
Increasing Energy Efficiency in Mobile Peer Networks by Exploiting Traffic
Sampling Techniques

Julian K. Buhagiar
Dept of Communications and Computer Engineering

University of Malta
Msida, MSD 2080, MALTA

julian.buhagiar@ieee.org

Carl J. Debono
Dept of Communications and Computer Engineering

University of Malta
Msida, MSD 2080, MALTA

c.debono@ieee.org

Abstract—Wireless infrastructures have seen a drastic increase
in energy requirements as technology has shifted towards
higher allocated frequencies in an attempt to provide more
bandwidth to accommodate more users and provide the
resources for more demanding applications and services, such
as video streaming and multimedia applications. Driven by the
increase in demand from an always increasing subscriber base,
large cities are also forcing wireless service operators to install
more base stations and access points to sustain an adequate
quality of service. Mobile peer networking offers a possible
solution for the later with the added benefit of providing
power-efficient communication, since transmission over short
distances demands less transmission power using appropriate
peer connectivity algorithms [1]. Thus, substantial energy can
be saved, given that the power amplifier that lies in the
transmitter circuitry is the most power hungry device of each
mobile node. A novel algorithm based on peer nodal
hierarchies, traffic mapping, and neural networks is proposed.
This algorithm invokes the use of a traffic sampling matrix to
optimise delivery and routing of peer node information,
allowing for more efficient power distribution. Additional
optimisation is provided through a state-switching algorithm
that exploits the traffic sampling algorithm to switch to a more
energy-efficient state algorithm when residual neighbouring
resources are available. Results show that this technique
presents a remarkable power efficiency improvement over
standard peer-to-peer networks.

Keywords-energy saving, mobile peer networking, power
consumption, state-switching, traffic sampling

I. INTRODUCTION
The ever increasing cost of energy is pushing network

operators and designers to develop solutions for more power-
efficient mobile networks. With all the different wireless
technologies deployed today, mobile peer-to-peer (MP2P)
networks offer a possible solution to curb energy
consumption by reducing the transmission distance between
nodes and hence the power requirements. MP2P networks
can also provide efficient distribution and delivery of high-
bandwidth services such as media downloading, making
them a more attractive solution. Current mobile peer network
implementations are based on well established fixed-network
topologies, implying that existing peer protocols are overlaid
on the existing mobile networks, thus inheriting the unique
challenges present in the mobile environment, such as
bandwidth asymmetry and node availability [2].

Inefficient use of this overlay network causes significant

mobile power dissipation as the mobile peer clients enter/exit
the network sporadically, and asynchronously connect with
the network seeds. Optimal MP2P energy efficiency can only
be derived through iterative calculations for each peer node.
These involve parameter calculations such as broadcast size
and inter-broadcast intervals, resulting in energy efficiency
curves such as the one shown in Figure 1 [3]. Such
algorithms are themselves computationally intensive, leading
to a trade-off between energy efficiency and computational
speed [4]. Moreover, the optimal solution changes with time
as the wireless channel characteristics change and the nodes
move in the network. Therefore, a solution that adapts itself
with time is essential.

A promising solution is to apply enhanced traffic
sampling algorithms that optimise the delivery and routing of
the peer client information, thereby contributing to more
efficient power dissipation. This paper presents a novel
approach that exploits traffic sampling to optimise the energy
profile in MP2P networks. Successful implementation of this
technology can be deployed in mobile peer networking

Figure 1. Energy Efficiency (in MB/Joule) for a MP2P system in
node discovery mode. Assuming a mobile peer density λ of
6.25x10-4m2, for a mobile inter-broadcast interval of 1s, optimal
energy efficiency is attained with a broadcast size of 1.35kB.

227

International Journal on Advances in Networks and Services, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Article part of a special issue on Peer-to-Peer Systems

scenarios where efficient peer node resource information
routing is required, such as TCP congestion avoidance [2].

The proposed peer network solution also provides rapid
information delivery based on node routing and traffic
history techniques. A neural network-based algorithm is used
to optimise the node routing within the peer network from
traffic reports generated by the mobile clients within the
network. The algorithm sets the routing paths based on the
traffic requests and the busy hour traffic allocations. History
is used as a starting point for the optimisation process since
traffic profiles tend to be statistically similar across weeks
for similar traffic payloads. Through this information, the
algorithm guarantees the most efficient resource allocation
on the mobile radio interface, thereby yielding an optimal
power profile.

Additional energy optimisation is provided through
efficient use of the observed traffic reports to influence the
state-switching of each peer node. By periodic measurement
of the neighbouring nodes, the band state of each mobile
node can be changed to a more efficient state, depending on
the amount of residual resources the node has.

The rest of the paper is organised as follows: Section II
gives an overview of peer networking. Section III describes
the algorithm developed followed by testing and results in
Section IV. Finally, Section V provides some comments and
conclusions.

II. MOBILE P2P ENERGY CONSUMPTION

A. Mobile P2P Environment Challenges
Mobile peer networking is different from the traditional

wired peer-to-peer networks in the following ways:
i) Availability – the mobile user moves within the

network and can therefore be out of range, switched off, or
under a profile which discourages peer networking (example:
roaming, non-flat rate data tariff).

ii) Connectivity – the mobile user's ping times can vary
significantly throughout the networking session as the
system switches to a slower packet access network to
maintain the service or the current location area is an
inefficiently subnet, resulting in long hop times.

iii) Topology – the peer nodes are physically mobile, and
sometimes can be highly mobile [6]. The traffic density can
vary significantly and consequently the underlying
communication network is subject to frequent topology
changes and disconnections. P2P network approaches that
require pre-defined data access structures such as search
routing tables [5] and spanning trees [6] are impractical in
the wireless environment.

iv) Throughput – The communication throughput
between two peers is constrained by the wireless bandwidth
available, the channel contention, and the limited connection
time. Therefore, selective communication is necessary such
that the most important data is communicated.

v) Cooperation – Like many other P2P systems or mobile
ad-hoc networks, the ultimate success of mobile P2P
networks relies heavily on the cooperation among users. In
infrastructure P2P systems, incentive is provided for peers to
participate as suppliers of data, compute cycles,

knowledge/expertise, and other resources. In mobile ad-hoc
networks, incentive is provided for mobile hosts to
participate as intermediaries/routers. In mobile P2P
networks, the incentive has to be provided for participation
as both suppliers and intermediaries (namely brokers) [7].

B. Peer Node Reporting

In modern peer networks, such as BitTorrent [8] there are
two main methods for node reporting to/from peer nodes,
namely report pulling and report pushing. Report pulling
implies that when a mobile peer makes an explicit request,
the peer network is flooded with queries and the specific
report is retrieved from the mobile peers that contain the
specific report data for that particular node. Report pulling is
widely used in resource discovery, route discovery in mobile
ad hoc networks, and file discovery by query flooding in
wired P2P networks like Gnutella [9]. Flooding in a wireless
network is in fact relatively efficient compared to wired
networks because of the advantages derived using wireless
multicast [10].

The alternative approach for peer reporting is through
pushing. In this method, reports are flooded, and consumed
by peers whose query is answered by received reports. To
date mechanisms exist to broadcast information in:

(i) the entire peer network
(ii) in a specific geographic area (geocast)
(iii) to any one specific mobile node (unicast/mobile ad-

hoc routing)
(iv) any one arbitrary node (anycast).
Additionally, report pushing methods can be further

divided into stateful methods and stateless methods. Most
stateful methods are topology-based, i.e. they impose a
structure of links in the network, and maintain states by data
dissemination.

One specific group of stateful methods contains cluster-
or hierarchy-based methods [11], in which moving peers are
grouped into some clusters or hierarchies and the cluster
heads are randomly selected. Reports are disseminated
through the network in a cluster or hierarchy manner, which
means that reports are first disseminated to every cluster
head and each cluster head then broadcasts the reports to the
member peers in its group.

Although cluster- or hierarchy-based methods can
minimise the energy dissipation in moving peers, these
methods will fail or dissipate more energy in highly mobile
environments as they have to maintain a hierarchy structure
and frequently need to reselect the cluster heads. Each time
cluster heads are elected, energy is lost in the overhead
needed in passing necessary information and in the
computation of the clustering algorithm.

Another stateful algorithm utilises Location-based
methods. In this method, each moving peer knows the
location of itself and its neighbours through some
localisation technique, such as GPS or Atomic
Multilateration [12].

The simplest location-based data dissemination is Greedy
Forwarding, in which each moving peer transmits a report to
a neighbour that is closer to the destination than itself.

228

International Journal on Advances in Networks and Services, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Article part of a special issue on Peer-to-Peer Systems

However, Greedy Forwarding can fail in some cases, such as
when a report is stuck in local minima, which means that the
report stays in a mobile peer whose neighbours are all further
from the destination. Therefore, some recovery strategies are
required, such as GPSR (Greedy Perimeter Stateless Routing
[13]). Other location-based methods, such as GAF
(Geographic Adaptive Fidelity [14]) and GEAR
(Geographical and Energy Aware Routing [15]), take
advantage of knowledge about both location and energy to
disseminate information and resources more efficiently.

In stateless methods, the most basic and simplest solution
is through flooding techniques, such as [16]. In flooding-
based methods, mobile peers simply propagate received
reports to all neighbouring mobile peers until the destination
or a maximum number of hops is reached. Each report is
propagated as soon as is received. Flooding-based methods
have many advantages, such as no state maintenance, no
route discovery, and easy deployment. However, they
inherently cannot overcome several problems, such as
implosion, overlap, and resource blindness. Therefore, other
stateless methods are proposed, such as gossiping-based
methods and negotiation-based methods.

Gossiping-based methods, such as [4], improve flooding-
based methods by transmitting received reports to a
randomly selected neighbour or to the neighbours that are
interested in the particular content. The advantages of these
methods include reducing the implosion and lowering the
system overhead. However, the cost of determining the
particular interests of each moving peer can be huge and
transmitting reports to a randomly selected neighbour can
still cause the implosion problem and waste peers' memory,
bandwidth and energy. Furthermore, dissemination, and thus
performance, is reduced compared to pure flooding.

Negotiation-based methods solve the implosion and
overlap problem by transmitting first the id's of reports; the
reports themselves are transmitted only when requested [17].
Thus, some extra data transmission is involved, which costs
more memory, bandwidth, and energy. In addition, in
negotiation-based methods, moving peers have to generate
meta-data or a signature for every report so that negotiation
can be carried out, which will increase the system overhead
and decrease the efficiency.

C. Energy Consumption Model
Before participating in peer node reporting, each MP2P

client specifies the energy constraint using the algorithm:
“from time(t) until time(H) the MP2P system is allowed to
use fraction F of the remaining energy”. The allocated
energy covers all the energy consumed by report
dissemination, including the energy used for transmission,
receiving, listening, and computation. If F is the energy
allocation fraction, and Ω Joules of energy is left in the node,
this constraint is translated into the following specification:
“The algorithm may use no more than Ω⋅F Joules until time
H”.

The pair (Ω⋅F, H) is thus the energy budget. Therefore,
the lifetime demand of each individual device is
accommodated [27].

Now we introduce the energy consumption model. Let
the size of a message be M bytes excluding the MAC header.
According to [26], the energy consumed for transmitting a
message can be described using the linear equation:

 En = f * M + g (1)

Intuitively, there is a fixed component associated with the
network interface state changes and channel acquisition
overhead, and an incremental component which is the size of
the message. Experimental results confirm the accuracy of
the linear model and are used to determine values for the
linear coefficients g and f. For 802.11 broadcast systems,
g=266×10-6 Joule, and f=5.27×10-6 Joule/byte ([27]).

D. Optimal Transmission Size
Consider a broadcast of M bytes by a mobile device x. If

another neighbour of destination node y transmits during
some time slot of a broadcast, then a collision will occur,
and the whole broadcast is considered corrupt (i.e.
unsuccessfully received) at y. If N is the number of
neighbours that successfully receive the message from node
x, the throughput of the broadcast sent by x, denoted Th, is
defined as:

Th = M * N (2)

Intuitively, the throughput is the total amount of data
successfully received by the neighbours of x. If En is the
energy consumed at the network interface of x for sending
the broadcast message, the energy efficiency of the
broadcast by x, denoted Peff, is defined as:

n

h
eff E

TP = (3)

In other words, the energy efficiency is the throughput

produced by each unit of transmission energy consumed at
node x. To compute the value of Th, consider a mobile
device x broadcasting a message at an arbitrary time slot.
According to [26], the expected value of Th can be
approximated by:

∫

−+−+
−

≈
r

T
r

dq
r

qr
dp

MThE

0

1))12)).(
2

(2()
2

(2(2

)'1(

2)(

δδ

πλ

πδλ (4)

where:
 λ is the number of devices per unit in area
 r is the transmission range of each device in (m)
 b is the data transmission speed in (bits per second)
 p' is the probability that a device starts a broadcast
 τ is the length of the MAC timeslot in (s)
 h is the size of the MAC header in bytes
 c is the time since completion of last broadcast (s)

229

International Journal on Advances in Networks and Services, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Article part of a special issue on Peer-to-Peer Systems

and:

21)arccos()(

/8).(

aaaaq

bhMT

−−=

+= τ

Equation (4) takes into account the effect of hidden

terminals as well as direct collisions. By the definition of
energy efficiency, the expected value of the energy
efficiency is:

MPE eff πλ2)(≈

)(

)'1(
0

1))12)).(
2

(2()
2

(2(2

gMf

dp
r T

r
dq

r
qr

+

∫ −
−+−+

δδ
πδλ

 (5)

From equation (5), if τ, p', λ, h, b, r, f and g are fixed,

then the energy efficiency Peff as a function of the broadcast
size M is a bell shaped curve. Thus, there is a value of M
that maximises the energy efficiency, i.e. achieves the best
trade off between the channel utilisation and broadcast
reliability.

For the rest of this subsection we show that indeed,
except for M, all the parameters of equation (5) can be
determined by the mobile device. The parameters τ, h, r, b
depend on the network, and are fixed for a given
communication network technology. For example, h is equal
to 47 in the wireless access protocol 802.11b [2]. f and g
depend on the network interface hardware and can be
calibrated as demonstrated by [25]. The density λ can be
estimated based on the average number of neighbours over
time (recall that each mobile device knows its neighbours
via the neighbour discovery protocol), given the
transmission range.

The probability p' is determined as follows. Let c be the
number of seconds since the completion of the last
broadcast of x until the time when the current broadcast size
is to be determined. If, on average, a mobile device starts a
broadcast of data every c seconds, then its probability of
starting a broadcast in each medium access time slot is τ / c.
Therefore, the broadcast probability p' is substituted in
equation (5) by τ / c. For instance, if c = 5 seconds and
τ = 20μs, then

 p' = (20×10−6)/5 = 4×10−6

Using p' = τ /c, a formula is derived for the throughput in
which the only unknown parameter is M. In some scenarios
the actual p' may be lower than τ /c. This occurs because
there is a delay from the time when the broadcast is
triggered until the channel is sensed free and when the
broadcast is actually started. In other words, the actual
broadcast period may be larger than c. However, since the
difference between p and p' is small, this delay is expected
to be small as well and therefore can be neglected. Thus, the

optimal value for M can be found, i.e. the value of M for
which Peff is maximised. This value is denoted by Moptimal,
and can be outlined in Figure 1.

E. Proposed Solution
One method of determining Peff of a broadcast is by

measuring the energy efficiency, which can be defined as:

T

D
E n

n
∑=)(

 (6)

where D is the amount of mobile peer data that is correctly
received and T is the unit of peer transmission energy. The
data throughput received by a mobile peer node n can be
expressed as a product of the neighbours that successfully
receive the broadcast (N), and the size of the broadcast b:

NbTh = (7)

Consequently the power efficiency can be expressed as

shown in equation (3). Alternatively Peff can be expressed as
the trade-off between the inter-broadcast interval tb and the
broadcast size b [3], as can be seen in Figure 1.

The main challenge to maximise Peff is to determine
which nodes are more connectable than others, and the
relative connection times associated with each. This requires
the construction of a reliability algorithm which builds up a
table of the client nodes within the peer network with the
following criteria:

(i) availability a in % over time window t1,
(ii) connectivity c in ms over time window t2, and
(iii) transfer rate r in kbps over time window t3.
As this table is updated periodically, a list of the nodes

whose performance indicators are most favourable over time
t1, t2, and t3 will gradually be upgraded to super-nodes. The
challenge is to provide an efficient scalable traffic analysis
algorithm that is susceptible to rapid variations in the mobile
environment.

III. TRAFFIC SAMPLING

A. Traffic Analysis
Determining the metrics a, c and r over time t gives a

reliability indication which helps build a traffic profile for
each node. The observed traffic for each node i can be
defined as:

 Ti

obs = [ai ci ri] (8)

Most wireless network operators specify their network-

wide goals in terms of Origin-Destination (OD) pairs [9]. To
achieve flow monitoring goals which are specified in terms
of OD-pairs, the optimisation engine needs the traffic matrix
and the routing information, both of which are readily
available in the network [18]. The required matrix is
obtained through the traffic sampling architecture outlined in
Figure 2.

230

International Journal on Advances in Networks and Services, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Article part of a special issue on Peer-to-Peer Systems

To handle the traffic dynamics the following heuristic
approach is used in this work. Assume that the sampling
manifests for every 5-minute interval for the Fri. 9am-10am
period of the current week is required. To avoid over fitting,
the hourly traffic matrix for the previous week's Fri. 9am-
10am period is employed after being divided by 12 (to obtain
the required 5-minute interval). The resulting traffic matrix
Told is used as input data to compute the manifests for the
first 5-minute period. At the end of this period, the flow of
data from each node is collected, and the traffic matrix Tobs
from the collected flow reports is obtained. If the fractional
coverage for ODi with the current sampling strategy is Ci and
xi sampled flows are reported, then Ti

obs = xi/Ci. That is, the
number of sampled flows are normalized by the total flow
sampling rate.

Given the observed traffic matrix for the current
measurement period Tobs and the old traffic matrix obtained
from the week before Told, a new traffic matrix can be
computed using a conservative update policy. The resulting
traffic matrix Tnew is then used as the input to the algorithm
that obtains the manifests for the next 5-minute period. Thus,
the following conservative update algorithm was designed,
as outlined in Algorithm 1. This algorithm determines the

differences between the new and the existing traffic reports,
and computes a new traffic matrix entry if the difference
between the values exceeds a specific threshold. The residual
resources are measured and allocated to the respective nodes
according to the resource utilisation of the peer nodes
reporting the traffic matrix.

The challenge in deploying this solution is limited by the
ability to process this information effectively for each node,
and to detect when the information is new or no longer valid
[19]. A neural network algorithm can provide the necessary
framework to process and determine the optimal nodal
information. A neural network which uses a back-
propagation architecture promises to be effective in this
application since training is done during each iteration by the
traffic data that is emanating from each node in the network.

Algorithm 1: P2P Traffic Sampling
Algorithm

1:FUNCTION {P2P_Traffic_Matrix_Update
(Ti

obs, Ti
old, Δ)}

2://check for significant differences
between Tobs and Told
3: δi = |Ti

obs − Ti
old|/Ti

old // δi =

estimation error for ODi
4: if δi > Δ then
5: // compute new traffic matrix entry
6: Ti

new = [0]
7: else
8: Ti

new =Ti
old

9: end if
10: if Ti

obs ≥ Ti
old then

11: Ti
new

 = Ti
obs

12: end if
13: if Ti

obs < Ti
old then

14: // check resource utilisation for all
routers monitoring ODi
15: for all xi ∈ x do
16: Ci = resource utilisation of xi
17: // result: 1=free, 0=busy
18: end for
19: if ΣC = i then
20: // all nodes have residual
resources available
21: Ti

new
 = Ti

obs
22: else
23: // not enough residual resources
available – revert to previous matrix
24: Ti

new = Ti
old

25: end if
26: end if
27: return(Ti

new)

Figure 2. Schematic layout of the traffic sampling architecture.
The traffic matrix compiled from the flow reports acts as an input
vector into the neural network architecture, which computes the
optimal configuration for each node, distributed to each
respective node. New traffic measurements are then generated,
collected and re-parsed into the traffic matrix for re-analysis.

231

International Journal on Advances in Networks and Services, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Article part of a special issue on Peer-to-Peer Systems

B. Back-propagation Neural Networks
Back-propagation neural networks are created by the

generalisation of the Widrow-Hoff learning rule to multiple-
layer networks and nonlinear differentiable transfer functions
[17]. A set of training vectors and their corresponding target
vectors are used to train the neural network until it is capable
of approximating a function, associate input vectors with
specific output vectors, or classify each input vector in an
appropriate way as defined by the user. Any function with a
finite number of discontinuities can be approximated by
networks having biases, a sigmoid layer, and a linear output
layer.

It has been shown that back-propagation networks tend to
give reasonably good classification results when they are
presented with input vectors that they have never seen [20].
This generalisation property makes it possible to train the
network on just a representative set of the input/target pairs
and get reasonably good results without training the network
on all possible input/output pairs.

The simplest implementation of the back-propagation
learning algorithm updates the weights of the network and its
biases in the direction in which the performance function
decreases most rapidly. This is represented by the negative of
the gradient of the function. A single iteration of the
algorithm is given by:

xk+1 = xk + αkgk (9)

where xk is a vector of current weights and biases, gk is the
current gradient, and αk is the learning rate.

In most neural network training algorithms the learning
rate αk is used to determine the length of the weight update,
and is known as the step-size [23]. There are two different
ways in which this gradient descent algorithm can be
implemented: incremental mode and batch mode. In
incremental mode, the gradient is computed and the weights
are updated after each input is applied to the network. On the
other hand, in batch mode all the input vectors are applied to
the network before the weights are updated. Both solutions
eventually converge and can be adopted.

However, most gradient descent algorithms are often too
slow for practical real-time problems [24]. The basic
algorithm adjusts the weights in the steepest descent
direction. It turns out that, although the function decreases
most rapidly along the negative of the gradient, this does not
necessarily produce the fastest convergence. In the conjugate
gradient algorithms a search is performed along conjugate
directions, which generally produces faster convergence than
steepest descent directions [25].

Most of the conjugate gradient algorithms have the step-
size adjusted after each iteration. A search is made along the
conjugate gradient direction to determine the best step-size
that minimises the performance function along that line. The
conjugate gradient algorithm used starts by searching in the
steepest descent direction (g) on the first iteration of the
observed traffic input vector Tobs, thus:

Tobs

0 = - g0 (10)

A line search is then performed to determine the optimal
distance to move along the current search direction.
Therefore, combining (9) and (10) yields:

xk+1 = xk + αkTobs

k (11)

The next search direction is determined such that it is

conjugate to the previous search directions. The general
procedure for determining the new search direction is to
combine the new steepest descent direction with the previous
search direction as:

Tobs

k = -gk + βkTobs
k-1 (12)

where βk is a constant.

The various versions of the conjugate gradient algorithm
are distinguished by the way in which βk is computed. One
solution is to use the Fletcher-Reeves algorithm which
updates this constant using:

 βk=
gk

T g k

g k− 1
T gk−1

 (13)

This is the ratio of the norm squared of the current

gradient to the norm squared of the previous gradient [20].
The conjugate gradient algorithms require only a little more
storage than the simpler gradient decent ones. Thus, these
algorithms work well in neural networks that utilise a large
number of weights.

The conjugate gradient algorithms are usually much
faster than variable learning rate back-propagation, although
the results vary from one problem to another [24].
Furthermore, the computational intensity required is
comparable to the standard algorithms, making them ideal
for implementation in power-efficient environments such as
MP2P clients [1].

A tuned neural network algorithm is essential in
determining the optimal peer nodal information to process
node routing and thus obtain accurate traffic reports in Tobs.
Consequently, from equation (13), any delays in reporting
and processing by the back-propagation algorithm may result
in estimation errors in Tobs and consequently δi. As the back-
propagation network may incur significant delays in training,
when subject to a large input dataset [20], additional ongoing
efforts are underway to investigate optimisation methods,
such as the use of Self-Organising Maps (SOMs) neural
architecture in training.

C. State-switching optimisation
Additional optimisation to the traffic sampling algorithm

is obtained through the efficient use of the observed traffic
matrix Tobs to influence the state-switching of each peer node
[19]. By periodic measurement of the neighbouring nodes,
the band state of each mobile node can be changed for nodei
to a more efficient state depending on the amount of residual
resources.

232

International Journal on Advances in Networks and Services, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Article part of a special issue on Peer-to-Peer Systems

Figure 3 outlines the allowed state transitions while
Algorithm 2 provides a high-level description of the
algorithm. It is important to note that state-switching
algorithms can only be supported where the mobile client
operating system (OS) supports active band selection
through the use of APIs, such as provided by Symbian [21]
and Android [22]. Otherwise, the client MP2P software may
resort to the use of the traffic sampling algorithm only [28].

IV. TESTING
In order to determine the energy dissipation across the

different algorithms a mobile peer network was first
designed and simulated using MATLAB®. The mobile peer
network was designed using algorithms derived from the
BitTorrent technology [8].

The traffic sampling algorithm, utilising the back-
propagation neural architecture consisting of a two-layer
network, having 11 neurons in the hidden layer and 2

Figure 4: Mobile peer network simulation structure, showing node
separation in the XY plane, and uTP inter-nodal delay (δ) in the Z
plane. The two ultrapeer nodes are connected by a UMTS Release
5 wireless link with HSPA, operating at 1.4MBps (nominal rate
1.1MB/s).

Algorithm 2: State Switching Algorithm

1:FUNCTION {Check_load(nodei, ti

current,
ti

old)}
2://check time window hysteresis expiry
texp
3: δi = |ti

current – ti
old| // δi = time

elapsed from last measurement for nodei
4: if δi > t

exp then
5: //check resource utilisation for
all neighbouring nodes x monitoring
nodei
6: for all xi ∈ x do
7: Ci = resource utilisation
of xi
8: // result: 1=free, 0=busy
9: end for
10: if (ΣC = i) then
11: //all neighbouring nodes have
residual resources, reduce band
12: Reduce_Band(nodei)
13: else
14: if (ΣC < i and ΣC > y) then
15: //at least y neighbouring nodes
have residual resources, keep existing
band
16: Fi

new = Fi
old

17: else
18: // no residual resources
available, increase band
19: Increase_Band(nodei)
20: end if
21: end if
22: return(Fi

new)

23:FUNCTION {Reduce_Band(nodei)}
24: //Query node band state energy
table
25: Fi

old=lookup(nodei,
phone_energy_table)
26: //Subtract one band energy state
27: Fi

new = Fi
old ‐ 1

28: return(Fi
new)

29:FUNCTION {Increase_Band(nodei)}
30: //Query node band state energy
table
31: Fi

old=lookup(nodei,
phone_energy_table)
32: //Add one band energy state
33: Fi

new = Fi
old + 1

34: return(Fi
new)

Figure 3. Allowed state transitions by the band switching
algorithm, from [OFF] to [WiFi] and intermediate bands. E()
represents an event and indicates the cause of the transition.
Wherever y < ΣC < i, the state is transition-less.

233

International Journal on Advances in Networks and Services, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Article part of a special issue on Peer-to-Peer Systems

neurons in the top layer, and utilising a tan-sigmoid and a
linear transfer function for the hidden and top layer
respectively, was implemented.

Stochastic models of traffic sampling periods correlated
with peer node power consumption were analysed to
determine the optimum observation model for traffic
sampling. High-frequency windows (1-4 min/sample)
produce more frequently updated peer nodes, however this
comes at a significant detriment to power consumption due
to frequent polling. Conversely more conservative windows
(6-15 min/sample) are more energy efficient, but they are
impractical to intercept mobile peer clients with high
mobility and/or cell state transitions. A 5-minute window
was selected as the best trade-off between power-
consumption and node data validity. Thus, the traffic
sampling algorithm was built using the 5-minute observation
model, and the resulting traffic matrix was used as input to
the neural network.

The testing process consisted of a series of UDP
connections, and high-level file transfers between two peer
mobile nodes, with a 1km separation running on an
emulation software [23]. These were connected across uTP,
or the UDP-based implementation of the BitTorrent protocol
[8], through the UMTS RNC as shown in Figure 4. The
access network topologies were simulated using two-tiered
wireless propagation algorithms [2]. Background packet
traffic from the underlying UMTS network was incorporated
to increase the network loading and investigate the proposed
algorithm’s energy profile under various traffic scenarios.

The two peer nodes were configured to transmit (and
receive respectively) a file having a size of 1.024 GB across
the peer network over the uTP layer, whilst all other leaf
nodes were configured as source-sink pairs to simulate the
aggregate traffic on the network, generated according to a
Poisson distribution. All queuing effects were simulated on
the ultra-peer link using the FIFO queuing algorithm [25].
The network link capacity was set to 1.4Mbps and the round-
trip propagation delay for the two ultra peer nodes (δ) was
set to 1000µs-1. The simulation window was 1500 seconds

with a sampling time of 10 samples/second. The entire tests
were affected over a period of 7 days with hourly
measurements during the UMTS network busy hour. After
the observation period expired, the results were collated with
a confidence interval of at least 95% across all tests.

In order to measure the effective mobile CPU load and

resulting current and voltage dissipation, the mobile
components were emulated with resource load monitoring
capabilities to gauge the effective portion of processing
cycles devoted to peer traffic routing. The resulting profile
was fed into the mobile emulation software to determine the
resulting drain on current and voltage respectively [22-23].

Figures 5 (a) and (b) show the difference in current drain
between the standard and traffic sampled mobile peer client
algorithms. The resulting drain is approximately 50% of the
nominal current used by the standard algorithm. The optimal
traffic sampling also resulted in the file transfer completing
in 960 seconds, well ahead of the 1505 seconds taken by the
standard algorithm.

Figure 5(b). Power profile for mobile peer connectivity in W,
showing the difference in power dissipation between the standard
mobile BitTorrent algorithm and the proposed traffic-sampled
Mobile BitTorrent algorithm.

Figure 5(a). Current profile for mobile peer connectivity in mA,
showing the difference in current drain between the standard
mobile BitTorrent algorithm and the proposed traffic-sampled
Mobile BitTorrent method.

Figure 5(c). CPU load for the mobile peers, showing the difference
in load between the standard mobile BitTorrent algorithm and the
proposed traffic-sampled Mobile BitTorrent algorithm.

234

International Journal on Advances in Networks and Services, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Article part of a special issue on Peer-to-Peer Systems

Figure 5(c) illustrates the discrepancy in CPU load for
the proposed sampled BitTorrent client compared to the
standard algorithms. The additional CPU cycles using the
standard algorithm are the result of iterative routing of peer
traffic through congested peer nodes, and/or redundant peer
information, leading to a higher net CPU load on the mobile
client and contributing to redundant routing information in
each peer client that is discarded due to invalid or untimely
data. Such situations occur when the routing information
changes during data transmission between peer nodes, and is
symptomatic of high latency or poor peer client localisation
[2]. In this case, there is significant processing load
efficiency using the traffic-sampled peer protocol, which is
due to the rapid information delivered because of the lower
network delay.

To further validate the performance improvements in a
typical service deployment when compared to similar
algorithms, a series of file transfer tests was performed
across the network topologies. Table 1 illustrates the
performance of the mobile simulator [22-23] for a number of
1GB file transfers across the peer networks using the Greedy
Perimeter Stateless Routing (GPSR), Geographic Adaptive
Fidelity (GAF) and Geographic and Energy Aware (GEAR)
algorithms, when compared with the proposed Traffic
Sampling (TS) technique. The performance exhibited by the
TS model compares favourably, particularly in the file
transfer times and processor loads, compared with the
alternative methods presented in [12-15].

Although GPSR has a smaller memory footprint, the
average RTT is still longer than the TS method because the
rest of the node paths are unknown and have to be
discovered. The TS algorithm deduces the link of each next-
step based on the last measured performance of each node,
contributing to a shorter RTT, which compares more
favourably to other research efforts reported in [13] and [14],
as can be seen from the results given in Table 1. This
effectively reduces the CPU loading, thereby leading to a
lower current and power drain on the power supply of the
mobile peer client.

TABLE I. MOBILE PEER NETWORK PERFORMANCE

 P2P Key Performance Indicators (KPIs)

Test GPSR GAF GEAR TS

1
Memory

Footprint (kB) 618 1125 1982 1238

2
File Transfer

Time (s) 1142 1223 1890 960

3
Round-trip-
time (RTT) 7s 9s 6s 2s

4 CPU Load (%) 32% 58% 89% 42%

A second series of tests was performed to determine the

relative performance of the traffic sampling mechanism as a
distribution of the physical peer location. As the peer
network is mobile there is a significant variance with fixed
peer networks, resulting in issues outlined in Section II.
Consequentially a recursive test was performed across the

10km square test network with each peer node effecting a
UDP burst pattern in alternate send/receive mode.

Fig. 6 shows the error z(k) as a function of location
across the mobile peer network. Whilst the stability of the
traffic sampling controller is consistent throughout the
network, slightly higher errors are exhibited in areas where
there are fewer peer nodes. This is due to the inverse
relationship of the controller error with the background
traffic and is similar to the performance shown in Fig. 6.

The Traffic Sampling mechanism displays significantly
higher performance under loaded traffic conditions, and is
thus suited for mobile peer networks, as these tend to
exhibit higher instances of local congestion due to
insufficient resources [2]. Judicious use of this algorithm
enables the deployment of peer technologies in mobile
networks without causing a packet traffic overload to the
network, and therefore contributes to more efficient
resource allocation in mobile peer networks.

An observational note is that the CPU load on the
mobile client, and consequently the power drain, is highly
correlated to the size of the peer algorithm memory
footprint. One factor is due to the additional processor run-
time loads involved in general memory management
(pointer allocation, matrix operations, etc.) of the mobile
operating system [21, 22].

V. CONCLUSIONS
This paper has presented a solution that exploits traffic

data and neural networks in wireless peer networks to
optimise the power consumption profile in mobile clients.
Results have shown that the solution also provides better
packet allocation efficiency on the radio interface compared
to other algorithms [12-15], for the same number of peer
clients. The significant improvement has been obtained by
consuming fewer mobile CPU cycles by providing and

Figure 6: Traffic Sampling controller distribution error z(k)
throughout the mobile peer network. Whilst the stability of the
traffic sampling controller is consistent throughout the network,
slightly higher errors are exhibited in areas where there are fewer
peer nodes. This is due to the inverse relationship of the controller
error with the background traffic.

235

International Journal on Advances in Networks and Services, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Article part of a special issue on Peer-to-Peer Systems

allocating resources while taking into account the conditions
of the radio environment, together with the availability of
traffic channels at any specific time or area within the
wireless network.

The net result from the effective use of this method is to
deploy the algorithm across multi-technology topologies in a
step towards MP2P convergence. The simulation results
have shown that the proposed method promises high power
efficiency across network switching topologies as different
technologies are exploited to provide various mobile services
using these overlay networks.

Research is currently ongoing to investigate peer node
transmission across smaller inter-nodal differences to reduce
power consumption, using an algorithm based on a
derivative of the state-switching method used in this work.
This will allow for more efficient use of the radio spectrum
as well as the peer node burst rates with peer nodes having
relatively close proximity.

Additional research is also envisaged in investigating the
performance of the neural network algorithm in high
mobility scenarios, that is where peer users are moving at
speeds in excess of 60ms-1, and to determine an optimal
feedback mechanism to respond efficiently across multiple
radio access network topologies. These methods will allow
for the mobile power dissipation to be more efficient in a
technology- and mobility-agnostic environment.

REFERENCES
[1] J.K. Buhagiar, C.J. Debono “Exploiting Traffic Sampling Techniques

to Optimize Energy Efficiency in Mobile Peer Networks,” in Proc. of
the 2009 First International Conference on Advances in P2P Systems
(AP2PS 2009), pp. 72-77, October 2009.

[2] J.K. Buhagiar, C.J. Debono “Exploiting Adaptive Window
Techniques to Reduce TCP Congestion in Mobile Peer Networks,” in
Proc. of the 2009 IEEE Wireless Communications and Networking
Conference (WCNC 2009), April 2009.

[3] Y. Luo, O. Wolfson, “Mobile P2P Databases”, in NSF Workshop on
Data Management for Mobile Sensor Networks (MobiSensors),
Pittsburgh, PA, January 2007.

[4] A. Datta, S. Quarteroni, and K. Aberer, “Autonomous Gossiping: A
Self-Organizing Epidemic Algorithm For Selective Information
Dissemination in Wireless Mobile Ad-Hoc Networks,” in The
International Conference on Semantics of a Networked World, 2004.

[5] A. Helmy, Efficient Resource Discovery in Wireless AdHoc
Networks: Contacts Do Help. Book Chapter in Resource
Management in Wireless Networking by Kluwer Academic
Publishers, May 2004.

[6] R. Krishnan, M. Smith, R. Telang, The economics of peer-to-peer
networks, Carnegie Mellon University, 2002.

[7] J. Hellerstein, W. Hong, S. Madden, K. Stanek “Beyond Average:
Toward Sophisticated Sensing with Queries,” in Proc. of the 2nd Int.
Workshop on Information Processing in Sensor Networks, 2003.

[8] BitTorrent [Online]. http://en.wikipedia.org/wiki/BitTorrent © 2009
[9] Gnutella [Online]. http://en.wikipedia.org/wiki/Gnutella © 2009
[10] V. Sekar, M. Reiter, W. Willinger, H. Zhang, “Coordinated

Sampling: An Efficient Network-wide Approach for Flow

Monitoring,” Technical Report, CMU-CS-07-139, Computer Science
Dept., Carnegie Mellon University, 2007.

[11] D. Kim, M. Lee, L. Han, H. In “Efficient Data dissemination in
Mobile P2P ad-hoc networks for ubiquitous computing”, in Proc. of
Int. Conf. on Multimedia and Ubiquitous Engineering, pp 384-389,
2008.

[12] A. Visvanathan, J. H. Youn, and J. Deogun, “Hierarchical Data
Dissemination Scheme for Large Scale Sensor Networks,” in IEEE
International Conference on Communications (ICC'05), pp. 3030-
3036, May 2005.

[13] B. Karp and H. T. Kung, “GPSR: Greedy Perimeter Stateless Routing
for Wireless Sensor Networks,” in The 6th Annual ACM/IEEE
International Conference on Mobile Computing and Networking
(MobiCom'00), pp. 243-254, Aug 2000.

[14] Y. Xu, J. Heidemann, and D. Estrin, “Geography-informed Energy
Conservation for Ad hoc Routing,” in The ACM International
Conference on Mobile Computing and Networking, pp. 70-84, Rome,
Italy, July 2001.

[15] Y. Yu, R. Govindan, and D. Estrin., “Geographical and Energy
Aware Routing: A Recursive Data Dissemination Protocol for
Wireless Sensor Networks,” Technical Report UCLA/CSD-TR-01-
0023,UCLA, May 2001.

[16] R. Oliveira, L. Bernardo, and P. Pinto, “Flooding Techniques for
Resource Discovery on High Mobility MANETs,” Workshop on
Wireless Ad-hoc Networks, 2005.

[17] J. Kulik, W. Heinzelman, and H. Balakrishnan, “Negotiation-Based
Protocols for Disseminating Information in Wireless Sensor
Networks,” Wireless Networks, vol. 8, pp. 169-185, 2002.

[18] H. Ballani, P. Francis, “CONMan: A Step Towards Network
Manageability”, in Proc. of ACM SIGCOMM, 2007.

[19] V. Sekar, M. Reiter, W. Willinger, H. Zhang, R. Kompella, D.
Andersen, “cSAMP: A System for Network-Wide Flow Monitoring,”
in Proc. of the 5th USENIX Symposium on Networked Systems
Design and Integration, 2008.

[20] S. Lawrence, C. L. Giles, A. C. Tsoi, A. D. Back, “Face Recognition:
A Convolutional Neural Network Approach,” IEEE Transactions on
Neural Networks - Special Issue on Neural Networks and Pattern
Recognition, Vol. 8, No. 1, pp 98-113, 1997.

[21] Symbian OS Emulator 5th Edition, Symbian C++ SDK © 2009
Symbian Foundation.

[22] Google Android OS Emulator 1.5r2, 2.0 © 2008-9 Google, http://
code.google.com/android

[23] Control Systems Toolbox MATLAB © Mathworks 2009.
[24] Neural Networks Toolbox MATLAB © Mathworks 2009.
[25] P2P Multicast Library (PML), © Sourceforge, 2009,

http://pml.sourceforge.net
[26] L. Feeney, M. Nilson, “Investigating the Energy Consumption of a

Wireless Network Interface in an Ad Hoc Networking Environment,”
INFOCOM, 2001.

[27] O. Wolfson, B. Xu, R. Michael Tanner, “Mobile Peer-to-peer Data
Dissemination with Resource Constraints,” in Proc of the
International Conference on Mobile Data Management, pp 16-23,
2007.

[28] J.K. Buhagiar, C.J. Debono “Optimizing Multicast Protocols to
Reduce Energy Dissipation in Mobile Peer Networks,” in Proc. of the
2010 IEEE Wireless Communications and Networking Conference
(WCNC 2010), April 2010.

236

International Journal on Advances in Networks and Services, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Article part of a special issue on Peer-to-Peer Systems

