
Wireless Networks with Retrials and Heterogeneous Servers : Comparing Random
Server and Fastest Free Server Disciplines

Nawel Gharbi
Computer Science Department

University of Sciences and Technology, USTHB
Algiers, Algeria

Email: ngharbi@wissal.dz

Leila Charabi
Computer Science Department

University of Sciences and Technology, USTHB
Algiers, Algeria

Email: leila.charabi@gmail.com

Abstract—This paper proposes an algorithmic approach
based on Generalized Stochastic Petri Nets, for modeling
and analyzing finite-source wireless networks with retrial
phenomenon and two servers classes. The particularity of this
approach is the direct computing of the infinitesimal generator
of the proposed Generalized Stochastic Petri Net without
generating neither the reachability graph nor the underlying
Markov chain. Furthermore, we assume in this model that
servers of one class are faster than those of the second one.
In Random Server policy, customers requests are assigned
randomly to free servers of both classes. The disadvantage of
this policy is the increased response time when fast servers are
free and requests are assigned (randomly) to slow ones. Hence,
this paper aims at presenting another service policy, where
priority is given to faster free servers. This policy is called
the Fastest Free Server policy. Moreover, we compare through
numerical examples, Random Service policy to Fastest Free
Server one, by developing formulas of the main stationary
performance indices of the network. We compare also these
two policies to Averaged Random case, where the same global
number of servers is assumed, but all homogeneous with
the average service rate. We show that Fastest Free Server
discipline gives better results than both Averaged Random case
and Random Server discipline.

Keywords-Wireless networks; Retrial phenomenon; Hetero-
geneous servers; Performance indices; Service disciplines.

I. INTRODUCTION

Models with retrial phenomenon are characterized by
the feature that a customer finding all servers busy or
unavailable, is obliged to leave the service area, but he
repeats his request after some random period of time. As
we have seen in [1], these models play an important role
in cellular mobile networks [5], [13], [14] and wireless
sensor networks [15]. Significant references reveal the non-
negligible impact of repeated calls, which arise due to a
blocking in a system with limited capacity resources or are
due to impatience of customers. For a systematic account of
the fundamental methods and results on this topic, we refer
the readers to [3], [4], [9].

Most studies on retrial models with finite source, assume
that the service station consists of homogeneous (identical)
servers. However, retrial models with heterogeneous servers

arise in various practical areas as telecommunications and
cellular mobile networks. In fact, heterogeneous models are
far more difficult for mathematical analysis than models with
homogeneous servers, and explicit results are available only
in few special cases and almost all studies are investigated
only by means of queueing theory. In fact, we have found
in the literature, only the few papers of Efrosinin and Sztrik
[7], [8], [11], [12], where heterogeneous servers case was
considered using retrial queueing model, and the paper [10]
where we have proposed the modeling and the analysis of
multiclass retrial systems by means of colored generalized
stochastic Petri nets.

From a modeling point of view, and compared to re-
trial queueing models, Generalized Stochastic Petri Nets
(GSPNs) [2], [6] are a high-level graphical formalism, which
allows an easier description of the behavior of complex
retrial networks, and it has shown to be a very effective
mathematical model. Moreover, from the GSPN model,
a Continuous Time Markov Chain (CTMC) can be auto-
matically derived for the performance analysis. However,
generating the Markov chain from the GSPN and solving
it, still require large storage space and long execution time,
since the state space increases as a function of the customers
source size and servers number. So, for real retrial networks,
the corresponding models have a huge state space.

Hence, using the GSPN model as a support, we have
proposed in [1] an algorithmic approach for analyzing per-
formance of finite-source retrial networks with two servers
classes, servers of one class are supposed to be faster than
those of the second one. In fact, the proposed approach al-
lows to compute directly the infinitesimal generator without
generating the reachability graph nor the underlying Markov
chain. In addition, we developed the formulas of the main
stationary performance indices, as a function of the number
of servers of each class, the size of the customers source, the
stationary probabilities and independently of the reachability
set markings. Nevertheless, the unique service policy we
have employed in [1] was the Random Service policy, where
the server to which a request is assigned is chosen randomly
among all idle servers, in both classes. The inconvenience

102

International Journal on Advances in Networks and Services, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



of this discipline is that it can assign a customer’s request
to a slow server, while there is at least one fast server free.

In the present paper, we extend our idea by considering
another service policy, that can improve performance by
giving priority to fastest servers class, i.e., new requests are
assigned to a server in the slowest class, only if all servers in
the fastest class are busy, this policy is called Fastest Free
Server policy. Moreover, using some numerical examples,
we make a comparison between these two policies, with the
Averaged Random case, where we suppose the same number
of servers (in both classes), but all homogeneous with the
average service rate.

This paper is organized as follows. In Section II, we de-
scribe the basic model of finite-source retrial networks with
heterogeneous servers. In Section III, the basic notions of
GSPNs are reviewed. Section IV presents the GSPN models
describing retrial networks with heterogeneous servers for
each policy namely, Random Server and Fastest Free Server.
Next, the proposed stochastic analysis approach is detailed in
Section V. The computational formulas for evaluating exact
performance indices are derived in Section VI. Next, based
on numerical examples, we validate the proposed approach,
we discuss the effect of some network parameters on the
main performance indices, as the mean response time and
the blocking probability, and we compare the two service
disciplines, in Section VII, finally, we provide a conclusion.

II. THE BASIC MODEL

We consider retrial networks with finite source (popu-
lation) of customers of size L and a service station that
consists of heterogeneous servers. Each customer can be
in one of the following states: free, under service or in
orbit at any time. The input stream of primary calls is
the so called quasi-random input. The probability that any
particular customer generates a primary request for service
in any interval (t, t + dt) is λdt + o(dt) as dt → 0 if the
customer is free at time t, and zero if the customer is being
served or in orbit at time t.

The servers are partitioned in two classes: Class C1 and
Class C2,where the servers of a given class have the same
parameters. Each class Cj (1 ≤ j ≤ 2) contains Sj identical
and parallel servers. There are two possible states for a
server: idle or busy (on service). If there is an idle server at
the moment a customer request arrives, the service starts
immediately. The customer becomes "under service" and
the server becomes "busy". Service times are independent
identically-distributed random variables, whose distribution
is exponential with parameter µ1 if a server of class C1 is
selected and µ2 for servers of class C2.

Each customer request must be served by one and only
one server. Hence, we consider two service disciplines:
• the Random Server discipline, which means that, the

server to which a request is assigned is chosen ran-
domly among all idle servers, whatever their class.

• and the Fastest Free Server discipline, in which the
request is affected randomly to an idle server of C1

class (supposed to be the fastest), if at least one server
is free, otherwise, it is assigned to a C2 class server.

After service completion, the customer becomes free, so it
can generate new primary calls, and the server becomes
idle again. Otherwise, if all servers of the two classes are
busy at the arrival of a request, the customer joins the orbit
and starts generating a flow of repeated calls exponentially
distributed with rate ν, until he finds one free server. We
assume that all customers are persistent in the sense that
they keep making retrials until they receive their requested
service and that the total servers number S1 +S2 is smaller
than the size of customers source L. Otherwise, the problem
is not interesting (no customer in orbit at all).

As usual, we assume that the arrival, service and inter-
retrial times are mutually independent of each other.

III. AN OVERVIEW OF GENERALIZED STOCHASTIC
PETRI NETS

A GSPN [2], [6] is a directed graph that consists of
two kinds of nodes, called places and transitions that are
partitioned into two different classes: timed and immedi-
ate transitions. Timed transitions describe the execution of
time consuming activities and fire with an exponentially
distributed delay. Immediate transitions, which fire in zero
time once they are enabled, model logic activities, like syn-
chronization, and they have priority over timed transitions.

The system state is described by means of markings.
A marking is a mapping from P to N, which gives the
number of tokens in each place after each transition firing.
A transition is said to be enabled in a given marking, if and
only if each of its normal input places contains at least as
many tokens as the multiplicity of the connecting arc, and
each of its inhibitor input places contains fewer tokens than
the multiplicity of the corresponding inhibitor arc.

The set of all markings reachable from initial marking
M0 is called the reachability set. The reachability graph is
the associated graph obtained by representing each marking
by a vertex and placing a directed edge from vertex Mi to
vertex Mj , if marking Mj can be obtained by the firing of
some transition enabled in marking Mi.

Markings enabling no immediate transitions are called
tangible markings. In this case, one of the enabled timed
transitions can fire next. Markings in which at least one
immediate transition is enabled, are called vanishing mark-
ings and are passed through in zero time. In this case, only
the enabled immediate transitions are allowed to fire. Since
the process spends zero time in the vanishing markings,
they do not contribute to the dynamic behavior of the
system, so, they are eliminated from the reachability graph
by merging them with their successor tangible markings.
This elimination of vanishing markings results in a tangible
reachability graph, which is isomorphic to a continuous time

103

International Journal on Advances in Networks and Services, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Markov chain (CTMC) [2]. Hence, the states of the CTMC
are the markings in the tangible reachability graph, and the
state transition rates are the exponential firing rates of timed
transitions in the GSPN.

The solution of this CTMC at steady-state (if the system
is ergodic) is the stationary probability vector π, which is
the solution of the linear system of equations:

{
π.Q = 0∑
i πi = 1

where π denotes the steady-state probability that the
process is in state Mi and Q is the infinitesimal generator
corresponding to the CTMC. Having the probability vector
π, we can easily compute several stationary performance
indices of the system, like the mean number of tokens
in a place, the mean throughput of a transition, and the
probability that an event occurs.

The process of generating stationary performance indices
from the GSPN model is summarized in Figure 1.

Figure 1. Steps of performance evaluation of retrial networks using GSPN
formalism.

However, when modeling real retrial networks with an
important customers source size and servers number, gener-
ating the GSPN, its reachability graph and then, the tangible
reachability graph and the underlying CTMC, require a huge
storage space and a very long execution time, since the state

space increases as a function of the customers source size
and servers number.

IV. GSPN MODEL OF RETRIAL NETWORKS WITH
HETEROGENEOUS SERVERS

In the following, we present the GSPN model describing
finite-source retrial systems with two servers classes,
using Fastest Free Server policy. The detailed model
corresponding to Random Server one is given in [1], only
the scheme of the corresponding GSPN is given here
(Figure 2).

We assume that servers of class C1 are faster than those
of class C2. The flexibility of GSPN allows us to easily
obtain Fastest Free Server policy model, which is depicted
in Figure 3.

In this model, place Cus_Free represents the free cus-
tomers, Orbit contains the customers waiting for the service,
Ser_Idle1 and Ser_Idle2 indicate respectively the number of
free servers of class C1 and class C2, while Cus_Serv1 and
Cus_Serv2 model the busy servers of both classes.

The arrival of a primary call causes the firing of the
transition Arrival, which firing rate is marking dependent
and equals λ.M(Cus_Free) (infinite service semantics),
which is represented by the symbol # placed next to
transition, because all free customers are able to generate
calls, independently of each other. The place Choice is then
marked, at this moment, if at least one server in class C1

is free (The place Ser_Idle_1 is marked), it will serve the
customer’s request (firing of transition Begin_Serv_1). Oth-
erwise, if place Ser_Idle_1 is empty and place Ser_Idle_2
contains at least one token (i.e., at least one C2 server is
idle), the transition Begin_Serv_2 is enabled, and the request
is assigned to a server of class C2.

In case no server is available at the arrival moment of
the primary call (neither in C1 nor in C2), the immediate
transition Go_Orbit is enabled, and a token is put into place
Orbit, which means that the customer asking for service
joins the orbit, it starts generating a flow of repeated calls
distributed exponentially with rate ν, as shown in transition
Retrial.

The firing of the transition Retrial corresponds to the
generation of a repeated call from a customer in orbit. This
transition has infinite servers semantics, since all customers
in orbit can trigger repeated calls independently.

By the end of a customer service under a server of
class C1 (C2 respectively), the timed transition Serv_End1
(Serv_End2 respectively) fires. As several servers may be
busy at the same time, the semantics of these two transitions
is ∞-servers to allow modeling parallel services. After
completion of service, the customer returns to free state (one
token is added to place Cus_Free) and the server becomes

104

International Journal on Advances in Networks and Services, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 2. GSPN Model of finite-source retrial networks with two servers classes and Random server discipline.

Figure 3. GSPN Model for finite-source retrial networks with two servers classes and Fastest Free Server discipline.

105

International Journal on Advances in Networks and Services, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



available (one token is put in place Ser_Idle1 or Ser_Idle2,
according to the server class).

V. STOCHASTIC ANALYSIS

As it is shown in the end of Section III, the disadvantage
of calculating performance indices of a retrial network
using GSPN formalism was the increase of the state space
as a function of customers source size and number of
servers when generating the underlying CTMC. In order
to overcome this problem, this paper aims to avoid these
steps by designing an algorithm that computes directly the
infinitesimal generator as a function of network parameters,
without generating neither the reachability graphs nor the
underlying CTMC, as to be shown in Figure 4.

Figure 4. Our approach steps of retrial networks performance evaluation.

This section describes in detail, how to derive this al-
gorithm [1]. We show that the discussion is the same for
both service disciplines, whereas, CTMC we obtain for
Random Service policy is different from Fastest Free Server
policy’s one. Consequently, the algorithms that generate the
infinitesimal generator are different.

Initially, the orbit is empty, all customers are free and
all servers are available. Thus, the initial marking can be
expressed in this form:

M0 = {M(Cus_Free),M(Choice),M(Orbit),

M(Ser_Idle1),M(Cus_Serv1),M(Ser_Idle2),

M(Cus_Serv2)}
= {L, 0, 0, S1, 0, S2, 0}

Whatever the values of L, S1 and S2, the conservation
of the number of customers and servers of the two classes,
gives the following equations:


M(Ser_Idle1) +M(Cus_Serv1) = S1

M(Ser_Idle2) +M(Cus_Serv2) = S2

M(Cus_Free) +M(Cus_Serv1)
+M(Cus_Serv2) +M(Orbit) = L

(1)

Observing these three equations, we note that the system
state at steady-state can be described by means of three
variables (i, j, k), which we call a micro-state, where:
• i represents the number of customers being served by

servers of class C1 (in place Cus_Serv1);
• j represents the number of customers being served by

servers of class C2 (in place Cus_Serv2);
• and k is the number of customers in orbit (in place
Orbit).

Hence, having the micro-state (i, j, k), the markings of all
places can be obtained, since

 M(Ser_Idle1) = S1 − i
M(Ser_Idle2) = S2 − j

M(Cus_Free) = L− (i+ j + k)
(2)

On the other hand, applying (1), we can deduce:

 0 ≤ i ≤ S1

0 ≤ j ≤ S2

0 ≤ k ≤ L− (S1 + S2)
(3)

In fact, we introduce the concept of micro-state as a
compact state description derived by the analysis of P-
invariants of the model, so that it is always possible to define
a one-to-one correspondence between the micro-states and
the ordinary states of the classical approach.

The corresponding CTMC contains n micro-states
corresponding to the accessible tangible markings, where n
equals

n = (S1 + 1) · (S2 + 1) · (L+ 1−S) and S = S1 +S2 (4)

106

International Journal on Advances in Networks and Services, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 5 describes the CTMC corresponding to the
Random Service policy model, while The CTMC resultant
from the Fastest Free Server GSPN is given in Figure 6.

Thus, the corresponding infinitesimal generator Q is a
n× n matrix, defined by:

{
Q[(i, j, k), (x, y, z)] = θ[(i, j, k), (x, y, z)]
Q[(i, j, k), (i, j, k)] = −

∑
(l,m,n)6=(i,j,k) θ[(i, j, k), (l,m, n)]

(5)

where θ[(i, j, k), (x, y, z)] is the transition rate from state
(i, j, k) to state (x, y, z).

By analyzing the micro-states and the transition rates of
each CTMC, we obtain the following rates, for the Random
Service discipline :

• [0 ≤ i ≤ S1 − 1, 0 ≤ j ≤ S2 − 1] :

(i, j, k)
1
2 (L−i−j−k)λ−−−−−−−−−→ (i+ 1, j, k)

and (i, j, k)
1
2 (L−i−j−k)λ−−−−−−−−−→ (i, j + 1, k)

• [0 ≤ i ≤ S1−1] : (i, S2, k)
(L−i−S2−k)λ−−−−−−−−−→ (i+1, S2, k),

• [0 ≤ j ≤ S2 − 1] : (S1, j, k)
(L−S1−j−k)λ−−−−−−−−−→ (S1, j +

1, k),

• [0 ≤ k < L − (S1 + S2)] : (S1, S2, k)
(L−S−k)λ−−−−−−−→

(S1, S2, k + 1),
• [i > 0] : (i, j, k)

iµ1−−→ (i− 1, j, k),
• [j > 0] : (i, j, k)

jµ2−−→ (i, j − 1, k),

• [0 ≤ i ≤ S1−1, 0 ≤ j ≤ S2−1, k > 0] : (i, j, k)
1
2kν−−→

(i+ 1, j, k − 1) and (i, j, k)
1
2kν−−→ (i, j + 1, k − 1),

• [0 ≤ i ≤ S1−1, k > 0] : (i, S2, k)
kν−→ (i+1, S2, k−1),

• [0 ≤ j ≤ S2 − 1, k > 0] : (S1, j, k)
kν−→

(S1, j + 1, k − 1),

As a consequence, the infinitesimal generator can be
automatically calculated by means of Algorithm 1 given
below.

In the same manner, rates θ[(i, j, k)(x, y, z)] of the
Fastest Free Server discipline are given by :

• [0 ≤ i < S1] : (i, j, k)
(L−i−j−k)λ−−−−−−−−→ (i+ 1, j, k),

• [0 ≤ j < S2] : (S1, j, k)
(L−S1−j−k)λ−−−−−−−−−→ (S1, j + 1, k),

• [0 ≤ k < L − S] : (S1, S2, k)
(L−S−k)λ−−−−−−−→ (S1, S2, k +

1),
• [0 < i ≤ S1] : (i, j, k)

iµ1−−→ (i− 1, j, k),
• [0 < j ≤ S2] : (i, j, k)

jµ2−−→ (i, j − 1, k),

Algorithm 1 Infinitesimal Generator Construction - Random
Server Policy

1: for k ← 0, L− S do
2: for i← 0, S1− 1 do
3: for j ← 0, S2− 1 do
4: Q[(i, j, k), (i+1, j, k)]← 1/2(L−i−j−k)λ
5: Q[(i, j, k), (i, j+1, k)]← 1/2(L−i−j−k)λ
6: Q[(S1, j, k), (S1, j+1, k)]← (L−S1−j−
k)λ

7: end for
8: Q[(i, S2, k), (i+ 1, S2, k)]← (L− i−S2−k)λ
9: end for

10: end for
11: for k ← 0, L− S − 1 do
12: Q[(S1, S2, k), (S1, S2, k + 1)]← (L− S − k)λ
13: end for
14: for k ← 0, L− S do
15: for i← 1, S1 do
16: for j ← 0, S2 do
17: Q[(i, j, k), (i− 1, j, k)]← iµ1

18: end for
19: end for
20: for j ← 1, S2 do
21: for i← 0, S1 do
22: Q[(i, j, k), (i, j − 1, k)]← jµ2

23: end for
24: end for
25: end for
26: for k ← 1, L− S do
27: for i← 0, S1− 1 do
28: for j ← 0, S2− 1 do
29: Q[(i, j, k), (i+ 1, j, k − 1)]← 1/2.kν
30: Q[(i, j, k), (i, j + 1, k − 1)]← 1/2.kν
31: end for
32: Q[(i, S2, k), (i+ 1, S2, k − 1)]← kν
33: end for
34: for j ← 0, S2− 1 do
35: Q[(S1, j, k), (S1, j + 1, k)]← kν
36: end for
37: end for

• [0 ≤ i < S1, 0 < k ≤ L−S] : (i, j, k)
kν−→ (i+1, j, k−

1),
• [0 ≤ j < S2, 0 < k ≤ L − S)] : (S1, j, k)

kν−→
(S1, j + 1, k − 1),

And the algorithm that generates the infinitesimal generator
is given in Algorithm 2 (Fastest Free Server policy).

VI. PERFORMANCE MEASURES

The aim of this section is to derive the formulas of
the most important stationary performance indices. As the

107

International Journal on Advances in Networks and Services, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 5. The CTMC describing finite-source retrial networks with two servers classes and Random Server discipline.

proposed models are bounded and the initial marking is a
home state, the underlying process is ergodic. Hence, the
steady-state solution exists and is unique. The infinitesimal
generators Q corresponding to the proposed GSPN models
can be obtained automatically by applying the above
algorithms. Then, the steady-state probability vector π can
be computed by solving the linear system of equations:

{
π.Q = 0∑
i πi = 1

(6)

where πi denotes the steady-state probability that the process
is in state Mi.

Having the probability distribution π, we can derive
several exact stationary performance measures of finite-
source retrial networks with two classes of servers, applying
the formulas given below, which are based essentially on
Equation (2) and the definition of the three variables i, j,
and k given in Section V. In following, Mi(p) indicates the
number of tokens in place p in marking Mi, A is the set of
reachable tangible markings, and A(t) is the set of tangible
markings reachable by transition t.

108

International Journal on Advances in Networks and Services, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 6. The CTMC describing finite-source retrial networks with two servers classes and Fastest Free Server discipline.

• Mean number of free customers: It
corresponds to the mean number of tokens in
place Cus_Free,

nCusFree =
∑

i:Mi∈A
Mi(Cus_Free).πi

=

L−S∑
k=0

S1∑
i=0

S2∑
j=0

(L− i− j − k).πi,j,k

• Mean number of customers in the
orbit: This corresponds to the mean number
of tokens in Orbit,

nOrb =
∑

i:Mi∈A
Mi(Orbit).πi

=

L−S∑
k=0

S1∑
i=0

S2∑
j=0

k.πi,j,k

• Mean number of busy servers of class

109

International Journal on Advances in Networks and Services, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Algorithm 2 Infinitesimal Generator Construction - Fastest
Free Server Policy

1: for k ← 0, L− S do
2: for i← 0, S1− 1 do
3: for j ← 0, S2 do
4: Q[(i, j, k), (i+ 1, j, k)]← (L− i− j − k)λ
5: end for
6: end for
7: for j ← 0, S2− 1 do
8: Q[(S1, j, k), (S1, j+1, k)]← (L−S1−j−k)λ
9: end for

10: end for
11: for k ← 0, L− S − 1 do
12: Q[(S1, S2, k), (S1, S2, k + 1)]← (L− S − k)λ
13: end for
14: for k ← 0, L− S do
15: for i← 1, S1 do
16: for j ← 0, S2 do
17: Q[(i, j, k), (i− 1, j, k)]← iµ1

18: end for
19: end for
20: for j ← 1, S2 do
21: for i← 0, S1 do
22: Q[(i, j, k), (i, j − 1, k)]← jµ2

23: end for
24: end for
25: end for
26: for k ← 1, L− S do
27: for i← 0, S1− 1 do
28: for j ← 0, S2 do
29: Q[(i, j, k), (i+ 1, j, k − 1)]← kν
30: end for
31: end for
32: for j ← 0, S2− 1 do
33: Q[(S1, j, k), (S1, j + 1, k − 1)]← kν
34: end for
35: end for

C1: Note that this is also the mean number of
customers under service by Class C1, it corresponds
to the mean number of tokens in place Cus_Serv1,

nbusyC1
=

∑
i:Mi∈A

Mi(Cus_Serv1).πi

=

L−S∑
k=0

S1∑
i=0

S2∑
j=0

i.πi,j,k

• Mean number of busy servers of class
C2: It is also the mean number of customers in service
by Class C2, and it represents the mean number of
tokens in Cus_Serv2,

nbusyC2 =
∑

i:Mi∈A
Mi(Cus_Serv2).πi

=

L−S∑
k=0

S1∑
i=0

S2∑
j=0

j.πi,j,k

• Mean number of busy servers:

nbusy = nbusyC1
+ nbusyC2

=

L−S∑
k=0

S1∑
i=0

S2∑
j=0

(i+ j).πi,j,k

• Mean number of customers in the
system: Which is the total number of the mean
number of customers in the orbit and those under
service (by C1 and C2),

n = nOrb + nbusy

=

L−S∑
k=0

S1∑
i=0

S2∑
j=0

(i+ j + k).πi,j,k

• Mean number of free servers of class
C1: This represents the mean number of tokens in
place Ser_Idle1,

nFreeC1
=

∑
i:Mi∈A

Mi(Ser_Idle1).πi

=

L−S∑
k=0

S1∑
i=0

S2∑
j=0

(S1 − i).πi,j,k

= S1 − nbusyC1

• Mean number of free servers of class
C2: This represents the mean number of tokens in
place Ser_Idle2,

nFreeC2
=

∑
i:Mi∈A

Mi(Ser_Idle2).πi

=

L−S∑
k=0

S1∑
i=0

S2∑
j=0

(S2 − j).πi,j,k

= S2 − nbusyC2

110

International Journal on Advances in Networks and Services, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



• Mean number of free servers (of both
classes):

nFree = nFreeC1
+ nFreeC2

= S − nbusy

• Effective customer arrival rate: This
represents the throughput of the transition Arrival,

λ̄ =
∑

i:Mi∈A(Arrival)

λ.Mi(Cus_Free).πi

=

L−S∑
k=0

S1∑
i=0

S2∑
j=0

λ.(L− i− j − k).πi,j,k

= λ.nCusFree

• Effective customer retrial rate: It
corresponds to the throughput of Retrial transition,

ν̄ =
∑

i:Mi∈A(Retrial)

ν.Mi(Orbit).πi

=

L−S∑
k=0

S1∑
i=0

S2∑
j=0

ν.k.πi,j,k

= ν.nOrb

• Mean rate of C1 service: This corresponds
to the throughput of the transition Serv_End1,

µ̄1 =
∑

i:Mi∈A(Serv_End1)

µ1.Mi(Cus_Serv1).πi

=

L−S∑
k=0

S1∑
i=0

S2∑
j=0

µ1.i.πi,j,k

= µ1.nbusyC1

• Mean rate of C2 service: This corresponds
to the throughput of Serv_End2,

µ̄2 =
∑

i:Mi∈A(Serv_End2)

µ2.Mi(Cus_Serv2).πi

=

L−S∑
k=0

S1∑
i=0

S2∑
j=0

µ2.j.πi,j,k

= µ2.nbusyC2

• Total mean rate service:

µ̄ = µ̄1 + µ̄2

• Availability of s servers of class C1

(1 ≤ s ≤ S1): It’s the probability that at least s
servers of class C1 are available

AsC1
=

∑
i:Mi(Ser_Idle1)≥s

πi =

L−S∑
k=0

S1−s∑
i=0

S2∑
j=0

πi,j,k

• Availability of s servers of class C2

(1 ≤ s ≤ S2): It’s the probability that at least s
servers of class C2 are available

AsC2
=

∑
i:Mi(Ser_Idle2)≥s

πi =

L−S∑
k=0

S1∑
i=0

S2−s∑
j=0

πi,j,k

• Availability of s servers in the
system (among both classes):

As =
∑

i:Mi(Ser_Idle1)+Mi(Ser_Idle2)≥s

πi

=
L−S∑
k=0

S1∑
i=0

S2∑
j=0,i+j≤S−s

πi,j,k

• Utilization of at least s servers of
the class C1: This corresponds to the probability
that at least s servers of class C1 are busy

UsC1
=

∑
i:Mi(Cus_Serv1)≥s

πi =

L−S∑
k=0

S1∑
i=s

S2∑
j=0

πi,j,k

• Utilization of s servers at least, of
the class C2: This corresponds to the probability
that at least s servers of class C2 are busy

111

International Journal on Advances in Networks and Services, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



UsC2
=

∑
i:Mi(Cus_Serv2)≥s

πi =

L−S∑
k=0

S1∑
i=0

S2∑
j=s

πi,j,k

• Utilization of s servers at least in
the system (among the two classes):

Us =
∑

i:Mi(Cus_Serv1)+Mi(Cus_Serv2)≥s

πi

=

L−S∑
k=0

S1∑
i=0

S2∑
j=0,i+j≥s

πi,j,k

• The blocking probability of a primary
customer:

Bp =

L−S∑
k=0

(L− k − S).λ.πS1,S2,k

λ̄

• The blocking probability of a
repeated call:

Br =

L−S∑
k=1

k.ν.πS1,S2,k

ν̄

• The blocking probability:

B = Bp +Br

• The mean waiting time: It’s the mean period
between the arrival of the customer and its service
beginning. Using the Little’s formula, the mean waiting
time is given by :

W̄ =
nOrb
λ̄

• The mean response time:

R̄ =
n

λ̄

• The mean service time:

S̄ = R̄− W̄ =
nbusy
λ̄

VII. VALIDATION AND NUMERICAL EXAMPLES

In order to test the feasibility of our approach, we de-
veloped a C# code to implement the above algorithms 1
and 2 as well as the performance indices formulas. Next,
we tested it for a large number of examples. In particular,
in the homogeneous case, by assuming µ1 = µ2, the results
were validated by the Pascal program given in [9]. From
Table I, we can see that both models give exactly the same
results up to the sixth decimal digit.

Table I
VALIDATION IN THE HOMOGENEOUS CASE

Homogeneous Two servers
case classes system

Number of servers 4 S1= 1,S2= 3
Size of source 20 20
Primary call generation rate 0.1 0.1
Service rate 1 µ1= 1, µ2= 1
retrial rate 1.2 1.2

C1: 0.521 865
Mean number of busy servers 1.800 748 C2: 1.278 883

Tot.: 1.800 748
Mean number of source in orbit 0.191 771 0.191 771
Mean primary call generation rate 1.800 748 1.800 748
Mean waiting time 0.106 495 0.106 495

In the following, we present sample numerical results to
illustrate graphically the impact of some system parameters,
namely, the primary call rate, retrial rate, and the servers
number in both classes, on some performance indices,
which are the mean response time and the blocking
probability, in both policies cases; Random Server and
Fastest Free Server. We also consider the Averaged Random
case, where we assume the same number of servers in the
network (S = S1 + S2), all homogeneous with the average
service rate µ, whose formula is given by:

µ =
µ1.S1 + µ2.S2

S1 + S2
(7)

The customers requests are assigned to idle servers ran-
domly.

112

International Journal on Advances in Networks and Services, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



The input parameters of Random and Fastest Free Server
policies are collected in Table II, while those of the Averaged
Random case are summarized in Table III.

Table II
INPUT NETWORK PARAMETERS

L S1 S2 λ ν µ1 µ2
Figure 7, 11 50 5 2 x axis 0.1 8 2
Figure 8, 12 50 4 2 0.5 x axis 8 2
Figure 9, 13 30 x axis 4 2 1 6 1
Figure 10, 14 30 4 x axis 2 1 6 1

Table III
INPUT NETWORK PARAMETERS FOR THE AVERAGED RANDOM CASE

L S λ ν µ
Figure 7, 11 50 7 x axis 0.1 6.28
Figure 8, 12 50 6 0.5 x axis 6

In Figure 7, we study the primary call generation rate
variation effect on the mean response time. As we can
see, this latter increases with the intensity of the flow
of primary calls. This is due to the increase of waiting
time of customers in the orbit. Furthermore, the mean
response time of Fastest Free Server discipline is always
shorter than the one of Random Server discipline. The
curve of the Averaged Random case is situated in the middle.

Figure 7. Mean response time versus primary call generation rate.

The Figure 8 shows the sensitivity of the mean response
time to the retrial generation rate, for both service
disciplines. Indeed, the response time decreases with the
intensity of the flow of repeated calls, particularly when
the retrial intensity is low (between 0.01 and 0.3), beyond
the value 0.3, the influence becomes less significant. In
addition, performance obtained with the discipline of the
Fastest Free Server and Averaged Random case are always
better than the one obtained by Random Server discipline.

Figure 8. Mean response time versus retrial generation rate.

In Figure 9, (10 respectively), we show the influence of
the number of servers of C1 (C2 respectively) class, on the
mean response time.

Figure 9. Mean response time versus C1 class servers number.

We conclude that the mean response time decreases with
the increase of the number of servers. However, the rate of
influence of the number of servers in the C1 class is faster
than the influence due to increasing number of servers of
C2 class, because the former is faster (µ1 = 6 vs µ2 = 1).
In Figure 9, the response time reached the optimum and
stabilized after a certain time (number of servers = 12).
Hence, it is not interesting to invest in new servers in the
C1 class.

113

International Journal on Advances in Networks and Services, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 10. Mean response time versus C2 class servers number.

In Figure 10, the surprising increase in the mean response
time in Random Service policy case when having more
C2 class servers (from 16 to 20 servers) reveal another
weakness of this policy. Actually, the slowest servers
number becomes much greater than the fastest one, and
as customers requests are assigned to servers randomly,
fastest servers have less chance to catch a customer request
(4 servers in C1 class vs 20 of C2 class), and C2 class
servers tend to take most of customers requests, this results
in increasing the mean service time, and consequently the
mean response time.

Figure 11. Blocking probability versus primary call generation rate.

As it can be seen in Figures 11 and 12, the blocking
probability depends on both primary call generation rate
and retrial rate, the increase of these latter involves the
increase of the blocking probability in both Random Server
and Fastest Free Server policies. But, as we can see on
the curves, Fastest Free Server policy gives always values
slightly better than those obtained in the Averaged Random
case, and the results of this latter are better than those given
by Random Server policy, which means that the Fastest
Free server policy gives better performance.

Figure 12. Blocking probability versus retrial generation rate.

In Figures 13 and 14, the blocking probability is
displayed as a function of servers number in C1 and
C2 classes respectively. As to be expected, the blocking
probability is higher when having a few number of servers,
and it decreases as the number of servers rises in the
system, the decrease is more significant in case of C1

class, because it is supposed to be faster. Moreover, the
performance of Fastest Free Server discipline and Random
Server discipline are almost the same.

Figure 13. Blocking probability versus C1 class servers number.

114

International Journal on Advances in Networks and Services, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 14. Blocking probability versus C2 class servers number.

VIII. CONCLUSION AND FUTURE WORK

In [1], we have proposed a technique based on GSPNs
to analyze finite-source retrial networks with two servers
classes, using Random Server discipline. In the current
paper, we have extended this idea by considering another
service discipline, which is the Fastest Free Server. Hence,
we investigated and compared the two service disciplines.

The advantage of our approach is the automatic com-
putation of the infinitesimal generator for both disciplines,
applying the given algorithms, and without need to generate
neither the reachability graph nor the underlying Markov
chain. We have also developed formulas of the main sta-
tionary performance indices based on stationary probabilities
and network parameters. Furthermore, we studied the effect
of network parameters on performance indices, and proved
through some numerical examples, that Fastest Free Server
discipline gives more favorable system performance than
both Random Server discipline and Averaged Random case,
which is the equivalent homogeneous network with the
average service rate.

REFERENCES

[1] N. Gharbi and L. Charabi, An Algorithmic Approach for An-
alyzing Wireless Networks with Retrials and Heterogeneous
Servers, The seventh International Conference on Wireless
and Mobile Communications, ICWMC, 2011, Luxembourg,
pp. 151-156, ISBN:978-1-61208-008-6.

[2] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and
G. Franceschinis, Modelling with Generalized Stochastic Petri
Nets, 1994, New York, NY, USA, John Wiley & Sons, Inc.,
ISBN-13: 9780471930594.

[3] J.R. Artalejo and A. Gómez-Corral, Retrial Queueing Sys-
tems: A Computational Approach, 2008, Berlin, Springer
Berlin Heidelberg, ISBN-13: 978-3642097485.

[4] J.R. Artalejo, Accessible bibliography on retrial queues:
Progress in 2000-2009, Mathematical and Computer Mod-
elling, 2010, vol. 51, pp. 1071-1081.

[5] J.R. Artalejo and M.J. Lopez-Herrero, Cellular mobile net-
works with repeated calls operating in random environment,
Computers & operations research, 2010, vol. 37, no. 7, pp.
1158-1166.

[6] M. Diaz, Les réseaux de Petri - Modèles Fondamentaux, 2001,
Paris, Hermès Science Publications, ISBN-13: 978-2-7462-
0250-4.

[7] D. Efrosinin and L. Breuer, Threshold policies for controlled
retrial queues with heterogeneous servers, Annals of Opera-
tions Research, 2006, vol. 141, pp. 139-162.

[8] D. Efrosinin and J. Sztrik, Performance Analysis of a Two-
Server Heterogeneous Retrial Queue with Threshold Policy,
Quality Technology and Quantitative Management, 2011, vol.
8, no. 3, pp. 211-236.

[9] G.I. Falin and J.G.C. Templeton, Retrial Queues, 1997, Lon-
don, Chapman and Hall, ISBN-13: 978-0412785504.

[10] N. Gharbi, C. Dutheillet, and M. Ioualalen, Colored Stochas-
tic Petri Nets for Modelling and Analysis of Multiclass Retrial
Systems, Mathematical and Computer Modelling, 2009, vol.
49, pp. 1436-1448.

[11] J. Roszik and J. Sztrik, Performance analysis of finite-source
retrial queues with nonreliable heterogeneous servers, Journal
of Mathematical Sciences, 2007, vol. 146, pp. 6033-6038.

[12] J. Sztrik, G. Bolch, H. De Meer, J. Roszik, and P. Wüch-
ner, Modeling finite-source retrial queueing systems with
unreliable heterogeneous servers and different service poli-
cies using MOSEL, Proc. of 14th Inter. Conf. on Analyti-
cal and Stochastic Modelling Techniques and Applications,
ASMTA’07, 2007, Prague, Czech Republic, pp. 75-80.

[13] T. V. Do, A new computational algorithm for retrial queues
to cellular mobile systems with guard channels, Computers
& Industrial Engineering, 2010, vol. 59, pp. 865-872.

[14] P. Tran-Gia and M. Mandjes, Modeling of customer retrial
phenomenon in cellular mobile networks, IEEE Journal on
Selected Areas in Communications, 1997, vol. 15, pp. 1406-
1414.

[15] P. Wüchner, J. Sztrik, and H. De Meer, Modeling Wireless
Sensor Networks Using Finite-Source Retrial Queues with
Unreliable Orbit, Proc. of the Workshop on Performance
Evaluation of Computer and Communication Systems, PER-
FORM’2010, 2010, pp. 73-86.

115

International Journal on Advances in Networks and Services, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


