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Abstract—Wireless infrastructures have seen a drastic increase 
in energy requirements as technology has shifted towards 
higher allocated frequencies in an attempt to provide more 
bandwidth to accommodate more users and provide the 
resources for more demanding applications and services, such 
as video streaming and multimedia applications. Driven by the 
increase in demand from an always increasing subscriber base, 
large cities are also forcing wireless service operators to install 
more base stations and access points to sustain an adequate 
quality of service. Mobile peer networking offers a possible 
solution for the later with the added benefit of providing 
power-efficient communication, since transmission over short 
distances demands less transmission power using appropriate 
peer connectivity algorithms [1]. Thus, substantial energy can 
be saved, given that the power amplifier that lies in the 
transmitter circuitry is the most power hungry device of each 
mobile node. A novel algorithm based on peer nodal 
hierarchies, traffic mapping, and neural networks is proposed. 
This algorithm invokes the use of a traffic sampling matrix to 
optimise delivery and routing of peer node information, 
allowing for more efficient power distribution. Additional 
optimisation is provided through a state-switching algorithm 
that exploits the traffic sampling algorithm to switch to a more 
energy-efficient state algorithm when residual neighbouring 
resources are available. Results show that this technique 
presents a remarkable power efficiency improvement over 
standard peer-to-peer networks.  

Keywords-energy saving, mobile peer networking, power 
consumption, state-switching,  traffic sampling 

I.  INTRODUCTION 
The ever increasing cost of energy is pushing network 

operators and designers to develop solutions for more power-
efficient mobile networks. With all the different wireless 
technologies deployed today, mobile peer-to-peer (MP2P) 
networks offer a possible solution to curb energy 
consumption by reducing the transmission distance between 
nodes and hence the power requirements. MP2P networks 
can also provide efficient distribution and delivery of high-
bandwidth services such as media downloading, making 
them a more attractive solution. Current mobile peer network 
implementations are based on well established fixed-network 
topologies, implying that existing peer protocols are overlaid 
on the existing mobile networks, thus inheriting the unique 
challenges present in the mobile environment, such as 
bandwidth asymmetry and node availability [2].  

 
Inefficient use of this overlay network causes significant 

mobile power dissipation as the mobile peer clients enter/exit 
the network sporadically, and asynchronously connect with 
the network seeds. Optimal MP2P energy efficiency can only 
be derived through iterative calculations for each peer node. 
These involve parameter calculations such as broadcast size 
and inter-broadcast intervals, resulting in energy efficiency 
curves such as the one shown in Figure 1 [3]. Such 
algorithms are themselves computationally intensive, leading 
to a trade-off between energy efficiency and computational 
speed [4]. Moreover, the optimal solution changes with time 
as the wireless channel characteristics change and the nodes 
move in the network. Therefore, a solution that adapts itself 
with time is essential. 

A promising solution is to apply enhanced traffic 
sampling algorithms that optimise the delivery and routing of 
the peer client information, thereby contributing to more 
efficient power dissipation. This paper presents a novel 
approach that exploits traffic sampling to optimise the energy 
profile in MP2P networks. Successful implementation of this 
technology can be deployed in mobile peer networking 

Figure 1. Energy Efficiency (in MB/Joule) for a MP2P system in 
node discovery mode. Assuming a mobile peer density λ of 
6.25x10-4m2, for a mobile inter-broadcast interval of 1s, optimal 
energy efficiency is attained with a broadcast size of 1.35kB. 
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scenarios where efficient peer node resource information 
routing is required, such as TCP congestion avoidance [2]. 

The proposed peer network solution also provides rapid 
information delivery based on node routing and traffic 
history techniques. A neural network-based algorithm is used 
to optimise the node routing within the peer network from 
traffic reports generated by the mobile clients within the 
network. The algorithm sets the routing paths based on the 
traffic requests and the busy hour traffic allocations. History 
is used as a starting point for the optimisation process since 
traffic profiles tend to be statistically similar across weeks 
for similar traffic payloads. Through this information, the 
algorithm guarantees the most efficient resource allocation 
on the mobile radio interface, thereby yielding an optimal 
power profile. 

Additional energy optimisation is provided through 
efficient use of the observed traffic reports to influence the 
state-switching of each peer node. By periodic measurement 
of the neighbouring nodes, the band state of each mobile 
node can be changed to a more efficient state, depending on 
the amount of residual resources the node has. 

The rest of the paper is organised as follows: Section II 
gives an overview of peer networking. Section III describes 
the algorithm developed followed by testing and results in 
Section IV. Finally, Section V provides some comments and 
conclusions. 

II. MOBILE P2P ENERGY CONSUMPTION 

A. Mobile P2P Environment Challenges 
Mobile peer networking is different from the traditional 

wired peer-to-peer networks in the following ways: 
i) Availability – the mobile user moves within the 

network and can therefore be out of range, switched off, or 
under a profile which discourages peer networking (example: 
roaming, non-flat rate data tariff). 

ii) Connectivity – the mobile user's ping times can vary 
significantly throughout the networking session as the 
system switches to a slower packet access network to 
maintain the service or the current location area is an 
inefficiently subnet, resulting in long hop times. 

iii) Topology – the peer nodes are physically mobile, and 
sometimes can be highly mobile [6]. The traffic density can 
vary significantly and consequently the underlying 
communication network is subject to frequent topology 
changes and disconnections. P2P network approaches that 
require pre-defined data access structures such as search 
routing tables [5] and spanning trees [6] are impractical in 
the wireless environment. 

iv) Throughput – The communication throughput 
between two peers is constrained by the wireless bandwidth 
available, the channel contention, and the limited connection 
time. Therefore, selective communication is necessary such 
that the most important data is communicated. 

v) Cooperation – Like many other P2P systems or mobile 
ad-hoc networks, the ultimate success of mobile P2P 
networks relies heavily on the cooperation among users. In 
infrastructure P2P systems, incentive is provided for peers to 
participate as suppliers of data, compute cycles, 

knowledge/expertise, and other resources. In mobile ad-hoc 
networks, incentive is provided for mobile hosts to 
participate as intermediaries/routers. In mobile P2P 
networks, the incentive has to be provided for participation 
as both suppliers and intermediaries (namely brokers) [7].  

 
B. Peer Node Reporting 

In modern peer networks, such as BitTorrent [8] there are 
two main methods for node reporting to/from peer nodes, 
namely report pulling and report pushing. Report pulling 
implies that when a mobile peer makes an explicit request, 
the peer network is flooded with queries and the specific 
report is retrieved from the mobile peers that contain the 
specific report data for that particular node. Report pulling is 
widely used in resource discovery, route discovery in mobile 
ad hoc networks, and file discovery by query flooding in 
wired P2P networks like Gnutella [9]. Flooding in a wireless 
network is in fact relatively efficient compared to wired 
networks because of the advantages derived using wireless 
multicast [10].    

The alternative approach for peer reporting is through 
pushing. In this method, reports are flooded, and consumed 
by peers whose query is answered by received reports. To 
date mechanisms exist to broadcast information in:  

(i) the entire peer network 
(ii) in a specific geographic area (geocast) 
(iii) to any one specific mobile node (unicast/mobile ad-

hoc routing) 
(iv) any one arbitrary node (anycast).  
Additionally, report pushing methods can be further 

divided into stateful methods and stateless methods. Most 
stateful methods are topology-based, i.e. they impose a 
structure of links in the network, and maintain states by data 
dissemination.  

One specific group of stateful methods contains cluster- 
or hierarchy-based methods [11], in which moving peers are 
grouped into some clusters or hierarchies and the cluster 
heads are randomly selected. Reports are disseminated 
through the network in a cluster or hierarchy manner, which 
means that reports are first disseminated to every cluster 
head and each cluster head then broadcasts the reports to the 
member peers in its group.  

Although cluster- or hierarchy-based methods can 
minimise the energy dissipation in moving peers, these 
methods will fail or dissipate more energy in highly mobile 
environments as they have to maintain a hierarchy structure 
and frequently need to reselect the cluster heads. Each time 
cluster heads are elected, energy is lost in the overhead 
needed in passing necessary information and in the 
computation of the clustering algorithm.   

Another stateful algorithm utilises Location-based 
methods. In this method, each moving peer knows the 
location of itself and its neighbours through some 
localisation technique, such as GPS or Atomic 
Multilateration [12].   

The simplest location-based data dissemination is Greedy 
Forwarding, in which each moving peer transmits a report to 
a neighbour that is closer to the destination than itself. 
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However, Greedy Forwarding can fail in some cases, such as 
when a report is stuck in local minima, which means that the 
report stays in a mobile peer whose neighbours are all further 
from the destination. Therefore, some recovery strategies are 
required, such as GPSR (Greedy Perimeter Stateless Routing 
[13]). Other location-based methods, such as GAF 
(Geographic Adaptive Fidelity [14]) and GEAR 
(Geographical and Energy Aware Routing [15]), take 
advantage of knowledge about both location and energy to 
disseminate information and resources more efficiently.   

In stateless methods, the most basic and simplest solution 
is through flooding techniques, such as [16]. In flooding-
based methods, mobile peers simply propagate received 
reports to all neighbouring mobile peers until the destination 
or a maximum number of hops is reached. Each report is 
propagated as soon as is received. Flooding-based methods 
have many advantages, such as no state maintenance, no 
route discovery, and easy deployment. However, they 
inherently cannot overcome several problems, such as 
implosion, overlap, and resource blindness. Therefore, other 
stateless methods are proposed, such as gossiping-based 
methods and negotiation-based methods.   

Gossiping-based methods, such as [4], improve flooding-
based methods by transmitting received reports to a 
randomly selected neighbour or to the neighbours that are 
interested in the particular content. The advantages of these 
methods include reducing the implosion and lowering the 
system overhead. However, the cost of determining the 
particular interests of each moving peer can be huge and 
transmitting reports to a randomly selected neighbour can 
still cause the implosion problem and waste peers' memory, 
bandwidth and energy. Furthermore, dissemination, and thus 
performance, is reduced compared to pure flooding.   

Negotiation-based methods solve the implosion and 
overlap problem by transmitting first the id's of reports; the 
reports themselves are transmitted only when requested [17]. 
Thus, some extra data transmission is involved, which costs 
more memory, bandwidth, and energy. In addition, in 
negotiation-based methods, moving peers have to generate 
meta-data or a signature for every report so that negotiation 
can be carried out, which will increase the system overhead 
and decrease the efficiency.   

 

C. Energy Consumption Model 
Before participating in peer node reporting, each MP2P 

client specifies the energy constraint using the algorithm: 
“from time(t) until time(H) the MP2P system is allowed to 
use fraction F of the remaining energy”. The allocated 
energy covers all the energy consumed by report 
dissemination, including the energy used for transmission, 
receiving, listening, and computation. If F is the energy 
allocation fraction, and Ω Joules of energy is left in the node, 
this constraint is translated into the following specification: 
“The algorithm may use no more than Ω⋅F Joules until time 
H”. 

The pair (Ω⋅F, H) is thus the energy budget. Therefore, 
the lifetime demand of each individual device is 
accommodated [27]. 

Now we introduce the energy consumption model. Let 
the size of a message be M bytes excluding the MAC header. 
According to [26], the energy consumed for transmitting a 
message can be described using the linear equation: 
 
                              En = f * M + g                                  (1) 
 

Intuitively, there is a fixed component associated with the 
network interface state changes and channel acquisition 
overhead, and an incremental component which is the size of 
the message. Experimental results confirm the accuracy of 
the linear model and are used to determine values for the 
linear coefficients g and f. For 802.11 broadcast systems, 
g=266×10-6 Joule, and f=5.27×10-6 Joule/byte ([27]).  

 

D. Optimal Transmission Size 
Consider a broadcast of M bytes by a mobile device x. If 

another neighbour of destination node y transmits during 
some time slot of a broadcast, then a collision will occur, 
and the whole broadcast is considered corrupt (i.e. 
unsuccessfully received) at y. If N is the number of 
neighbours that successfully receive the message from node 
x, the throughput of the broadcast sent by x, denoted Th, is 
defined as:  
 

Th = M * N   (2) 
 

Intuitively, the throughput is the total amount of data 
successfully received by the neighbours of x. If En is the 
energy consumed at the network interface of x for sending 
the broadcast message, the energy efficiency of the 
broadcast by x, denoted Peff, is defined as: 
 

  
n

h
eff E

TP =    (3) 

 
In other words, the energy efficiency is the throughput 

produced by each unit of transmission energy consumed at 
node x. To compute the value of Th, consider a mobile 
device x broadcasting a message at an arbitrary time slot. 
According to [26], the expected value of Th can be 
approximated by: 
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where: 
 λ is the number of devices per unit in area 
 r is the transmission range of each device in (m) 
 b is the data transmission speed in (bits per second) 
 p' is the probability that a device starts a broadcast 
 τ is the length of the MAC timeslot in (s) 
 h is the size of the MAC header in bytes 
 c is the time since completion of last broadcast (s) 
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and: 
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Equation (4) takes into account the effect of hidden 

terminals as well as direct collisions. By the definition of 
energy efficiency, the expected value of the energy 
efficiency is: 
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From equation (5), if τ, p', λ, h, b, r, f and g are fixed, 

then the energy efficiency Peff as a function of the broadcast 
size M is a bell shaped curve. Thus, there is a value of M 
that maximises the energy efficiency, i.e. achieves the best 
trade off between the channel utilisation and broadcast 
reliability. 

For the rest of this subsection we show that indeed, 
except for M, all the parameters of equation (5) can be 
determined by the mobile device. The parameters τ, h, r, b 
depend on the network, and are fixed for a given 
communication network technology. For example, h is equal 
to 47 in the wireless access protocol 802.11b [2]. f and g 
depend on the network interface hardware and can be 
calibrated as demonstrated by [25]. The density λ can be 
estimated based on the average number of neighbours over 
time (recall that each mobile device knows its neighbours 
via the neighbour discovery protocol), given the 
transmission range. 

The probability p' is determined as follows. Let c be the 
number of seconds since the completion of the last 
broadcast of x until the time when the current broadcast size 
is to be determined. If, on average, a mobile device starts a 
broadcast of data every c seconds, then its probability of 
starting a broadcast in each medium access time slot is τ / c. 
Therefore, the broadcast probability p' is substituted in 
equation (5) by τ / c. For instance, if c = 5 seconds and          
τ = 20μs, then  

 
          p'  = (20×10−6 )/5 = 4×10−6 
 

Using p' = τ /c, a formula is derived for the throughput in 
which the only unknown parameter is M. In some scenarios 
the actual p' may be lower than τ /c. This occurs because 
there is a delay from the time when the broadcast is 
triggered until the channel is sensed free and when the 
broadcast is actually started. In other words, the actual 
broadcast period may be larger than c. However, since the 
difference between p and p' is small, this delay is expected 
to be small as well and therefore can be neglected. Thus, the 

optimal value for M can be found, i.e. the value of M for 
which Peff is maximised. This value is denoted by Moptimal, 
and can be outlined in Figure 1. 
   

E. Proposed Solution 
One method of determining Peff of a broadcast is by 

measuring the energy efficiency, which can be defined as: 
 

T

D
E n

n
∑= )(

   (6) 

 
where D is the amount of mobile peer data that is correctly 
received and T is the unit of peer transmission energy. The 
data throughput received by a mobile peer node n can be 
expressed as a product of the neighbours that successfully 
receive the broadcast (N), and the size of the broadcast b: 

 
NbTh =     (7) 

 
Consequently the power efficiency can be expressed as 

shown in equation (3). Alternatively Peff can be expressed as 
the trade-off between the inter-broadcast interval tb and the 
broadcast size b [3], as can be seen in Figure 1.  

The main challenge to maximise Peff is to determine 
which nodes are more connectable than others, and the 
relative connection times associated with each. This requires 
the construction of a reliability algorithm which builds up a 
table of the client nodes within the peer network with the 
following criteria:  

(i) availability a in % over time window t1,  
(ii) connectivity c in ms over time window t2, and  
(iii) transfer rate r in kbps over time window t3. 
As this table is updated periodically, a list of the nodes 

whose performance indicators are most favourable over time 
t1, t2, and t3 will gradually be upgraded to super-nodes. The 
challenge is to provide an efficient scalable traffic analysis 
algorithm that is susceptible to rapid variations in the mobile 
environment. 

III. TRAFFIC SAMPLING 

A. Traffic Analysis 
Determining the metrics a, c and r over time t gives a 

reliability indication which helps build a traffic profile for 
each node. The observed traffic for each node i can be 
defined as: 

 
  Ti

obs = [ai   ci   ri]    (8) 
 
Most wireless network operators specify their network-

wide goals in terms of Origin-Destination (OD) pairs [9]. To 
achieve flow monitoring goals which are specified in terms 
of OD-pairs, the optimisation engine needs the traffic matrix 
and the routing information, both of which are readily 
available in the network [18]. The required matrix is 
obtained through the traffic sampling architecture outlined in 
Figure 2. 
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To handle the traffic dynamics the following heuristic 
approach is used in this work. Assume that the sampling 
manifests for every 5-minute interval for the Fri. 9am-10am 
period of the current week is required. To avoid over fitting, 
the hourly traffic matrix for the previous week's Fri. 9am-
10am period is employed after being divided by 12 (to obtain 
the required 5-minute interval). The resulting traffic matrix 
Told is used as input data to compute the manifests for the 
first 5-minute period. At the end of this period, the flow of 
data from each node is collected, and the traffic matrix Tobs 
from the collected flow reports is obtained. If the fractional 
coverage for ODi with the current sampling strategy is Ci and 
xi sampled flows are reported, then Ti

obs = xi/Ci. That is, the 
number of sampled flows are normalized by the total flow 
sampling rate.  

 

 
 

 
 

Given the observed traffic matrix for the current 
measurement period Tobs and the old traffic matrix obtained 
from the week before Told, a new traffic matrix can be 
computed using a conservative update policy. The resulting 
traffic matrix Tnew is then used as the input to the algorithm 
that obtains the manifests for the next 5-minute period. Thus, 
the following conservative update algorithm was designed, 
as outlined in Algorithm 1. This algorithm determines the 

differences between the new and the existing traffic reports, 
and computes a new traffic matrix entry if the difference 
between the values exceeds a specific threshold. The residual 
resources are measured and allocated to the respective nodes 
according to the resource utilisation of the peer nodes 
reporting the traffic matrix. 

  

 
 

The challenge in deploying this solution is limited by the 
ability to process this information effectively for each node, 
and to detect when the information is new or no longer valid 
[19]. A neural network algorithm can provide the necessary 
framework to process and determine the optimal nodal 
information. A neural network which uses a back-
propagation architecture promises to be effective in this 
application since training is done during each iteration by the 
traffic data that is emanating from each node in the network. 

Algorithm 1: P2P Traffic Sampling 
Algorithm 

 
1:FUNCTION  {P2P_Traffic_Matrix_Update 
(Ti

obs, Ti
old, Δ)} 

2://check  for  significant  differences 
between Tobs and Told 
3:  δi  =  |Ti

obs  −  Ti
old|/Ti

old  //  δi  = 

estimation error for ODi 
4: if δi > Δ then 
5: // compute new traffic matrix entry 
6:  Ti

new = [0] 
7: else 
8:  Ti

new =Ti
old 

9: end if 
10: if Ti

obs ≥ Ti
old then 

11:  Ti
new

 = Ti
obs 

12: end if 
13: if Ti

obs < Ti
old then 

14: // check resource utilisation for all 
routers monitoring ODi 
15:   for all xi ∈ x do 
16:       Ci = resource utilisation of xi 
17:    // result: 1=free, 0=busy 
18:  end for 
19:  if ΣC = i then 
20:   //  all  nodes  have  residual 
resources available 
21:    Ti

new
 = Ti

obs 
22:  else 
23:  //  not  enough  residual  resources 
available – revert to previous matrix 
24:    Ti

new = Ti
old 

25:  end if 
26: end if 
27: return(Ti

new) 
 

Figure 2.  Schematic layout of the traffic sampling architecture. 
The traffic matrix compiled from the flow reports acts as an input 
vector into the neural network architecture, which computes the 
optimal configuration for each node, distributed to each 
respective node. New traffic measurements are then generated, 
collected and re-parsed into the traffic matrix for re-analysis. 
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B. Back-propagation Neural Networks 
Back-propagation neural networks are created by the 

generalisation of the Widrow-Hoff learning rule to multiple-
layer networks and nonlinear differentiable transfer functions 
[17]. A set of training vectors and their corresponding target 
vectors are used to train the neural network until it is capable 
of approximating a function, associate input vectors with 
specific output vectors, or classify each input vector in an 
appropriate way as defined by the user. Any function with a 
finite number of discontinuities can be approximated by 
networks having biases, a sigmoid layer, and a linear output 
layer.  

It has been shown that back-propagation networks tend to 
give reasonably good classification results when they are 
presented with input vectors that they have never seen [20]. 
This generalisation property makes it possible to train the 
network on just a representative set of the input/target pairs 
and get reasonably good results without training the network 
on all possible input/output pairs. 

The simplest implementation of the back-propagation 
learning algorithm updates the weights of the network and its 
biases in the direction in which the performance function 
decreases most rapidly. This is represented by the negative of 
the gradient of the function. A single iteration of the 
algorithm is given by:   

 
xk+1 = xk + αkgk     (9) 

 
where xk is a vector of current weights and biases, gk is the 
current gradient, and αk is the learning rate.  

In most neural network training algorithms the learning 
rate αk is used to determine the length of the weight update, 
and is known as the step-size [23]. There are two different 
ways in which this gradient descent algorithm can be 
implemented: incremental mode and batch mode. In 
incremental mode, the gradient is computed and the weights 
are updated after each input is applied to the network. On the 
other hand, in batch mode all the input vectors are applied to 
the network before the weights are updated. Both solutions 
eventually converge and can be adopted. 

However, most gradient descent algorithms are often too 
slow for practical real-time problems [24]. The basic 
algorithm adjusts the weights in the steepest descent 
direction. It turns out that, although the function decreases 
most rapidly along the negative of the gradient, this does not 
necessarily produce the fastest convergence. In the conjugate 
gradient algorithms a search is performed along conjugate 
directions, which generally produces faster convergence than 
steepest descent directions [25]. 

Most of the conjugate gradient algorithms have the step-
size adjusted after each iteration. A search is made along the 
conjugate gradient direction to determine the best step-size 
that minimises the performance function along that line. The 
conjugate gradient algorithm used starts by searching in the 
steepest descent direction (g) on the first iteration of the 
observed traffic input vector Tobs, thus: 

 
Tobs

0 = - g0     (10) 

A line search is then performed to determine the optimal 
distance to move along the current search direction. 
Therefore, combining (9) and (10) yields: 

 
xk+1 = xk + αkTobs

k                   (11) 
 
The next search direction is determined such that it is 

conjugate to the previous search directions. The general 
procedure for determining the new search direction is to 
combine the new steepest descent direction with the previous 
search direction as: 

 
Tobs

k = -gk + βkTobs
k-1       (12) 

 
where βk is a constant.  

The various versions of the conjugate gradient algorithm 
are distinguished by the way in which βk is computed. One 
solution is to use the Fletcher-Reeves algorithm which 
updates this constant using: 

 

    βk=
gk

T g k

g k− 1
T gk−1

   (13) 

 
This is the ratio of the norm squared of the current 

gradient to the norm squared of the previous gradient [20]. 
The conjugate gradient algorithms require only a little more 
storage than the simpler gradient decent ones. Thus, these 
algorithms work well in neural networks that utilise a large 
number of weights. 

The conjugate gradient algorithms are usually much 
faster than variable learning rate back-propagation, although 
the results vary from one problem to another [24]. 
Furthermore, the computational intensity required is 
comparable to the standard algorithms, making them ideal 
for implementation in power-efficient environments such as 
MP2P clients [1]. 

A tuned neural network algorithm is essential in 
determining the optimal peer nodal information to process 
node routing and thus obtain accurate traffic reports in Tobs. 
Consequently, from equation (13), any delays in reporting 
and processing by the back-propagation algorithm may result 
in estimation errors in Tobs and consequently δi. As the back-
propagation network may incur significant delays in training, 
when subject to a large input dataset [20], additional ongoing 
efforts are underway to investigate optimisation methods, 
such as the use of Self-Organising Maps (SOMs) neural 
architecture in training. 

 

C. State-switching optimisation 
Additional optimisation to the traffic sampling algorithm 

is obtained through the efficient use of the observed traffic 
matrix Tobs to influence the state-switching of each peer node 
[19]. By periodic measurement of the neighbouring nodes, 
the band state of each mobile node can be changed for nodei 
to a more efficient state depending on the amount of residual 
resources.  
 

232

International Journal on Advances in Networks and Services, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Article part of a special issue on Peer-to-Peer Systems



 

Figure 3 outlines the allowed state transitions while 
Algorithm 2 provides a high-level description of the 
algorithm. It is important to note that state-switching 
algorithms can only be supported where the mobile client 
operating system (OS) supports active band selection 
through the use of APIs, such as provided by Symbian [21] 
and Android [22]. Otherwise, the client MP2P software may 
resort to the use of the traffic sampling algorithm only [28]. 

 

IV. TESTING 
In order to determine the energy dissipation across the 

different algorithms a mobile peer network was first 
designed and simulated using MATLAB®. The mobile peer 
network was designed using algorithms derived from the 
BitTorrent technology [8].  
 

 
 

The traffic sampling algorithm, utilising the back-
propagation neural architecture consisting of a two-layer 
network, having 11 neurons in the hidden layer and 2 

 

Figure 4: Mobile peer network simulation structure, showing node 
separation in the XY plane, and uTP inter-nodal delay (δ) in the Z 
plane. The two ultrapeer nodes are connected by a UMTS Release 
5 wireless link with HSPA, operating at 1.4MBps (nominal rate 
1.1MB/s). 

Algorithm 2: State Switching Algorithm 
 
1:FUNCTION  {Check_load(nodei,  ti

current, 
ti

old)} 
2://check  time  window  hysteresis  expiry 
texp 
3:  δi  =  |ti

current  –  ti
old|  //  δi  =  time 

elapsed from last measurement for nodei 
4: if δi > t

exp then 
5:  //check  resource  utilisation  for 
all  neighbouring  nodes  x  monitoring 
nodei 
6:   for all xi ∈ x do 
7:     Ci  =  resource  utilisation 
of xi 
8:    // result: 1=free, 0=busy 
9:  end for 
10:  if (ΣC = i) then 
11:  //all  neighbouring  nodes  have 
residual resources, reduce band 
12:     Reduce_Band(nodei) 
13:  else 
14:  if (ΣC < i and ΣC > y) then 
15:  //at  least  y  neighbouring  nodes 
have  residual  resources,  keep  existing 
band 
16:    Fi

new = Fi
old 

17:  else 
18:  //  no  residual  resources 
available, increase band 
19:    Increase_Band(nodei) 
20:  end if 
21: end if 
22: return(Fi

new) 
 
23:FUNCTION {Reduce_Band(nodei)} 
24:  //Query  node  band  state  energy 
table 
25:  Fi

old=lookup(nodei, 
phone_energy_table) 
26:  //Subtract one band energy state 
27:  Fi

new = Fi
old ‐ 1 

28: return(Fi
new) 

 
29:FUNCTION {Increase_Band(nodei)} 
30:  //Query  node  band  state  energy 
table 
31:  Fi

old=lookup(nodei, 
phone_energy_table) 
32:  //Add one band energy state 
33:  Fi

new = Fi
old + 1 

34: return(Fi
new) 

 

Figure 3. Allowed state transitions by the band switching 
algorithm, from [OFF] to [WiFi] and intermediate bands. E() 
represents an event and indicates the cause of the transition. 
Wherever y < ΣC < i, the state is transition-less.  
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neurons in the top layer, and utilising a tan-sigmoid and a 
linear transfer function for the hidden and top layer 
respectively, was implemented.  

Stochastic models of traffic sampling periods correlated 
with peer node power consumption were analysed to 
determine the optimum observation model for traffic 
sampling. High-frequency windows (1-4 min/sample) 
produce more frequently updated peer nodes, however this 
comes at a significant detriment to power consumption due 
to frequent polling. Conversely more conservative windows 
(6-15 min/sample) are more energy efficient, but they are 
impractical to intercept mobile peer clients with high 
mobility and/or cell state transitions. A 5-minute window 
was selected as the best trade-off between power-
consumption and node data validity. Thus, the traffic 
sampling algorithm was built using the 5-minute observation 
model, and the resulting traffic matrix was used as input to 
the neural network. 

The testing process consisted of a series of UDP 
connections, and high-level file transfers between two peer 
mobile nodes, with a 1km separation running on an 
emulation software [23]. These were connected across uTP, 
or the UDP-based implementation of the BitTorrent protocol 
[8], through the UMTS RNC as shown in Figure 4. The 
access network topologies were simulated using two-tiered 
wireless propagation algorithms [2]. Background packet 
traffic from the underlying UMTS network was incorporated 
to increase the network loading and investigate the proposed 
algorithm’s energy profile under various traffic scenarios.  

 

 
 

The two peer nodes were configured to transmit (and 
receive respectively) a file having a size of 1.024 GB across 
the peer network over the uTP layer, whilst all other leaf 
nodes were configured as source-sink pairs to simulate the 
aggregate traffic on the network, generated according to a 
Poisson distribution. All queuing effects were simulated on 
the ultra-peer link using the FIFO queuing algorithm [25]. 
The network link capacity was set to 1.4Mbps and the round-
trip propagation delay for the two ultra peer nodes (δ) was 
set to 1000µs-1. The simulation window was 1500 seconds 

with a sampling time of 10 samples/second. The entire tests 
were affected over a period of 7 days with hourly 
measurements during the UMTS network busy hour. After 
the observation period expired, the results were collated with 
a confidence interval of at least 95% across all tests. 

 

 
 
In order to measure the effective mobile CPU load and 

resulting current and voltage dissipation, the mobile 
components were emulated with resource load monitoring 
capabilities to gauge the effective portion of processing 
cycles devoted to peer traffic routing. The resulting profile 
was fed into the mobile emulation software to determine the 
resulting drain on current and voltage respectively [22-23]. 

Figures 5 (a) and (b) show the difference in current drain 
between the standard and traffic sampled mobile peer client 
algorithms. The resulting drain is approximately 50% of the 
nominal current used by the standard algorithm. The optimal 
traffic sampling also resulted in the file transfer completing 
in 960 seconds, well ahead of the 1505 seconds taken by the 
standard algorithm.  

 

 

Figure 5(b). Power profile for mobile peer connectivity in W, 
showing the difference in power dissipation between the standard 
mobile BitTorrent algorithm and the proposed traffic-sampled 
Mobile BitTorrent algorithm.

Figure 5(a). Current profile for mobile peer connectivity in mA, 
showing the difference in current drain between the standard 
mobile BitTorrent algorithm and the proposed traffic-sampled 
Mobile BitTorrent method. 

Figure 5(c). CPU load for the mobile peers, showing the difference 
in load between the standard mobile BitTorrent algorithm and the 
proposed traffic-sampled Mobile BitTorrent algorithm.
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Figure 5(c) illustrates the discrepancy in CPU load for 
the proposed sampled BitTorrent client compared to the 
standard algorithms. The additional CPU cycles using the 
standard algorithm are the result of iterative routing of peer 
traffic through congested peer nodes, and/or redundant peer 
information, leading to a higher net CPU load on the mobile 
client and contributing to redundant routing information in 
each peer client that is discarded due to invalid or untimely 
data. Such situations occur when the routing information 
changes during data transmission between peer nodes, and is 
symptomatic of high latency or poor peer client localisation 
[2]. In this case, there is significant processing load 
efficiency using the traffic-sampled peer protocol, which is 
due to the rapid information delivered because of the lower 
network delay.  

To further validate the performance improvements in a 
typical service deployment when compared to similar 
algorithms, a series of file transfer tests was performed 
across the network topologies. Table 1 illustrates the 
performance of the mobile simulator [22-23] for a number of 
1GB file transfers across the peer networks using the Greedy 
Perimeter Stateless Routing (GPSR), Geographic Adaptive 
Fidelity (GAF) and Geographic and Energy Aware (GEAR) 
algorithms, when compared with the proposed Traffic 
Sampling (TS) technique. The performance exhibited by the 
TS model compares favourably, particularly in the file 
transfer times and processor loads, compared with the 
alternative methods presented in [12-15]. 

Although GPSR has a smaller memory footprint, the 
average RTT is still longer than the TS method because the 
rest of the node paths are unknown and have to be 
discovered. The TS algorithm deduces the link of each next-
step based on the last measured performance of each node, 
contributing to a shorter RTT, which compares more 
favourably to other research efforts reported in [13] and [14], 
as can be seen from the results given in Table 1. This 
effectively reduces the CPU loading, thereby leading to a 
lower current and power drain on the power supply of the 
mobile peer client. 

TABLE I.  MOBILE PEER NETWORK PERFORMANCE 

 P2P Key Performance Indicators (KPIs) 
 

Test GPSR GAF GEAR TS 

1 
Memory 

Footprint (kB) 618 1125 1982 1238 

2 
File Transfer 

Time (s) 1142 1223 1890 960 

3 
Round-trip-
time (RTT) 7s 9s 6s 2s 

4 CPU Load (%) 32% 58% 89% 42% 

 
A second series of tests was performed to determine the 

relative performance of the traffic sampling mechanism as a 
distribution of the physical peer location. As the peer 
network is mobile there is a significant variance with fixed 
peer networks, resulting in issues outlined in Section II. 
Consequentially a recursive test was performed across the 

10km square test network with each peer node effecting a 
UDP burst pattern in alternate send/receive mode. 

Fig. 6 shows the error z(k) as a function of location 
across the mobile peer network. Whilst the stability of the 
traffic sampling controller is consistent throughout the 
network, slightly higher errors are exhibited in areas where 
there are fewer peer nodes. This is due to the inverse 
relationship of the controller error with the background 
traffic and is similar to the performance shown in Fig. 6. 

The Traffic Sampling mechanism displays significantly 
higher performance under loaded traffic conditions, and is 
thus suited for mobile peer networks, as these tend to 
exhibit higher instances of local congestion due to 
insufficient resources [2]. Judicious use of this algorithm 
enables the deployment of peer technologies in mobile 
networks without causing a packet traffic overload to the 
network, and therefore contributes to more efficient 
resource allocation in mobile peer networks. 

An observational note is that the CPU load on the 
mobile client, and consequently the power drain, is highly 
correlated to the size of the peer algorithm memory 
footprint. One factor is due to the additional processor run-
time loads involved in general memory management 
(pointer allocation, matrix operations, etc.) of the mobile 
operating system [21, 22]. 

V. CONCLUSIONS 
This paper has presented a solution that exploits traffic 

data and neural networks in wireless peer networks to 
optimise the power consumption profile in mobile clients. 
Results have shown that the solution also provides better 
packet allocation efficiency on the radio interface compared 
to other algorithms [12-15], for the same number of peer 
clients. The significant improvement has been obtained by 
consuming fewer mobile CPU cycles by providing and 

Figure 6: Traffic Sampling controller distribution error z(k) 
throughout the mobile peer network. Whilst the stability of the 
traffic sampling controller is consistent throughout the network, 
slightly higher errors are exhibited in areas where there are fewer 
peer nodes. This is due to the inverse relationship of the controller 
error with the background traffic. 
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allocating resources while taking into account the conditions 
of the radio environment, together with the availability of 
traffic channels at any specific time or area within the 
wireless network.  

The net result from the effective use of this method is to 
deploy the algorithm across multi-technology topologies in a 
step towards MP2P convergence. The simulation results 
have shown that the proposed method promises high power 
efficiency across network switching topologies as different 
technologies are exploited to provide various mobile services 
using these overlay networks. 

Research is currently ongoing to investigate peer node 
transmission across smaller inter-nodal differences to reduce 
power consumption, using an algorithm based on a 
derivative of the state-switching method used in this work. 
This will allow for more efficient use of the radio spectrum 
as well as the peer node burst rates with peer nodes having 
relatively close proximity. 

Additional research is also envisaged in investigating the 
performance of the neural network algorithm in high 
mobility scenarios, that is where peer users are moving at 
speeds in excess of 60ms-1, and to determine an optimal 
feedback mechanism to respond efficiently across multiple 
radio access network topologies. These methods will allow 
for the mobile power dissipation to be more efficient in a 
technology- and mobility-agnostic environment. 
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