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Abstract—In the context of Wireless Sensor Networks (WSNs),
where sensors have limited energy power, it is necessary to
carefully manage this scarce resource by saving communications.
Clustering is considered as an effective scheme to increasethe
scalability and lifetime of wireless sensor networks. Moreover,
failures and topological changes are inevitable in sensor networks
due to the inhospitable environment, unattended deployment
or nodes mobility. Therefore, one of the wanted properties of
WSNs is the fault tolerance and adaptivity to topological changes.
We propose a fault-tolerant and energy-efficient distributed self-
stabilizing clustering protocol based on message-passingfor het-
erogeneous wireless sensor networks. This protocol is adapted to
topological changes, optimizes energy consumption and prolongs
the network lifetime by minimizing the number of messages
involved in the construction of clusters. Our generic clustering
protocol can be easily used for constructing clusters according to
multiple criteria in the election of cluster-heads, such asnodes’
identity, residual energy or degree. We propose to validateour
approach under the different election metrics by evaluating its
communication cost in terms of messages, energy consumption
and number of clusters. Simulation results show that, in terms
of of messages, energy consumption and clusters distribution,
it is better to use the Highest-ID metric for electing CHs.
Furthermore, after faults occurrence, the re-clustering cost is
minimal compared to the clustering cost.

Keywords-Self-stabilizing clustering; Wireless Sensor Networks;
Energy-efficient; Fault-tolerant; OMNeT++ simulator.

I. I NTRODUCTION

A preliminary version of this paper, entitled “Evaluation
Study of Self-Stabilizing Cluster-Head Election Criteriain
WSNs”, is published in CTRQ’2013 [1]. In this paper, we in-
clude fault-tolerance and energy-efficiency mechanisms inthe
context of heterogeneous Wireless Sensors Networks (WNSs)
with energy constraint. To the best of our knowledge, there is
no paper in the literature where the solutions are fault-tolerant,
energy-aware, self-stabilizing and where the same proposed
approach is compared in the case of different CH election
methods.

Due to their properties and wide applications, WSNs have
been gaining growing interest in the last decades. These
networks are used in various domains like: medical, scientific,
environmental, military, security, agricultural, smart homes,
etc. [2].

In WSN, sensors have very limited energy resources due
to their small size. This battery power is consumed by
three operations: data sensing, communication, and processing.

Communication by messages is the activity that needs the most
important quantity of energy, while power required by CPU
is minimal. For example, Pottie and Kaiser [3] show that the
energy cost of transmitting a 1KB message over a distance
of 100 meters is approximately equivalent to the execution
of 3 million CPU instructions by a 100 MIPS/W processor.
Thus, conserving communication power is more important in
WSNs than optimizing processing. Consequently, to extend
the sensor network lifetime, it is very important to carefully
manage the very scarce battery power of sensors by limiting
communications. This can be done through notably efficient
routing protocols that optimize energy consumption. Many
previous studies (e.g., Yu etal. [4] and Younis and Fahmy [5])
proved that clustering is an effective scheme in increasingthe
scalability and lifetime of wireless sensor networks. Clustering
consists in partitioning the network into groups called clusters,
thus giving a hierarchical structure [6].

On the other hand, nodes in WSNs are prone to be failure
due to energy depletion, hardware failure, communication link
errors, malicious attack, and so on. Fault tolerance is one of the
critical issues in WSNs as proved in many studies like Liu et
at. [7], Zhang etal. [8] and Hao etal. [9]. Fault tolerance
is defined as the ability of a system to deliver a desired
level of functionality in the presence of faults [10]. Therefore,
one of the most wanted properties of WSNs is the fault
tolerance and adaptivity to topological changes, which consist
of the system’s ability to react to faults and perturbations.
Self-stabilization is an approach to design fault-tolerant and
adaptive to topological changes distributed systems [11].

Several self-stabilization clustering approaches are proposed
in the literature and used, for example, in the case of a
WSN for routing collected information to a base station.
However, most of them are based on state model, so they
are not realistic compared to message-passing based clustering
ones. Moreover, approaches in the last category are not self-
stabilizing and they are generally highly costly in terms of
messages; while in the case of WSNs, clustering aims at
optimizing communications and energy consumption.

In this paper, we propose a fault-tolerant and energy-
efficient distributed self-stabilizing clustering protocol based
on message-passing for heterogeneous wireless sensor net-
works. The proposed algorithm is based only on informa-
tion from neighboring nodes at distance1 to build k-hops
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clusters. It optimizes energy consumption and then prolongs
the network lifetime by minimizing the number of messages
involved in the construction of clusters. Our clustering protocol
offers an optimized structure for routing. It can be easily
used for constructing clusters according to multiple criteria in
the election of cluster-heads such as: nodes’ identity, residual
energy, degree or a combination of these criteria. We propose
to validate our approach by evaluating its communication
cost in terms of messages, energy consumption and percent-
age of formed clusters. Thus, on one hand, we compare
its performance in the case of using different cluster-heads
election methods under the same clustering approach and
testing framework. On the other hand, we evaluate the fault-
tolerance mechanism of proposed approach. Moreover, we
compare our algorithm with some of the most referenced self-
stabilizing solutions.

The remainder of the paper is organized as follows. Sec-
tion II illustrates the related work on clustering approaches.
Section III describes the proposed clustering approach, cluster-
head election methods and the fault-tolerant mechanism. Theo-
retical validation is discussed in Section IV, where we compare
our algorithm with some of most referenced self-stabilizing
solutions. Section V presents the validation of the proposed
approach through simulation. Finally, Section VI concludes
this paper and presents our working perspectives.

II. RELATED WORK

Several proposals of self-stabilizing clustering have been
done in the literature [12], [13], [14], [15], [16], [17], [18].
However, self-stabilizing algorithms presented in [14], [15],
[16], [17] are 1-hop clusters solutions.

A metric calleddensity is used by Mittonet al. in [17],
in order to minimize the reconstruction of structures for low
topology change. Each node calculates its density and broad-
casts it to its neighbors located at 1-hop. For the maintenance
of clusters, each node periodically calculates its mobility and
density.

Flauzacet al. [14] have proposed a self-stabilizing cluster-
ing algorithm, which is based on the identity of its neigh-
borhood to build clusters. This construction is done using
the identities of each node that are assumed unique. The
advantage of this algorithm is to combine in the same phase the
neighbors discovering and the clusters establishing. Moreover,
this deterministic algorithm constructs disjoint clusters, i.e., a
node is always in only one cluster.

In [15], Johnenet al. have proposed a self-stabilizing
protocol designed for the state model to build 1-hop clusters
having a bounded size. This algorithm guarantees that the
network nodes are partitioned into clusters where each one
has at mostSizeBound nodes. The clusterheads are chosen
according to theirweight value. In this case, the node with
the highest weight becomes clusterhead. In [16], Johnenet al.
have extended this proposal from [15]. They have proposed
a robust self-stabilizing weight-based clustering algorithm.
The robustness property guarantees that, starting from an
arbitrary configuration, after one asynchronous round, the

network is partitioned into clusters. After that, the network
stays partitioned during the convergence phase toward a legit-
imate configuration where clusters verify the ad hoc clustering
properties. These approaches [15], [16], based on state model,
are not realistic in the context of wireless sensor networks.

Self-stabilizing algorithms proposed in [12], [13], [18] are
k-hops clustering solutions.

In [18], Mitton et al. applied self-stabilization principles
over a clustering protocol proposed in [17] and they presented
properties of robustness. Each node computes itsk-density
value based on its view ({k + 1}-neighborhood) and locally
broadcasts it to all its neighbors at distancek. Thus, each
node is able to decide by itself whether it wins in its1-
neighborhood(as usual, the smallestID will be used to decide
between joint winners). Once a clusterhead is elected, the
clusterheadID and its density are locally broadcasted by
all nodes that have joined this cluster. A cluster can then
extend itself until it reaches a cluster frontier of another
clusterhead. The approach proposed in [17], [18] generatesa
lot of messages. The main reason is due to the fact that each
node must know{k+ 1}-neighboring, computes itsk-density
value and locally broadcasts it to all itsk-neighbors. This is
very expensive in terms of messages and causes an important
energy consumption.

In [13], using the criterion of minimal identity, Dattaet al.
have proposed a self-stabilizing distributed algorithm called
MINIMAL. This approach is designed for thestate model(also
called shared memory model) and uses an unfair daemon.
Authors consider an arbitrary networkG of processes with
uniqueIDs and no designated leader. Each process can read
its own registers and those of its neighbors at distancek, but
can write only to its own registers. They compute a subsetD,
a minimalk-dominatingset of graphG. D is defined as ak-
dominatingset if every process that is not inD is at distance
at mostk from a member ofD. MINIMAL converges inO(n)
rounds. UsingD as the set ofclusterheads, a partition ofG
into clusters, each of radiusk follows. Authors show that
O(n2) steps are sufficient for the phase clock to stabilize.
And after stabilization,MINIMAL requiresO(n2) steps to
executen actions. Thus, the system converges to a terminal
configuration inO(n2) steps starting from any configuration
and requiresO(log(n)) memory space per process, wheren
is the size of the network.

Caron et al. [12], using as metric a unique ID for each
process and weighted edges, have proposed a self-stabilizing
k-clusteringalgorithm based on a state model. Note thatk-
clusteringof a graph consists in partitioning network nodes
into disjoints clusters, in which every node is at a distanceof at
mostk from the clusterhead. This solution is partially inspired
by Amis et al. [19] and finds ak-dominatingset in a network
of processes. It is a combination of several self-stabilizing
algorithms and it uses an unfair daemon. Each process can
read its own registers and those of its neighbors at distance
k + 1, but can write only to its own registers. This algorithm
executes inO(nk) rounds and requiresO(log(n) + log(k))
memory space per process, wheren is the network size.
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III. PROPOSEDCLUSTERING APPROACH

A. Basic idea

To simplify the description of our approach, we consider the
case where the selection criterion to become clusterhead isthe
node’s identity. We will present later the proposed approach
using others CHs election criteria.

Our proposed algorithm is self-stabilizing and does not
require any initialization. Starting from any arbitrary configu-
ration, with only one type of exchanged message, nodes are
structured in non-overlapping clusters in a finite number of
steps. This message is calledhello messageand it is periodi-
cally exchanged between each neighbor nodes. It contains the
following four information: node identity, cluster identity, node
status and the distance to cluster-head. Note that cluster iden-
tity is also the identity of the cluster-head. Thus, the hello mes-
sage structure ishello(idu, clu, statusu, dist(u,CHu)). Fur-
thermore, each node maintains a neighbor tableStateNeighu

that contains the set of its neighboring nodes states. Whence,
StateNeighu[v] contains the states of nodesv neighbor ofu.

The solution that we propose proceeds as follows:
As soon as a nodeu receives a hello message, it executes

three steps consecutively (see Algorithm 1). The first step
is to update neighborhood. The next step is to manage the
coherence and the last step is to build the clusters. During the
last step, each nodeu chosen as cluster-head the node that
optimizes the criterion and located at most a distancek. At
the end of this three steps,u sends a hello message to its
neighbors. The details of Algorithm 1 and mathematical proof
are describe in Ba etal. [20]. Note that we have illustrated this
algorithm with the ID criterion. Nevertheless, for the Degree
and Energy criteria, we have the same design.

After updating the neighborhood, nodes check their co-
herency. For example, as a cluster-head has the highest iden-
tity, if a nodeu hasCH status, its cluster identity must be
equal to its identity. In Fig. 1(a), node2 is cluster-head. Its
identity is 2 and its cluster identity is1, so node 2 is not
a coherent node. Similarly for nodes1 and 0. Each node
detects its incoherence and corrects it during the coherence
management step. Fig. 1(b) shows nodes that are coherent.
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(a) Incoherent nodes
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(b) Coherent nodes

Figure 1. Coherent and incoherent nodes

Algorithm 1: Fault-Tolerant and Energy-Efficient Generic
Clustering algorithm for WSNs.

/* Upon receiving message from a
neighbor */

Predicates
P1(u) ≡ (statusu = CH)
P2(u) ≡ (statusu = SN)
P3(u) ≡ (statusu = GN)
P10(u) ≡ (clu 6= idu)∨ (dist(u,CHu) 6= 0)∨ (gnu 6= idu)
P20(u) ≡ (clu = idu)∨ (dist(u,CHu) = 0)∨ (gnu = idu)
P40(u) ≡
∀v ∈ Nu, (idu > idv) ∧ (idu ≥ clv) ∧ (dist(u,v) ≤ k)
P41(u) ≡ ∃v ∈ Nu, (statusv = CH) ∧ (clv > clu)
P42(u) ≡ ∃v ∈ Nu, (clv > clu) ∧ (dist(v,CHv) < k)
P43(u) ≡ ∀v ∈ Nu/(clv > clu), (dist(v,CHv) = k)
P44(u) ≡ ∃v ∈ Nu, (clv 6= clu) ∧ {(dist(u,CHu) =
k) ∨ (dist(v,CHv) = k)}

Rules
/* Update neighborhood */
StateNeighu[v] := (idv, clv, statusv, dist(v,CHv));

/* Cluster-1: Coherent management */
R10(u) :: P1(u) ∧ P10(u)
−→ clu := idu; gnu = idu; dist(u,CHu) = 0;
R20(u) :: {P2(u) ∨ P3(u) } ∧ P20(u) −→
statusu := CH ; clu := idu; gnu = idu; dist(u,CHu) = 0;

/* Cluster-2: Clustering */
R11(u) :: ¬P1(u) ∧ P40(u) −→ statusu := CH ; clu :=
idv; dist(u,CHu) := 0; gnu := idu;
R12(u) :: ¬P1(u) ∧ P41(u) −→ statusu := SN ; clu :=
idv; dist(u,v) := 1; gnu := NeighCHu;
R13(u) :: ¬P1(u) ∧ P42(u) −→
statusu := SN ; clu := clv; dist(u,CHu) :=
dist(v,CHv) + 1; gnu := NeighMaxu;
R14(u) :: ¬P1(u) ∧ P43(u) −→ statusu := CH ; clu :=
idv; dist(u,CHu) := 0; gnu := idu;
R15(u) :: P2(u) ∧ P44(u) −→ statusu := GN ;
R16(u) :: P1(u) ∧ P41(u) −→ statusu := SN ; clv :=
idv; dist(u,v) := 1; gnu := NeighCHu;
R17(u) :: P1(u) ∧ P42(u) −→
statusu := SN ; clu := clv; dist(u,CHu) :=
dist(v,CHv) + 1; gnu := NeighMaxu;

/* Sending hello message */
R0(u) :: hello(idu, clu, statusu, dist(u,CHu));

B. Cluster-heads election

Existing clustering approaches use one or more criteria
for electing cluster-heads, for example: nodes’ ID, degree,
density, mobility, distance between nodes, service time asa
CH, security, information features or a combination of multiple
criteria. However, to the best of our knowledge, there is no
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paper in the literature where the same proposed approach is
compared in the case of different CH election methods. It is
important to study the influence of each criterion under the
same test conditions and, ideally, under the same clustering
approach. To this end, we propose a generic distributed self-
stabilizing clustering approach that can be used with any CH
election criterion. Then, we compare costs and performanceof
the proposed solution in the case where several election criteria
(Highest-ID, Highest-degree and residual energy of nodes)are
used.

1) HighestID:
Lowest-Identifier based clustering was originally proposed

by Baker etal. [21]. It has proven that, clustering based on
ID criterion is one of the most performant approaches in ad
hoc networks [22], [23], [24], [25].

In our approach, each node compares its identity with those
of its neighbors a distance 1. A nodeu elects itself as a cluster-
head if it has the highest identity among all nodes of its cluster
(in Fig. 2, example of node9 in cluster V9). If a node u
discovers a neighborv with a highest identity then it becomes
a node of the same cluster asv with SN status (in Fig. 2,
example of nodes1, 3, 4 and 7 in clusterV9). If u receives
again a hello message from another neighbor which is into
another cluster thanv, the nodeu becomes gateway node with
GN status (in Fig. 2, example of nodes5 and8 in clusterV10

and node2 in clusterV9). As the hello message contains the
distance between each nodeu and its clusterhead,u knows if
the diameter of cluster is reached. So it can choose another
cluster.

10
V

V
9

Legende:

Simple Node Gateway NodeClusterhead

6

9

3

4

70

1

5

210

8

Figure 2. Clusters organization (k = 2)

2) Highest or Ideal Degree:In this approach, we determine
how well suited a node is for becoming CH according to
its degreeD (i.e., the number of neighbors). There are two
categories of approaches based on nodes’ degrees. Some of
them propose to limit communications by electing the node
having the highest degree as CH. This is an original proposal
of Gerla and Tsai [26]. However, each CH can ideally support
only ρ (a pre-defined threshold) nodes to ensure an efficient
functioning regarding delay and energy consumption. Indeed,
at each step of the routing process, when a node has many
neighbors it receives as many messages as its degree. This
leads to a rapid draining of sensors’ battery power. To ensure
that a CH handles upto a certain number of nodes in its cluster,

some approaches [24], [27], [28] propose to elect as CH the
node having the nearest degree to an ideal valueρ. Thus, the
best candidate is the one minimizing its distance to this ideal
degree△d = |D − ρ|.

For the two cases described above, when more than one
node has the maximum (respectively ideal) degree and is
candidate to become a CH, the election is done according to a
secondary criterion which is the highest ID. As each node of
the network has a unique ID, this criterion is discriminating.

3) Residual Energy: In this approach, decision-making
concerning the most suitable node to become CH is done
according to the residual energy (i.e., remaining battery power
level) of each sensor. Indeed, CHs are generally much more
solicited during the routing process. So, in order to preserve
their energy and to avoid the frequently reconstruction of the
clusters, CHs need more important battery levels compared to
the others normal nodes.

During the clustering procedure, network nodes progres-
sively consume their energy due to the messages exchanges.
Thus, after some rounds a nodei with initially the maximum
battery power level and candidate to become a CH can have
later less energy than an another neighbor nodej. This can
lead to more iterations aiming at electing the other nodej with
the maximum residual energy. In order to limit the frequently
changes of CH candidates for a negligible energy difference,
we propose to use an energy gain thresholdET . Thus, while
△e = |Ei−Ej | is less thanET , the nodei preserves its leader-
ship position. This guarantees more stability of the clustering
process and extends the network lifetime by minimizing the
energy consumption involved in the clustering procedure.

C. Fault-tolerance mechanism

In this section, we study the fault-tolerance mechanism of
proposed approach. Our algorithm is fault-tolerant and adapted
to topological changes. To the best of our knowledge, there is
no paper in the literature where the solutions are fault-tolerant,
energy-aware, self-stabilizing and where the same proposed
approach is compared in the case of different CH election
methods.

A system failure occurs when the delivered service deviates
from the specified service [10]. Hardware and software faults
affect the system state and the operational behavior, such
as memory or register content, program control flow, and
communication links, etc. Communication faults can be caused
due to hardware failure or energy depletion. Communication
can be disrupted due to environmental conditions like wind or
rain. Hardware faults can also disrupt radio communication,
ending all the communication.

In the following, we consider that after the occurrence of
a fault, the concerned node disappears from the network and
the graph remains connected. We also assume that faults can
occur after stabilization (i.e., after clusters formation). As soon
as a node detects the disappearance of a neighbor, it considers
this as an occurred fault. Thus, it triggers the fault-tolerance
mechanism calledre-clustering. Let u the disappeared node.
According the status of nodeu, two cases are possible:
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Figure 3. Disappearance of node’s statusSN or GW (in this examplek = 2)

• Case 1, statusu ∈ {SN,GN}: the disappeared node
is a simple or gateway node. In this case, all nodev
that detects the disappearance of nodeu removes all
information aboutu from its neighborhood table. As
illustrated in Fig. 3, the disappearance of node’s status
SN or GW does not lead to clusters change but only
one updating neighborhood table. However, if the nodeu
has been chosen by a nodev as gateway (i.e.,gnv = idu)
through which it can reach itsCH , then v chooses
another nodew in its neighborhood table as new gateway
to reach itsCH . Furthermore, if nodeu was the only one
to be a member of another cluster in the neighborhood
of nodev, thusv becomes simple node with statusSN .
After updating the neighborhood table, all nodev that is
impacted by the disappearance of nodeu sends a hello
message to its all neighbors distance1.

• Case 2, statusu = CH : if a nodeu with CH status
disappears from de the network, the fault-tolerance mech-
anism proceeds as follows (example of the disappearance
of node9 as illustrated in Fig. 4):

1) For all nodev at distance1 of u that is member of

another cluster (i.e., (clv 6= idu) ∧ (dist(v,CHv) =
k)), the only requirement action is to remove all
information about thisCH by updating its neigh-
borhood table. This is the case case of node8 as
illustrated in Fig. 4(a) and Fig. 4(b)

2) For all nodev at distance1 of u that is member of
cluster of nodeu (i.e., v ∈ Nu such thatstatusv ∈
{SN,GN}∧ (clv = idu)) as illustrated in Fig. 4(b)
and Fig. 4(c),v executes three actions. Firstly, it
removes all information about thisCH by updating
its neighborhood table. Secondly, it triggers the re-
clustering process in order to choose another cluster-
head. Thirdly, after having chosen another cluster-
head, each nodev sends to its neighbors at distance
1 a hello message in order to inform their cluster-
head change. Therefore, all nodew at distance2
to u such thatw ∈ Nv\{v} ∧ clw = idu receives
information about the disappearance of nodeu.

3) Thus, in our process of re-clustering, we have the
following induction assumption: each node at dis-
tancei of the disappearedCH , executes process re-
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(c) After updating neighborhood, each node impacted by the disap-
pearance of node9 chooses another cluster-head. To do this, each node
select from its neighborhood table the node with highest ID.Node 7,
as it have the highest ID in its neighborhood, it becomes cluster-head.
Nodes1 and4 choose node7 as cluster-head. In fact, node7 represents
node with highest ID at distance1 in the neighborhood of nodes1 and
4. Therefore, each node with state change sends a hello message to its
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(d) Upon receiving a hello message from node1 notifying its cluster-
head change, node2 knows that its cluster-head (node9 as illustrated in
Fig. 4(a)) has disappeared. Thus, it triggers the process ofre-clustering
after updating its neighborhood table. As node node7 is the node with
the highest ID in at most at distance2 (node10 is at distance3 and
in this examplek = 2), it is selected as a cluster-head by node2.
Similarly, node3 applies the same principle and becomes member of
cluster of node7.
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ends at this step. All clusters become stable as showed in Fig. 4(f).
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(f) Structure of clusters after the disappearance of node9 with CH
status

Figure 4. Disappearance of node withCH status (in this examplek = 2)

clustering and informs its neighbors at distancei+1.
So on until the whole network becomes stable again.
As illustrated in Fig. 4(f), nodes2 and3 apply this
induction assumption to correct the disappearance
of its CH .

IV. T HEORETICAL VALIDATION

In [20], we have provided a formal proof of our clustering
approach. Table I illustrates a comparison of stabilizing time
and memory space between our proposal algorithm and other
approach designed for the state model. We note that our
stabilization time does not depend on the parameterk contrary
to approach proposed by Caron etal. [12]. We have a unique
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TABLE I
THEORETICAL COMPARISON OF STABILIZING TIME AND MEMORY SPACE

Stabilization Time Memory space per node neighborhood
Our approach n+ 2 log(2n + k + 3) 1 hop
Datta et al. [13] O(n), O(n2) O(log(n)) k hops
Caron et al. [12] O(n ∗ k) O(log(n) + log(k)) k+1 hops

phase to discover the neighborhood and buildk-hopsclusters
and an unique stabilization time contrary to approach describes
in [13]. Furthermore, we consider a 1-hop neighborhood at
opposed to Datta etal. [13] and Caron etal. [12].

Furthermore, in Ba etal. [29], we have compared our pro-
posed algorithm with one of most referenced papers on self-
stabilizing solutions based on message-passing model [18].
This shows that we reduce communication cost and energy
consumption by a factor of at least2.

V. VALIDATION FRAMEWORK

In this section, we present the evaluation study that we
carried out usingONMeT++ [30] simulator to compare the
performance of the previously described clustering approach
when utilizing different CH election methods. For generating
random graphs, we have used the SNAP [31] library. All
simulations were carried out usingGrid’5000 [32] platform.

A. Models

In order to implement our clustering approach in a realistic
way, we use standard models for representing both the energy
consumption and the network structure.

1) Energetic model:To model the energy consumption for
a node when it sends/receives a message, we use the first order
radio model proposed by Heinzelman etal. [33] and used in
many other studies [4], [34], [35]. A sensor node consumes
ETx amount of energy to transmit onel-bits message over
a distanced (in meters). As shown in equation (1), when the
distance is higher than a certain thresholdd0, a node consumes
more energy according to a different energetic consumption
model.

ETx(l, d) =

{

l ∗Eelec + l ∗ εfs ∗ d
2, if d < d0;

l ∗Eelec + l ∗ εmp ∗ d
4, if d ≥ d0.

(1)

Each sensor node will consumeERx amount energy when
receiving a message, as shown in equation (2).

ERx(l) = l ∗ Eelec (2)

Parameters values used in equations (1) and (2) to model
energy are summarized in Table II.

TABLE II
RADIO MODELING PARAMETERS

Parameter definition Value
Eelec Energy dissipation rate to run radio 50nJ/bit
εfs Free space model of transmitter amplifier10pJ/bit/m2

εmp Multi-path model of transmitter amplifier 0.0013pJ/bit/m4

d0 Distance threshold
√

εfs/εmp

2) Network model:In our experimental studies, we con-
sider networks represented by an arbitrary random graph based
on a Poisson process withλ > 1 for all network sizes. In
fact, random graphs based on a Poisson process provide a
better representation for WSNs. It is used in many studies
like [18], [36], [37], [38], [39]. Nodes in the network are
distributed uniformly at random as per a homogeneous spatial
Poisson process of intensityλ in two-dimensional plane. We
model our network by an undirected graphG = (V,E) follow-
ing standard models for distributed systems given in [40], [41].
V = n is the set of network nodes andE represents all existing
connections between nodes. Each nodeu of the network has
a unique identifier notedidu such that0 ≤ idu ≤ n− 1 . An
edge exists if and only if the distance between two nodes is
less or equal than a fixed radiusr ≤ d0. This r represents the
radio transmission range, which depends on wireless channel
characteristics including transmission power. Accordingly, the
neighborhood of a nodeu is defined by the set of nodes that
are inside a circle with center atu and radiusr and it is
denoted byNr(u) = Nu = {∀v ∈ V \ {u} | d(u,v) ≤ r}.
The degree of a nodeu in G is the number of edges that are
connected tou, and it is equal todeg(u) = |Nr(u)|.

B. Testbed

The parameters used in our simulations are summarized
in Table III. In all simulations, a 99% confidence interval
Ic is computed for each average value represented in the
curves. These intervals are plotted as error bars and computed
according to this equation:Ic = [x− tα

δ√
n
;x+ tα

δ√
n
], where

n is the population length,x is the average value,δ is the
standard deviation, and finally,tα has a fixed value of 2.58 in
the case of 99% interval.

TABLE III
SIMULATION PARAMETERS

Parameter Value

Message size 2000 bits
distance between 2 nodes 100 meters

Initial EnergyEinit
i

{1,2,3} Joules
Ideal degree {6,10,12,20}

Energy threshold {0.1,0.05} %
Number of nodes [100,1000]

Random graph model Poisson process
λ parameter [2,11]
k parameter [1,10]

Number of simulations for each network size 100
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C. Simulation results: evaluation of cluster-head election cri-
teria

In this section, we present a performance evaluation of
cluster-head election criteria. For each cluster-head election
criterion, the following performance parameters are assessed.

• Total exchanged messages (Mtotal): It is defined as
the total number of exchanged messages in the whole
network until the formation of stable clusters.

Mtotal =

n−1
∑

i=0

MSend
i

WhereMSend
i is the total number of messages send by

sensor nodei andn represents the network size.
• Total energy consumption (Etotal) : It is defined as the

energy consumption necessary to the clusters formation.

Etotal =

n−1
∑

i=0

(E init
i − Eav

i )

WhereE init
i is the initial energy of sensor nodei andEav

i

is the available energy of nodei at the end of clustering.
• Number of clusters: It is defined as the percentage of

formed clusters according to the network size.

Theses performances are evaluated accordingλ and k
parameters.

1) Communication cost (messages):We start the evaluation
of our protocol by measuring the necessary communication
cost in terms of exchanged messages to achieve the clustering
procedure.

In the set of experiments described in Fig. 7, we calculate
the communication cost accordingλ (Fig. 7(a), Fig. 7(c) and
Fig. 7(e)) andk (Fig. 7(b), Fig. 7(d) and Fig. 7(f)) parameters
for each cluster-head election criterion. These simulations are
based on the same network topology for each value ofλ and
k parameters.

As illustrated in3D curves show in Fig. 7(a), Fig. 7(b),
Fig. 7(c), Fig. 7(d), Fig. 7(e) and Fig. 7(f), we observe
that, for each cluster-head election criterion, the total number
of exchanged messages increases linearly together with the
number of nodes in the network. Indeed, the increase in
network size entails more communications. However, Fig. 7
shows that our protocol is scalable. Furthermore,λ and k
parameters do not affect the amount of generated messages by
our protocol. The main reason is that our algorithm is based
only on information from neighboring nodes at distance1 to
build k-hops clusters.

Experiments in Fig. 7 show that the clustering based on
the criterion of ID generates less messages. Fig. 5 shows
the gain of the ID criterion compared to Degree and Energy
criteria accordingλ parameter andk = 2. The criterion
of ID reduces the communication cost between7.5% and
10.2% compared to Degree criterion and between22.6% and
32.1% compared to Energy criterion. The main reason is that
the ID criterion brings greater stability during the clustering
phase. In addition, the ID criterion is simpler and deterministic
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Figure 5. Communication cost reduction of ID criterion (%)

compared to the criteria of degree or energy. Indeed, for the
Degree criterion, it is necessary for nodes to receive a message
from their neighbors to calculate their degree. Then, the degree
is sent by broadcast and after that, clustering phase begins.
This is expensive in terms of messages. Also, the residual
energy criterion generates more messages compared to the
ID and Degree criteria. As energy level is a parameter which
decreases during the clustering phase, it provides less stability
and requires more messages to reach a stable state in the
entire network. Note that we observe the same gain in terms
of energy consumption of the ID criterion compared to Degree
and Energy criteria.

2) Energy consumption:In the second set of experiments
shown in Fig. 8, we have measured the energy consumption
required for building clusters in the entire network according
network size andλ or k parameters.

As illustrated in3D curves described in Fig. 8(a), Fig. 8(b),
Fig. 8(c), Fig. 8(d), Fig. 8(e) and Fig. 8(f), we note that for
each cluster-head election criterion, the energy consumption
increases linearly together with the number of nodes in the
network. The main reason is that the energy consumption is
a linear function following the communication cost. However,
λ andk parameters do not affect the amount the energy con-
sumption required for building clusters. In fact, as illustrated
in experiments show in Fig. 7, the communication cost does
not depending onλ andk parameters.

Experiments illustrated in Fig. 8 show that the clustering
based on the ID criterion requires less energy consumption
during the clustering phase. Indeed, results illustrated in Fig. 7
show that both Degree and Energy criteria generate more mes-
sages than ID criterion during the clusters formation. However,
communications are the major source of energy consumption
in WSNs. Moreover, ID criterion reduces energy consumption
required to the clusters formation. Fig. 6 shows the gain of ID
criterion compared to Degree and Energy criteria according
k parameter andλ = 6. The ID criterion reduces the energy
consumption between7.3% and 9.7% compared to Degree
criterion and between18.1% and35.1% compared to Energy
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(a) ID criterion accordingλ parameter
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(b) ID criterion accordingk parameter
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(c) Degree criterion accordingλ parameter
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(d) Degree criterion accordingk parameter
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Figure 7. Total exchanged messages accordingλ andk parameters
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(b) ID criterion accordingk parameter
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(c) Degree criterion accordingλ parameter
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(d) Degree criterion accordingk parameter
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Figure 8. Total energy consumption accordingλ andk parameters



241

International Journal on Advances in Networks and Services, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Number of nodes
Lambda

 6

 8

 10

 12

 14

 16

 18

P
e

rc
e

n
ta

g
e

 o
f 

c
lu

s
te

rs
 (

%
)

ID citerion

 100
 200

 300
 400

 500
 600

 700
 800

 900
 1000

 2
 3

 4
 5

 6
 7

 8
 9

 10
 11

P
e

rc
e

n
ta

g
e

 o
f 

c
lu

s
te

rs
 (

%
)

 6

 8

 10

 12

 14

 16

 18

(a) ID criterion accordingλ parameter

Number of nodes
k

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

P
e

rc
e

n
ta

g
e

 o
f 

c
lu

s
te

rs
 (

%
)

ID criterion

 100
 200

 300
 400

 500
 600

 700
 800

 900
 1000

 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

P
e

rc
e

n
ta

g
e

 o
f 

c
lu

s
te

rs
 (

%
)

 2
 4
 6
 8
 10
 12
 14
 16
 18
 20
 22

(b) ID criterion accordingk parameter
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Figure 9. Percentage of number of clusters accordingλ andk parameters
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criterion. Note that we observe the same gain in terms of
communication cost for the ID criterion compared to Degree
and Energy criteria.

3) Number of clusters :The number of clusters build by our
protocol for each cluster-head election criterion is illustrated
by the set of experiments described in Fig. 9. These3D curves
reflect the percentage of formed clusters according network
andλ or k parameters.

In Fig. 9(a), Fig. 9(c) and Fig. 9(e), we setk = 2 and
we vary arbitrary the value ofλ parameter between2 and11.
Firstly, we observe that for each cluster-head election criterion,
the percentage of clusters build does not significantly vary
according the network size for each fixed value ofλ parameter.
Therefore, our approach is scalable in term number of clusters.
Secondly, for each fixed network size, the percentage of clus-
ters decreases as the value ofλ parameter increases. In fact,
the λ parameter represents the average number of neighbors.
Thus, network density increases as theλ parameter increases.
Therefore, clusters size increases, implying a reduction of
the number of clusters. Note that the ID criterion provides a
better distribution of clusters (between6% and18%) compared
to Degree and Energy criteria. The main reason is that ID
criterion provides more stability.

In Fig. 9(b), Fig. 9(d) and Fig. 9(f), we setλ = 6 and
we arbitrary vary the value ofk parameter between1 and10.
Firstly, we observe that for each cluster-head election criterion,
the percentage of clusters build does not significantly vary
according the network size for each fixed value ofk parameter.
Therefore, our approach is scalable in term number of clusters.
Secondly, for each fixed network size, the percentage of
clusters decreases significantly as the value ofk increases. In
fact, if the k parameter increases, clusters of larger diameter
are constructed. This implies that clusters size is larger.Thus, a
decrease in the percentage of clusters built. Note that, values of
k parameter that provide the better distribution of clustersare
comprised between2 and4. Beyond, we obtain large clusters
that will not be easy to manage by the cluster-head.

4) Impact of highest and Ideal degree:To evaluate the
impact of highest and Ideal degree as studied in Section III-B2,
we arbitrary fix△d to 6, 10, 12, and 20 and then we evaluate
energy consumption. Note that in the set of experiments shows
in Fig. 10, we fix k = 2 and λ = 6. We observe a slight
decrease in the energy consumption for ideal degree fixed to
6 compared to highest degree as illustrated in Fig. 10. In fact,
the Ideal degree fixed is equal to theλ parameter. As theλ
parameter represents the average number of neighbors in the
whole network, a Ideal degree equal to theλ parameter re-
duces communications required during the clusters formation
implying slight decrease in energy consumption.
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On the other hand, we observe an increase in the energy
consumption for ideal degree fixed at12, 15 and20. The main
reason is that nodes attempt to join the cluster-head that isthe
node minimizing its distance to this ideal degreeρ (△d =
|D − ρ|). This leads an increase of communications required
during the clusters formation, implying at the same time an
increase of energy consumption. The major advantage of this
method is to allow the setting of the number nodes managed
by cluster-head.
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Figure 12. Fault-tolerant in the case of 1, 2, 3, 4 and 5 disappeared nodes

5) Impact of residual energy or energy threshold:As the
main problem with the criterion of energy is its volatility,we
fix energy threshold to limit abrupt changes of nodes when
their energy CHs decreases substantially. We fixed the energy
threshold to0.1% and 0.05% and we evaluate both energy
consumption. Fig. 11 shows that energy threshold reduces
energy consumption during the clustering phase. Indeed, nodes
no longer change after a slight decrease of their energy
CHs. This entails less messages exchanged and less energy
consumption.

D. Simulation results: fault-tolerant evaluation

In this section, we study by simulation the robustness or our
approach again nodes failure. To do this, we consider only the
ID criteria of our protocol.

Firstly, we vary the network size between100 and 1000
nodes. For each network size, after stabilization (i.e., formation
of stable clusters in whole network), we randomly disappear
1, 2, 3, 4 and 5 nodes. Thus, the fault-tolerance mechanism

is triggered by starting the re-clustering process. At the end
of the re-clustering process, we evaluate the supplementary
communication cost, energy consumption and percentage of
impacted nodes. For each network size, we compute for each
metric the average as the average of all values corresponding to
100 simulations results with99% fixed as confidence interval.

Fig. 12(a) shows the supplementary communication cost at
the end of the re-clustering process according the network size.
We observe that, the disappearance of1 until 5 nodes and
according network size, generates on average between50 and
150 supplementary messages in whole network. Fig. 12(b),
shows a supplementary energy consumption between1 mJ
and 4 mJ . We remark that the energy consumption follows
the same pattern as the communication cost. The main reason
is that the energy consumption is a linear function following
the communication cost.

In order to evaluate the impact of re-clustering, in Fig. 12(c)
we calculate the percentage of re-clustering cost comparedto
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clustering cost. We note that, the re-clustering cost (in terms
of communication cost and energy consumption) represents
3% of resource consumption compared to the clustering cost.
In fact, with our fault-tolerance mechanism, as illustrated in
examples shown in Fig. 3 and Fig. 4 in the Section III-C, the
occurrence of fault impacts generally the cluster where the
fault has occurred and eventually adjacent clusters. This result
is consolidated through Fig. 12(d), where we have estimated
the percentage of impacted nodes compared to the network
size. We say that a nodeu is impacted if only if, one of
its local variables (clu, statutu or dist(u,CHu)) undergoes
a modification caused by the disappearance of a nodev.
Fig. 12(d) shows that the disappearance of5 node in the
network size1000 impacts around6% of nodes.

To better observe the impact of re-clustering as illustrated
in Fig. 13, we set a network size at1000 nodes and we
randomly disappear between1% and 5% of nodes in the
network. At the end of re-clustering process, we evaluate the
supplementary communication cost, the energy consumption
and the percentage of impacted nodes. Fig. 13(a) shows
the supplementary re-clustering cost in terms of exchanged
messages and energy consumption compared to clustering
cost. We observe that the disappearance until5% of nodes
leads an additional cost in terms of exchanged messages and
energy consumption of15.5%. The main reason is due to
the fact that the re-clustering caused by disappearance of5%
nodes does not impact the entire network. In fact, as illustrated
in Fig. 13(b), disappearance of5% nodes impacts around1/4
of total number of nodes in the network.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we proposed a self-stabilizing distributed
energy-efficient and fault-tolerant clustering protocol for het-
erogeneous wireless sensor networks. This protocol prolongs
the network lifetime by minimizing the energy consumption
involved in the exchanged of messages. It can be used under

different CHs election methods like those investigated in this
work. Moreover, our proposed protocol is fault tolerance
and adapted to topological changes. We have also compared
our algorithm with some of most referenced self-stabilizing
solutions.

Simulation results show that in terms of number of mes-
sages, energy consumption and clusters distribution, it isbetter
to use the Highest-ID metric for electing CHs. Furthermore,
after the occurrence of faults, the re-clustering cost is minimal
compared to the clustering cost and faults do not affect the
entire network.

As future work, we plan to propose a routing process based
on our clustering approach.
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