International

Conference on Autonomic and Autonomous Systems, ICAS
'09, April 2009, pp. 40-44.

[36] J. Yau and M. Joy, “A Context-aware and Adaptive Learning
Schedule framework for supporting learners' daily routines,”
in Proc. of the 2nd International Conference on Systems,
ICONS '07, April 2007, pp. 31-37.

[37] Moodle - Modular Object-Oriented Dynamic Learning
Environment. [retrieved: April, 2014]. Available from:
https://moodle.org/

[38] SQLite Framework. [retrieved: April, 2014]. Available from:
http://www.sqlite.org/

[39] ORMLite - Lightweight Object Relational Mapping (ORM)
Java Package. [retrieved: April, 2014]. Available from: http://
http://ormlite.com/

[40] Google GCM – Google Cloud Messaging for Android.
[retrieved: August, 2014]. Available at
http://developer.android.com/google/gcm/index.html

