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Abstract—Smartphones, tablets, netbooks and laptops are
intensively used every day by a large part of the population. These
devices—which are equipped with Wi-Fi interfaces—can form
disconnected mobile ad hoc networks (DMANETs) dynamically.
These networks may allow service providers, such as local
authorities, to deliver new kinds of services in a wide area (e.g.,
a city) without resorting to the infrastructure-based networks of
mobile phone operators. This paper1 presents OLFServ, a new
location-aware forwarding protocol dedicated to service-oriented
opportunistic computing in DMANETs. This protocol implements
several self-pruning heuristics allowing mobile nodes to decide
whether they efficiently contribute in the message delivery. The
protocol has been implemented in a service-oriented middleware
platform, and has been validated through simulations, which
proved its efficiency.
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I. INTRODUCTION

Over the last years, handheld devices such as smartphones
or tablets have become widely spread and used through the
population. These devices, which are equipped with wire-
less communication interfaces—often complemented by GPS
(Global Positioning System) receivers and various sensors—,
allow their users to connect to the Internet and to use services
hosted in remote servers just as if they were at home using
a wired connection. This kind of service provision knows a
great development, but it relies on a fixed and often heavy
infrastructure, and is not without constraints for the client
when considering for instance the cost of resorting to licensed
frequency bands (Universal Mobile Telecommunications Sys-
tem, General Packet Radio Service) or the limited geographical
scope of a Wi-Fi hotspot.

An alternative has been envisioned since several years
through mobile ad hoc networking. Mobile handheld devices
can form mobile ad hoc networks spontaneously, and this
ability can be exploited in order to artificially extend networks
composed of some sparsely distributed infostations with a view
to offering a wide service access to end-users. An illustration
of this kind of network is shown in Figure 1: devices with
Wi-Fi interfaces operated in ad hoc mode are present in the
environment; most of them are hold by mobile users and few
of them, the infostations, are fixed. In practice, because of
the potentially low density of devices, their mobility and the

1This paper is an extended version of a previous description of our work [1].
It gives a more detailed explanation of the rationale and mechanics of the
proposed protocol, as well as complementary experimentation results.

short communication range of wireless interfaces, the topology
of such networks suffers from frequent and unpredictable
changes. The network is regularly fragmented in several
distinct communication islands thus entailing an intermittent
connectivity between devices and the impossibility to ensure
an end-to-end connectivity. For these reasons, this type of
network is called a DMANET for Disconnected Mobile Ad
hoc Network.

In DMANETs, devices can communicate directly only when
they are in range of one another. Intermediate nodes can
be used to relay a message from a source to its destination
following the “store, carry and forward” principle. The routes
are therefore computed dynamically at each hop while the
messages are forwarded towards their destination(s). Each
node receiving a message for a given destination is thus
expected to transmit a copy of the message to one or several
of its neighbors. When no forwarding opportunity exists (e.g.,
no other nodes are in the transmission range, or the neighbors
are evaluated as not suitable for that communication) the node
stores the message and waits for future contact opportunities
with other devices to forward the message. Thanks to this
principle, a message can be delivered even if the client and
the destination are not present simultaneously in the network,
or if they are not in the same network island at emission time.

Devising an efficient routing based on the “store, carry, and
forward” principle has been the subject of many research ef-
forts in the so-called domain of Opportunistic Networking [2].
The main problem is to establish a compromise between
the speed at which the message reaches its destination and
the resources consumed globally in the network, namely the
storage space required in the intermediate devices and the
bandwidth used when transmitting messages between devices.
Flooding the network with copies of the message is known to
be the fastest way to attain the destination in theory but its cost
is considered prohibitive. On the other hand, keeping a single
copy of the message in the network and passing it from one
device to its neighbor when possible is an economical solution
but tends to slow down—if not jeopardize—the propagation
of the message towards its destination. A common approach
is to allow an intermediate device to generate a limited
number of copies of the message and leverage on contextual
information for selecting the best devices to which these copies
are conveyed. The considered context can take various forms,
related for instance to records of encounters with other devices
or to device’s location.

Although routing is a key aspect in DMANETs, it should not
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Figure 1. Illustration of a disconnected MANET formed by infostations and
devices carried by people strolling in a city.

be considered as the ultimate objective but rather as a first step
towards middleware tools adapted to distributed application
development. Indeed, legacy applications (often based on
strong connectivity assumptions) cannot be straightforwardly
transposed into the specific context of DMANETs, or do
not take full benefit of the pervasive aspect of DMANETs.
The effective emergence of new applications is dependent on
the capacity to discover, compose and exploit heterogeneous
resources spread on a disconnected network. The notion of
Opportunistic Computing has been introduced to emphasize
the gap between issues related to opportunistic networking,
that mainly aims at forwarding message packets, and those
related to application design and implementation [3], [4].
Because of its intrinsic loosely-coupled nature well adapted
to opportunistic computing, a first obvious paradigm to inves-
tigate is service provisioning: hardware or software resources
available in the network are abstracted as services. A service
is hosted by a device that plays the role of service provider.
Other devices in the network, acting as clients, will try to
discover provided services so as to be able to invoke them
remotely. An intermediate selection phase may take place
before invocation, when the client is able to choose between
several services. Service provisioning in connected networks
has been extensively explored (Web Services are a well-
known example) but in the framework of DMANETs, issues
regarding discovery, selection and invocation introduced by
this paradigm are seldom addressed2. The case in which
services are provided only by fixed infostations is particularly
interesting because the range of services susceptible to be
deployed on this kind of platforms is very large compared
with what can be done on mobile devices. Indeed, infostations
are stable, not as constrained as mobile devices in terms
of resources (primarily regarding power), and their potential
connection to the Internet allows an easy access to a huge
amount of information.

This paper presents OLFServ, a new opportunistic and
location-aware forwarding protocol we have designed in order
to support both service discovery and service invocation in

2To our knowledge, except in our previous work, service provisioning in
opportunistic networks has been specifically studied only by the European
SCAMPI project (http://www.ict-scampi.eu).

DMANETs. OLFServ is a key element of a middleware
platform we develop to investigate service provisioning in
DMANETs [5]. Based on the location data collected by the
platform from the wireless interface and/or the GPS receiver
of the device, OLFServ makes it possible to perform an
efficient and geographically-based broadcast of both service
advertisements and service discovery requests, as well as
a location-driven service invocation. OLFServ implements
several self-pruning heuristics allowing intermediates nodes
to decide themselves if they are “good” relays to deliver
the messages they receive from their neighbors (i.e., if they
contribute to bring a message closer to its destination). These
heuristics aim to
• progressively refine the area where a message can be

disseminated until reaching its destination;
• perform source routing when it is possible;
• support the client mobility by computing the area where

the client is expected to be when it receives its response;
• avoid message collisions by implementing a backoff

mechanism.
Thanks to these heuristics, only a small subset of relevant
intermediate nodes will forward the messages in given geo-
graphical areas or in given directions.

The remainder of the paper is organized as follows. Sec-
tion II brings to the fore the main issues that must be addressed
in order to discover and to deliver some services in DMANETs
efficiently. Section III presents the assumptions on which
protocol OLFServ is based, the detailed specifications of the
self-pruning heuristics it implements, and how it works on
an example. Section IV presents some simulations results we
obtained for OLFServ. Research works dealing with routing
protocols in DMANETs are presented in Section V. Section VI
summarizes our contribution.

II. RATIONALE FOR SERVICE-ORIENTED

OPPORTUNISTIC COMPUTING

When targeting DMANETs, the service-oriented oppor-
tunistic computing paradigm introduces new issues compared
to the mere provision of message passing. These issues pertain
namely to the discovery, the selection and the invocation
of pervasive services, imposing de facto the design of new
routing protocols suited to both discovery and delivery of
services, as well as the development of middleware platforms
supporting distributed computing tasks in environments where
disconnections and network partitions are the rule. These
aspects are discussed in the remainder of this section.

A. Service discovery

In disconnected, or partially connected, MANET, no device
is stable enough, or accessible permanently, to act as a service
registry. Mobile clients should therefore be responsible for dis-
covering the services offered in the network reactively and/or
proactively, and for maintaining their own list of services. The
reactive discovery is usually achieved by processing the unso-
licited service advertisements broadcast by service providers,
while the proactive discovery is performed by broadcasting
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service discovery requests in the network and by processing
the advertisements returned in response by providers. In such
a distributed discovery process, all mobile nodes receiving
an advertisement or a discovery request are not expected to
rebroadcast this message systematically and immediately, be-
cause if they do so, they will generate too much network traffic
and could even lead to network congestion. To cope with this
problem, which is known as the broadcast storm problem [6],
some heuristics must be devised in order to reduce the number
of senders and to broadcast the messages asynchronously.
Moreover, based on the “store, carry and forward” principle,
the discovery messages can be disseminated in a wide area,
even if the services are relevant only in a restricted one.
Thus, it seems to be suitable to circumscribe the dissemination
of these messages geographically, as well as to limit their
dissemination in the network by defining a life time and a
maximum number of hops.

B. Service selection

A selection process may precede the invocation, when the
opportunity is given to the client application to choose among
several service providers. Thus, it could be interesting to
select a provider according to its location, and to transparently
select another one among a set of relevant ones when the
current provider becomes inaccessible. In previous works, we
proposed two different solutions for this issue: one that relies
on a content-based service invocation [7] and another one that
relies on a dynamic and transparent update of the service
references [5]. These two solutions have been implemented
in the service management layer of our middleware platform.

C. Service invocation

In opportunistic networks, no end-to-end routes are main-
tained between a client and a provider by an underlying
dynamic routing protocol such as AODV or OLSR. A priori,
a node does not know which is the best next forwarder
among its neighbors for reaching the destination. In order to
avoid a “blind” message forwarding, some solutions have been
proposed over the last years [8], [9], [10], [11], [12], [13].
These solutions mainly rely on the computation of a delivery
probability based on contextual properties [12], on a history
of contacts [10], or on both [13], [9]. Nevertheless, these
solutions often consider that nodes move following regular
mobility patterns, and that their future (direct or indirect)
encounters can be predicted. Computing such an history and
a prediction is a tricky problem, especially in an environment
where people often stroll and move randomly such as in a
city, questioning de facto such assumptions. Moreover, during
the invocation process, such probabilities must be computed
twice: once in order to deliver the invocation request to the
service provider, and another time to deliver the response to the
client. Indeed, the client and the intermediate nodes are likely
to move during this process, the forwarding path followed by
the response can therefore be different from that taken by the
request.

In order to increase the message delivery ratio and to reduce
the delivery time, several copies of a message are usually

generated in the network. In order not to process a request or
a response several times, such a redundancy should be hidden
from both the client applications and the software services,
and be controlled by the routing protocol itself. Moreover, a
mobile node should stop forwarding a request for which it has
already received a response.

Opportunistic communications introduce a certain delay
in the service discovery and invocation processes. Although
client applications must be able to tolerate this delay and
to deal with extended disconnection periods, it is suitable to
devise solutions that provide end-users with a certain quality of
service in term of responsiveness. Consequently, the protocol
should not implement a purely periodic and proactive message
emission, but instead should adopt a reactive behavior as far
as possible. It should be sensitive to events such as the arrival
of a new neighbor, the reception of a new message or the
location changes.

Finally, like the service discovery messages, the service
invocation requests and the service responses must be circum-
scribed to the area where the service must be offered. Both a
lifetime and a maximum number of hops must also be assigned
to these messages in order to reduce their propagation.

III. THE OLFSERV PROTOCOL

In the remainder of this section, we present OLFServ,
an opportunistic and location-aware forwarding protocol we
have designed so as to address the issues identified in the
previous section. OLFServ aims at supporting the discov-
ery and the invocation of software services in DMANETs
such as those formed by fixed infostations and handheld
devices used by nomadic people. It implements an efficient
and geographically-constrained broadcast of both service ad-
vertisements and service discovery requests, as well as a
location-driven forwarding of service invocation requests and
service responses. OLFServ is a key element of an OSGi
service-oriented middleware platform we have developed in
order to support service provision in ”challenging” pervasive
environments. This platform provides some facilities in order
to compute the location of a mobile node according to the
coordinates generated by the embedded GPS receiver or to
the Wi-Fi signal and the location properties exhibited by the
neighbor nodes as presented in [5].

A. Assumptions

The OLFServ protocol relies on 3 main assumptions:
1) Both mobile hosts and fixed infostations are aware of

their geographical location and able to compare their
location with that of another host. Mobile hosts are
expected to indicate their destination/direction if they
know them.

2) Mobile hosts are able to perceive their one-hop neigh-
borhood. This neighborhood is obtained using specific
messages (beacons) sent by each node periodically.

3) Each mobile host is able to temporarily store the mes-
sages it receives, and can associate to each of them
some pieces of information, and especially the IDs of
the nodes that are known to have received them.
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B. Overview of the protocol

1) Heurisitics:
OLFServ is an event-driven protocol that implements self-

pruning heuristics. The originality of this protocol resides in
the adaptation of several well known heuristics to the context
of service provisioning in DMANETs, and their combination
in a coherent platform. The main implemented heuristics are
the following:

Contention resolution in message forwarding: Like DFCN
(Delayed Flooding with Cumulative Neighborhood) [14],
which proposes a bandwith-efficient broadcast algorithm for
MANETs, OLFServ introduces a backoff mechanism in order
to avoid message collisions at message reforwarding time.
From this point of view, a node is expected to compute a
forwarding delay for each message it receives, and to forward
messages when their delay expires. Moreover, a node will
abstain from forwarding a message if it perceives that all
of its neighbors have already received it (the message was
forwarded by at least one of its neighbors before it forwards
the message itself, and its one-hop neighborhood is a subset of
the set of nodes that are expected to have received the message
yet). In addition, in OLFServ, this forwarding delay has two
components: one that is inversely proportional to the distance
from the last forwarder and another one that is a random
value (used in the backoff mechanism). Therefore, only the
farther nodes are likely to forward a message, thus improving
the geographical propagation of messages while reducing the
number of emissions.

Geographically-driven message forwarding: At each step,
a message will be forwarded only by the nodes closer to the
destination.

Content-based message forwarding: Mobile nodes can es-
tablish some correlations between the discovery requests and
the advertisements, as well as between the invocation requests
and the responses. Thanks to this heuristic, a mobile node
receiving an invocation request is expected to send back to
the client the response it previously stored for this request
instead of forwarding it towards its destination, obviously if
this one is still valid.

Source routing forwarding: Nodes can estimate if a mes-
sage was forwarded quickly (i.e., if a message was relayed
following an end-to-end path), and to perform source routing
if so. OLFServ is thus able to exploit end-to-end routes when
they exist, reducing the propagation time and the number
of message copies. If the source routing failed, because an
intermediate node becomes unreachable, the selective and
controlled broadcast is used. These last two heuristics aims
at improving the quality of service offered to end-users in
term of responsiveness.

2) Events:
In OLFServ, five kinds of events are considered:
• the reception of a message;
• the expiration of the forwarding delay associated with a

message;
• the location changes;
• the arrival of a new neighbor;

• the failure in the source routing process.

The first and the last events induce a reactive behavior of the
protocol regarding the message forwarding, whereas the other
events induce a proactive behavior.

Before giving a detailed specification of the OLFServ pro-
tocol, let’s see how the above-mentioned heuristics operate in
both the service discovery process and the service invocation
phase. From this point of view, let us consider the disconnected
MANET depicted in Figure 2, which will, for the sake of
illustration, be composed of a set of mobile devices carried by
pedestrians and a fixed infostation I that offers a service that is
relevant only in the geographical area represented by the dotted
rectangle. Moreover, let’s suppose that one of these mobile
hosts, namely node C, is interested in the service proposed
by I. The network, which is currently composed of the six
distinct communication islands shown in Figure 2, is expected
to evolve in an unpredictable manner according to the nodes’
mobility. Nevertheless, in order to illustrate our purposes, we
will consider subsequently that node C and node N6 follow
the materialized paths so as to reach different destinations at
times t1, t2, t3 and t4.

a) Service discovery: The invocation of a remote service
is conditioned by the preliminary discovery of this service.
Consequently, in order to call the service offered by I, node
C must discover this service. For the sake of illustration, let
us consider that infostation I has injected in the network an
advertisement A including its location, the geographical area
where the service can be accessed, a date of emission, a
lifetime, a maximum number of hops this advertisement is
allowed to make, and the set of nodes that are expected to
receive this advertisement (i.e., I, N1, N2, N3, N4 and N5).
Nodes N1, N2, N3, N4 and N5, which will receive message
A first, will store this message locally and will compute
a forwarding delay in order not to rebroadcast message A
simultaneously.

The coverage radio area of a node is partitioned in several
concentric rings. The forwarding delay algorithm (see Algo-
rithm 2) allows mobile nodes located approximately at the
same distance (i.e., in the same ring) from the last relay (or
from the initial sender) to compute a forwarding delay in a
same range of values. In the part of the network depicted in
Figure 2, nodes N1, N2 and N3 will thus compute a forwarding
delay in a same range of values. This delay will be less
than the one computed by N4, which itself will be less than
the one computed by N5. Moreover, a node perceiving that
all of its neighbors have already received the message it
plans to forward will cancel its forwarding process, and will
trigger it when it is notified of the arrival of a new node in
its vicinity. Thus in our scenario, node N5 will not forward
advertisement A, because this advertisement is rebroadcast
by node N4 first. If we consider that all the nodes have the
same communication range of radius R, we can deduce, based
on geometric properties, that, in favorable conditions, only
3 nodes will forward advertisement A the first time [15].
Consequently at hop n, in favorable conditions the number
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Figure 2. Opportunistic communication in a DMANET with OLFServ.

of forwarders will be 3× n, and in the worst conditions
(i.e., when the selected forwarders moved before forwarding
their message, and become out of reach of each other), the
number of forwarders will be ∑

n
i=0 6n. This property is thus

independent of the density of the network.
By implementing the ”store, carry and forward” principle

and by exploiting the nodes’ mobility and contact opportu-
nities, advertisement A will be propagated in the whole area
specified by the infostation, and only in this area. Indeed, the
self-pruning heuristics implemented in our protocol prevent
mobile devices from forwarding messages outside the area
specified in the headers of these ones. For instance, node N6
that left the island of infostation I at time t1 and joined that
of client C at time t2 will broadcast advertisement A in this
new island. This message will be then broadcast by the other
nodes of this island whether it is still valid (i.e., the number
of hops is greater than zero and the lifetime has not expired
yet), except by node N7 because it is outside the area specified
by infostation I. Thus, node N8 will not receive message A.

b) Service invocation: After discovering the service of-
fered by infostation I, client node C can invoke this service by
sending an invocation request including namely the ID of the
infostation, the location of this one, and its own location. Let
us also consider that client C knows its speed and its direction
and that it has also included them in the request it sent, thus
allowing to compute with a better accuracy the area where it is
expected to be when it will receive the response. Indeed, when
the speed and the direction (or the destination) are unknown,
the “expected area” is a circle whose center is the current
position of the client and whose radius is proportional to a
predefined speed (of about 2 m/s for pedestrians) and to the
time expected for the response delivery (this time is estimated
from the request delivery time). The notion of “expected area”
was introduced in [16]. In contrast, when the speed and the
direction are known, the “expected area” is a circle centered

on the position computed from the speed and the direction
indicated by the client, and whose radius is proportional to
the inaccuracies of both the speed and the forwarding time
(see the dotted circle in Figure 2).

The request sent by C will be received by intermediate nodes
and broadcast by these ones towards infostation I following
a forwarding scheme that is quite similar to the discovery
forwarding scheme presented previously. The difference be-
tween these two schemes resides in the number of nodes that
will rebroadcast the messages. Indeed, since the invocation
process is usually achieved using a unicast communication
scheme, we have introduced additional self-pruning heuristics
in comparison to the service discovery process in order that
only the nodes closer to the destination than the previous hop
can forward the message towards the destination. Thus, the
area where the message is forwarded is progressively refined
until reaching the destination, and the number of messages that
are replicated in the network is reduced while having a good
message delivery ratio. A node, receiving a message from a
neighbor node closer to the message’s recipient than itself, will
store the message locally and will forward this message later
when it becomes closer to the recipient than this neighbor.
For example N7 and N8 will not broadcast the request sent
by node C at time t2 because they are farther than C from
infostation I. This invocation request will be received by node
N6 at time t2+∆t. If N6 joins the island of infostation I at time
t3 as shown in Figure 2, it will broadcast this request in this
island because it will discover new neighbors that have not
received this message yet. These neighbors will then forward
this request towards infostation I.

If client C has specified its location, its speed and its
possible direction of movement, OLFServ can estimate the
area where C is expected to be when it should receive the
response from I. So when the response is returned, this area is
specified in a header of this message. The response will be then
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routed towards this ”expected area” using a forwarding scheme
comparable to that used for the invocation. When the message
has reached the “expected area”, it will be disseminated in this
area following a broadcast scheme comparable to that used for
service discovery. This technique is used since the position
of the client cannot be computed with a good accuracy due
to the delay induced by opportunistic communication. When
a mobile device receives a response for an invocation it has
previously stored locally, it stops forwarding this request in
the network. In our scenario (Figure 2) the response will be
routed towards node C by nodes N2, N3 or N1 because they are
closer to the “expected area” than I. Moreover, if an invocation
request reaches the provider within a short amount of time
(i.e., if a end-to-end route is very likely to exist between the
client and the provider), OLFServ tries to follow the same
route by applying source routing. If the source routing process
failed because an intermediate node has moved, then the node
perform a broadcast towards the destination as mentioned
before. Finally, if a node stored previously a response for
the request sent by client C, it will send back this response
(if it is still valid) instead of forwarding the request towards
infostation I. For instance, N2 can return to client C the copy
of the response it holds locally, instead of forwarding the
request to I. Thus, the number of message roaming in the
network is reduced and the service invocation responsiveness
is improved. The same process is applied when a client is
looking for a service: an intermediate node can send back to
the client the advertisement it holds locally that “matches” the
service discovery request sent by the client.

C. Specification of the protocol

The remainder of this section presents how OLFServ reacts
when one of the above-mentioned events occurs.

1) Notations: The location of a node is subsequently iden-
tified as L, the one of the last relay as Lrelay and the one of the
destination as Lrecipient . The one-hop neighborhood of a node is
referred to as N. The local cache of a node is identified as C. Qs
and Qb are outgoing queues for the messages that must be sent
using source routing techniques and for the messages that must
be broadcast respectively. Km refers to the set of nodes that are
known to have received message m. ∆ is the set of messages
that must be forwarded and for which a forwarding delay
has been computed. Finally, the messages headers can include
several properties (the location of the recipient, the location of
the sender, a date of emission, a lifetime, a maximum allowed
number of hops, the geographical area where the message can
be disseminated, etc.). A given property of a message m is
identified as m[property].

2) Message reception: When receiving a message m, Al-
gorithm 1 is applied. First, if a node receives from one of
its neighbors a message it plans to forward, it checks if
all of its neighbors have received this message. If so, it
cancels its forwarding process. If the node has in its cache
an advertisement p for the service discovery request m (or
a response p for the invocation request m) then the node is
expected to forward p if this one is still valid. A forwarding
delay is computed for message p, and p is put in the set of

Algorithm 1 Reaction on message reception.
Input:

m: the incoming message
t: the current time
C, ∆, Km, N

1: if (m ∈ ∆ & N ⊆ Km) then
2: ∆← ∆−{m}
3: else
4: if (∃ p ∈ C / p is response for m

& p[li f etime]> t− p[date] & p[hops]> 0) then
5: compute forwarding delay for p
6: ∆← ∆∪{p}
7: else
8: if (∃ k ∈ C / m is response for k) then
9: C←C− {k}

10: if (k ∈ ∆) then
11: ∆← ∆− {k}
12: if (k ∈ Qs) then
13: Qs← Qs− {k}
14: else
15: Qb← Qb− {k}
16: end if
17: end if
18: if (t− k[reception date]< ε) then
19: m[source routing]← k[Lrelay]
20: end if
21: end if
22: if (m[li f etime]> t−m[date] & m[hops]> 0) then
23: C←C∪{m}
24: m[reception date]← t
25: Km← Km ∪{m[Km]}
26: if (N 6⊆ Km) then
27: compute forwarding delay for m
28: ∆← ∆∪{m}
29: end if
30: end if
31: end if
32: end if

messages that must be sent. Otherwise, if m is a response
for an invocation request k (or if m is an advertisement for
a discovery request k), k is removed from the local cache in
order not to be forwarded later, as well as from the set of
messages that must be forwarded. If message m is still valid
and if the number of hops is greater than 0, message m is put in
the local cache, and the set Km is updated (i.e., the set of nodes
that are known to have received message m yet). Message m
is put in the set of messages that must be forwarded and a
forwarding delay is computed for m. When the forwarding
delay δm expires, Algorithm 3 will be applied.

3) Computation and expiration of the forwarding delay:
Each mobile device computes a forwarding delay for each
message it receives. This delay prevents close devices from
forwarding messages simultaneously. As mentionned before,
in OLFServ the forwarding delay has both a random com-
ponent and a component that is inversely proportional to
the distance from the previous relay. So as to compute this
forwarding delay, the wireless communication range of each
device has been divided in several rings (see Figure 2), so
that the delays computed by hosts in ring i are greater than
those computed by hosts in ring i+1. The mobile hosts of a
given ring are considered as equivalent regarding the spatial
propagation of messages. The algorithm used to compute the
forwarding delay is described in Algorithm 2. This algorithm
has mainly three parameters: the wireless communication
range (W ), the ring size (rs) and α . This last parameter has
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Algorithm 2 Computation of the forwarding delay.
Input:

m: the incoming message
rs: the ring size
R: the ring number
δ : the default forwarding period
W : the wireless communication range

Output: δm: the forwarding delay for message m
1: R← f loor((W −distance(L,m[Lrelay]))/rs)
2: δm← min(δ ,α ∗ random(R∗ rs,(R+1)∗ rs))

Algorithm 3 Expiration of the forwarding delay.
Input:

t: the current time
m: the message
C, N, Km, Qb, Qs

1: if (N−Km 6= /0 & in m[area] & m[li f etime]> t−m[date] & m[hops]> 0)
then

2: if (m[recipient] 6= ”∗ ”) then
3: dthis→recipient ← distance(L,m[Lrecipient ])
4: drelay→recipient ← distance(m[Lrelay],m[Lrecipient ])
5: if (dthis→recipient ≤ drelay→recipient) then
6: m[area]← (m[Lrecipient ],dthis→recipient)
7: m[Km]← m[Km]∪Km
8: m[Lrelay]← L
9: m[nb hops]← m[nb hops]−1

10: if (t−m[date]< ε) then
11: Qs← Qs ∪{m}
12: ∆← ∆−{m}
13: else
14: Qb← Qb ∪{m}
15: ∆← ∆−{m}
16: end if
17: end if
18: else
19: m[Km]← m[Km]∪Km
20: m[Lrelay]← L
21: m[nb hops]← m[nb hops]−1
22: Qb← Qb ∪{m}
23: ∆← ∆−{m}
24: end if
25: end if

been introduced in order to define a relevant delay δm: the
delay in the largest ring is of the order of a few milliseconds,
while in the smallest ring it is of the order of a few seconds
typically.

When the forwarding delay of a given message has expired,
Algorithm 3 is applied. If there are new nodes in the one-
hop neighborhood, if the client is in the area where the
message can be disseminated, if the message is still valid and
if the message has next hops, the message is then considered
as being forwardable. The headers of the message are then
updated. If the destination is known, the area where the
message can be propagated is updated in order to refine this
area progressively until reaching the destination. Moreover if
the destination is known, the mobile device checks whether it
is closed to the destination than the last forwarder, and if so, it
updates the number of hops, the location of the last forwarder
with its own location and the set of nodes that have already
received the message, and puts the message in the outgoing
message queue. If the message has expired or if the number
of hops equals to 0, the message is removed from the local
cache.

4) Location changes: When reaching a given location, a
mobile host can trigger the forwarding of some messages. For

Algorithm 4 Location changes.
Input:

t: the current time
m: the message that must be forwarded
C,Km

1: if (m[li f etime]> t−m[date] & m[hops]> 0 & N 6⊆ Km) then
2: if (m[type] = response & L in m[expected area]) then
3: m[recipient]← ”∗ ”
4: end if
5: compute forwarding delay for m
6: end if

Algorithm 5 Detection of new neighbor nodes.
Input:

t: the current time
n: the new neighbor
C, N

1: N← N∪{n}
2: for all m ∈C do
3: if (m[li f etime]> t−m[date] & m[hops]> 0) then
4: if (n /∈ Km & in m[area]) then
5: compute forwarding delay (m)
6: end if
7: else
8: C←C−{m}
9: end if

10: end for

instance, a mobile host that was far from the recipient of a
message it received can trigger the emission of this message
when it is at a given distance from the recipient. Similarly,
when entering the area where a client is likely to be receiving
its service response, a mobile host, acting as an intermediate
node, can both update the message headers in order that this
message can be broadcast in this whole area and trigger its
emission. When the mobile host has reached a given location,
Algorithm 4 is executed. We change the status of the response
in order that it is broadcast by the node in the whole area
specified by the provider. And for each message when we
become closer to the destination than the previous node (the
node from which we have received the message), we trigger
a message emission.

5) New neighbor detection: When a new neighbor node
is discovered, the mobile host computes a forwarding delay
for all the messages that are still valid, that have next hops,
if the new neighbor is not in the the list of nodes that have
already received the message and if the mobile host is in the
area where the message can be propagated. A new forwarding
delay is computed in order to prevent the emission of the same
messages by different nodes that simultaneously discover the
new neighbor node in their one-hop neighborhood.

IV. EXPERIMENTS AND RESULTS

In order to evaluate our protocol, we conducted a se-
ries of simulations using the Madhoc simulator (http://www-
sop.inria.fr/members/Luc.Hogie/madhoc), a metropolitan ad
hoc network simulator that features the components required
for both realistic and large-scale simulations, as well as the
tools essential to an effective monitoring of the simulated
applications. This simulator, which is written in Java, allows us
to run our middleware platform on it. In the current scenarios
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Figure 3. Simulation environment.

we focus on, service providers are fixed infostations deployed
in a city, while clients are devices carried by humans.

A. Experiments and simulation setup

The simulation environment we consider is depicted in
Figure 3. It is an open area of about 1 km2. Four infos-
tations offering two different services are deployed in this
environment. These services can be discovered and invoked
in a circular area of a radius of 200 m. The first service
delivers the day’s weather forecast, while the second provides
an access to a “yellow page” service, which can be invoked
by nomadic people in order to find restaurants, shops, etc.
Mobile clients are thus expected to submit the same request
to the first service and different ones to the second service.
In our simulations, we have considered successively 50, 100,
500 and 1000 pedestrians carrying a PDA (Personal Digital
Assistant) equipped with both a Wi-Fi interface and a GPS
receiver. The communication range of both mobile devices and
infostations varies from 60 to 80 m. Some of the pedestrians
move randomly, while others follow predefined paths. Each
pedestrian moves at a speed between 0.5 and 2 m/s. In our
simulations, 30% of the mobile devices act as clients of the
above-mentioned services, whereas the others only act as inter-
mediate nodes. The service providers are expected to broadcast
service advertisements every 30 seconds when mobile devices
are in their vicinity. After discovering the services they are
looking for, the clients invoke these services every 3 minutes.
In our experiments, we have assigned to all the messages a
lifetime of 5 minutes and a maximum number of hops of
8. We present below the results we obtained for OLFServ
in these various configurations, and we compare OLFServ
with the Epidemic Routing Protocol (EPR) defined by Vahdat
and Becker [17]. The objective of these experiments was to

measure the ability to satisfy the client service discovery and
invocation efficiently with a small number of message copies.

B. Results

Figure 4 shows the service discovery delays we have ob-
served in the various simulation setups we have considered. As
expected, we can see that the discovery delays decrease when
the number of nodes increases. Indeed, in a dense environment
the connectivity disruptions are less frequent, and the impact of
the opportunistic communications are reduced. The discovery
process can be perceived as a long process. For instance, only
70% of the clients have discovered the service they require
after 20 minutes in the second setup (30 clients and 70 relays).
However, it should not be forgotten that the services can be
discovered and invoked by the clients only in restricted areas
and not in the whole environment (see Figure 3), with the
consequence that several minutes may elapse before the clients
have reached the restricted area of the service they are looking
for. However, the speed of discovery inside this restricted
area is significantly greater: we have observed that, in most
of the situations, the discovery time is less than 10 seconds
after the client has entered the area of the service it requires,
and that it lasts about 1 minute in the worst case. Finally,
the services are discovered more quickly with OLFServ than
with the epidemic routing protocol. In OLFServ the service
advertisements are broadcast by the mobile nodes, whereas
in the EPR, the nodes must first exchange summary vectors
with each of their neighbors before forwarding the service
advertisements themselves, thus introducing a latency in the
discovery process.

Figure 5 and Figure 6 present the simulation results for
the two kinds of services considered (the “weather forecast”
service S1 and the “yellow pages” service S2). Figure 5 gives
the average number of emissions for a service advertisement
(for S1 and S2) with OLFServ and with EPR. One can observe
that the number of emissions increases drastically with EPR,
while it remains relatively constant with OLFServ. Indeed, in
EPR, when two hosts come into communication range of one
another, they exchange their summary vectors to determine
which messages stored remotely have not been seen by the
local host. In turn, each host then requests copies of messages
that it has not seen yet. In contrast in OLFServ, service
advertisements are broadcast and not sent using a unicast com-
munication model. Moreover, only a subset of the neighbor
nodes are expected to rebroadcast these advertisements in turn.
For S2, the number of emissions of a given service invocation
request is less than the half of the number of emissions
of service advertisements (see Figure 6). These results are
consistent with those expected. Indeed, the invocation requests
are broadcast only by the nodes closer to the destination at
each hop. It must be noticed that the number of emissions
of invocation requests for S1 is less than that for S2. Again,
the results are consistent with those expected: all the clients
interested in the “weather forecast” service submit the same
request, and obtain in return the same response during the
simulation. The mobile nodes that have stored a request and
the associated response are able to establish a correlation
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Figure 4. Service discovery delays.

Figure 5. Service advertisement with OLFServ and EPR.

between these messages, and are expected to send back to
the client the stored response when they receive a new similar
request. The number of requests for S1 decreases according to
the number of clients. Such a phenomenon can be explained
by the fact that a request is not forwarded by a node towards
the destination if this node has already obtained the response
associated with this request. This correlation techniques is
further detailed in [5]. Finally, it must be noticed that the
mobility of nodes between the successive invocations does
not allow benefiting from source routing when forwarding a
request towards a provider. Nevertheless, source routing has
proved its efficiency in the forwarding of the responses, as
shown in Figure 5. Thus, the number of messages sent in the
network is reduced while offering a better service provision
(see Table I).

As shown in Table I, the number of clients that have

Figure 6. Service invocation with OLFServ.

discovered the service they are looking for is greater with EPR
than with OLFServ. Nevertheless, the invocation success ratio
with EPR is less than with OLFServ. Indeed, with OLFServ
messages are routed only in the areas where the services can
be discovered and invoked, whereas with EPR, messages are
routed in the whole simulation area. Consequently, with EPR,
services can sometimes be discovered by the clients, but not
invoked successfully due to the mobility of intermediate nodes,
to the periodic exchange of messages (every 20 seconds) and to
the fixed number of hops. In contrast, with OLFServ, messages
are forwarded few milliseconds after their reception instead
of being forwarded periodically. OLFServ thus offers a good
responsiveness and delivery ratio while producing a lower
network load.
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EPR(50) EPR(100) EPR(500) EPR(1000) OLFServ(50) OLFServ(100) OLFServ(500) OLFServ(1000)

Average delay of successful invocations

to service S1 (seconds)
120 100 60 40 1,02 0,58 0,43 0,42

Average delay of successful invocations

to service S2 (seconds)
120 100 60 40 3,32 2,84 2,43 2,42

Average ratio of successful invocations 0.78 0,84 0,92 0,96 1 1 1 1

Table I
SIMULATION RESULTS FOR SERVICE INVOCATION.

V. RELATED WORK

Our work on OLFServ is related to works on broadcast
protocols [18], [19]. Indeed, some techniques that aim at
reducing the number of message forwarders are adapted or
integrated to the specific context of service provision in
opportunistic networks.

However, the research works that follow the same objectives
as OLFServ are mainly led in the opportunistic networking
and/or delay/disrupted tolerant networking domain. One of
the first protocol in this domain is the Epidemic Routing
Protocol [17], which can in a way be assimilated to a simple
flooding, not suitable for environments with high density
regions, since it would generate too much network traffic
and could even lead to network congestion. This drawback
is addressed by protocols implementing methods aiming to
assess the capability of a neighbor node to contribute to the
delivery of a given message. These methods usually use a
probabilistic metric, often called delivery predictability, that
reflects how a neighbor node will be able to deliver a message
to its final recipient [20]. Before forwarding (or sending)
a message, a mobile host asks its neighbors to infer their
own delivery probability for the considered message, and
then compares the probabilities returned by its neighbors and
chooses the best next carrier(s) among them. In CAR [12]
and GeOpps [8], the delivery probabilities are computed using
both utility functions and Kalman filter prediction techniques.
CAR assumes an underlying MANET routing protocol that
connects together nodes in the same MANET cloud. To reach
nodes outside the cloud, a sender looks for the node in its
current cloud with the highest probability of delivering the
message successfully to the destination. GeOpps, which is
a geographical delay-tolerant routing algorithm, exploits the
pieces of information provided by the vehicles’ navigation
system in order to route the messages to a specific location.
Like CAR, HiBOp [13] also exploits context information in
order to compute delivery probabilities. However, HiBOp can
be perceived as being more general than CAR since it does
not require an underlying routing protocol, and because it is
also able to exploit context for those destinations that nodes
do not know. HiBOp exploits history information in order to
improve the delivery probability accuracy, and does not make
predictions as CAR. Propicman [9], as for it, also exploits
context information and uses the probability of nodes to meet
the destination, and infers from it the delivery probability, but
in a different way. When a node wants to send a message to
another node, it sends to its neighbor nodes the information

it knows about the destination. Based on this information, the
neighbor nodes compute their delivery probability and return
it. In Prophet [10], the selection of the best neighbor node
is based on how frequently a node encounters another. When
two nodes meet, they exchange their summary vectors, which
contain their delivery predictability information. If two nodes
do not meet for a while, the delivery predictability decreaces.
When a node wants to send a message to another node, it
will look for the neighbor node that has the highest amount
of time encountering the destination, meaning that has the
highest delivery predictability to the destination. Furthermore,
this property is transitive. Unlike OLFServ, most of the above-
mentioned protocols rely on an history of contacts and a
prediction of encounters in order to select the best next car-
rier(s). Computing such an history and a prediction is a tricky
problem, especially in environments composed of numerous
mobile devices that move following irregular patterns, such as
those hold by pedestrians in a city. Although they implement
various strategies aiming to select the next best carriers(s) to
deliver a given message, the above-mentioned protocols are
not suited to service discovery. Indeed, they implement neither
self-pruning heuristics making it possible for mobile nodes to
decide if they should rebroadcast a message according to their
neighborhood perception, nor methods allowing to designate
which subset of neighbor nodes must rebroadcast a message. If
used to broadcast service advertisements or service discovery
requests network-wide, they will probably induce a storm of
messages and perhaps a network congestion.

Geographic routing protocols, such as GeRaf [21],
LAR [16] and Dream [22], propose forwarding techniques
similar to those implemented in OLFServ. Once a node has
a message to send, it broadcasts it while specifying its own
location and the location of the destination. All the nodes in
the coverage area will receive this message and will assess
their own capability to act as a relay, based on how close
they are to the destination. Dream and LAR also propose
some solutions in order to improve the message delivery in
MANETs. For instance, based on location information, they
can compute the area where the mobile clients are expected to
be when they receive their messages. Nevertheless, on contrary
to OLFServ, these protocols do not implement the “store,
carry and forward” principle and therefore are not suitable
for disconnected MANETs.

VI. CONCLUSION

The vision of opportunistic computing is to provide mobile
users with pervasive access to software services without rely-
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ing on a fixed infrastructure but rather exploiting direct radio
contacts between mobiles devices in a disconnected MANET.
Opportunistic transmissions are performed during these con-
tacts, enabling routing of messages between services clients
and service providers. In this context, the work described
in this paper focused on routing in the case where service
providers are fixed infostations and where devices in the net-
work are endowed with the capacity to geolocalize themselves.
We proposed a new forwarding protocol called OLFServ,
suited for service provision in disconnected MANETs. This
protocol implements several self-pruning heuristics aiming to
efficiently control the dissemination of service advertisements
and service discovery requests, as well as to perform a
geographic and source-based routing allowing cost effective
delivery of service invocation requests and responses. Simula-
tion results show that OLFServ outperforms epidemic routing
in networks composed of numerous mobile devices moving
randomly with respect to delivery delay, delivery ratio and
number of emissions (reflecting the network throughput). In
the future, we would like to investigate new complementary
techniques, such as geometric localized forwarding and span-
ning trees, in order to forward a message from a source to
a destination along different paths while reducing again the
delay and the message copies, especially when some partitions
of the network are temporarily stable.
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Switzerland, ACM, Mar. 2012.

[5] S. Ben Sassi and N. Le Sommer, “Towards an Opportunistic and
Location-Aware Service Provision in Disconnected Mobile Ad Hoc
Networks,” in Proceedings of the International Conference on Mobile
Wireless Middleware, Operating Systems, and Applications (Mobilware
2009), Berlin, Germany, vol. 7 of LNICST, pp. 396–406, Springer-
Verlag, Apr. 2009.

[6] S. Y. Ni, Y. C. Tseng, Y. S. Chen, and J. P. Sheu, “The Broadcast
Storm Problem in a Mobile Ad Hoc Network,” in Proceedings of the
5th International Conference on Mobile Computing and Networking
(MobiCom 99), Seattle, Washington, USA, pp. 151–162, ACM/IEEE
CS, Aug. 1999.
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