
Implementing and Testing a Formal Framework for Constraint-Based Routing
over Scale-free Networks∗

Stefano Bistarelli
Dipartimento di Matematica e Informatica

Università di Perugia,
Via Vanvitelli 1, Perugia, Italy

bista@dipmat.unipg.it

Francesco Santini
IMT Istituto di Studi Avanzati

Piazza San Ponziano 6, Lucca, Italy
f.santini@imtlucca.it

Abstract

We propose a formal model to represent and solve the
Constraint-Based Routing problem in networks. To attain
this, we model the network adapting it to a weighted or
graph (unicast delivery) or and-or graph (multicast deliv-
ery), where the weight on a connector corresponds to the
cost of sending a packet on the network link modelled by
that connector. We use the Soft Constraint Logic Pro-
gramming (SCLP) framework as a convenient declarative
programming environment in which to solve the routing
problem. In particular, we show how the semantics of an
SCLP program computes the best route in the correspond-
ing graph. The costs on the connectors can be described
also as vectors (multidimensional costs), with each com-
ponent representing a different Quality of Service metric
value. At last, we provide an implementation of the frame-
work over scale-free networks with the ECLiPSe program-
ming environment, and we present the obtained results.

Keywords: Constraint-Based Routing, Quality of Ser-
vice, Scale-free Networks, Soft Constraint Logic Program-
ming.

1 Introduction

Towards the second half of the nineties, Internet En-
gineering Task Force (IETF) and the research community
have proposed many models and mechanisms to meet the
demand for network Quality of Service (QoS). The classical
routing problem has consequently been extended to include
and to guarantee the QoS [35]: QoS routing [35, 15] de-
notes a class of routing algorithms that base path selection

∗Partially supported by Istituto di Informatica e Telematica (IIT-CNR)
Pisa, and Dipartimento di Scienze, Università “G. d’Annunzio”, Pescara,
Italy.

decisions on a set of QoS requirements or constraints, in ad-
dition to the destination. As defined in [15], QoS is a set of
service requirements to be met by the network while trans-
porting a flow. Service requirements have to be expressed
in some measurable metric, such as bandwidth, number of
hops, delay, jitter, cost and loss probability of packets.

In this paper we propose a formal framework based on
Soft Constraint Logic Programming (SCLP) [4, 6] in which
it is possible to represent and solve QoS-Routing [9] (and
CBR in general). First, we will describe how to represent
a network configuration in a corresponding or graph (for
the unicast delivery scheme) or and-or graph (for multi-
cast), mapping network nodes to graph nodes and links to
graph connectors. In the following, we will generally use
the term and-or graph, or simply graph. QoS link costs
will be translated into multidimensional costs for the asso-
ciated connectors. Afterwards, we will propose the SCLP
framework [4, 6] as a convenient declarative programming
environment in which to specify and solve such problem.
SCLP programs are an extension of usual Constraint Logic
Programming (CLP) programs where logic programming
is used in conjunction with soft constraints, that is, con-
straints which can be satisfied at a certain level. In partic-
ular, we will show how to represent an and-or graph as an
SCLP program, and how the semantics of such a program
computes the best route the corresponding weighted and-or
graph (with route we will consider both multicast tree and
unicast paths). SCLP is based on the general structure of
c-semiring (or simply semiring), having the two operations
× and +: the × is used to combine the costs, while the par-
tial order defined by + operation (see Section 3), is used to
compare the costs. Notice that the cartesian product of two
semirings is a semiring [7], and this can be fruitfully used to
describe multi-criteria problems. In Section 6, we will sug-
gest an implementation of the proposed framework to re-
ally test the performance on scale-free networks generated
ad-hoc. In scale-free networks some nodes act as “highly

13

International Journal On Advances in Networks and Services, vol 2 no 1, year 2009, http://www.iariajournals.org/networks_and_services/

connected hubs” (i.e., high degree), although most nodes
are of low degree. Moreover, these networks maintain their
clustered structure during their growth. Scale-free networks
represent the state-of-the-art topology (since replaced ran-
dom networks) and can help reducing the complexity of our
framework. This paper extends the work presented in [1]
with a new implementation and new test results (see Sec-
tion 6.2).

1.1 Structure of the Paper

A more theoretical version of this work is represented by
[10]. The paper is organized as follows: in Section 2 we
present some general background information about rout-
ing and scale-free networks. Section 3 features the SCLP
framework, while Section 4 depicts how to represent a net-
work environment with an and-or graph. In Section 5
we describe the way to pass from and-or graphs to SCLP
programs, showing that the semantic of SCLP program is
able to compute the best route in the corresponding and-or
graph. Then, in Section 6, which represents the new con-
tent w.r.t. [1], we propose a practical implementation of the
framework with a description on how to improve the perfor-
mance. Lastly, Section 7 present the related work and and
Section 8 draws the final conclusions.

2 Constraint-Based Routing and Scale-free
Networks

Constraint-Based Routing. Constraint-Based Rout-
ing [35] (CBR) refers to a class of routing algorithms
that base path selection decisions on a set of requirements
or constraints, in addition to destination criteria. These
constraints may be imposed by QoS needs (i.e., QoS-
Routing) or administrative policies (i.e., Policy-Routing).
The aim of CBR is to reduce the manual configuration
and intervention required for attaining traffic engineering
objectives [30]; for this reason, CBR enhances the classical
routing paradigm with special properties, such as being
resource reservation-aware and demand-driven.

Policy-Routing selects paths that conform to administra-
tive rules and Service Level Agreements (SLAs) stipulated
among service providers and clients. For example, rout-
ing decisions can be based on the applications or protocols
used, size of packets or identity of the communicating en-
tities. Policy constraints can help improving the global se-
curity of the network and also help the resource allocation
problem that includes business decisions. QoS routing in-
stead attempts to simultaneously satisfy multiple QoS re-
quirements requested by real-time applications: e.g., video
conference, distributed simulation, stock quotes or multi-
media entertainment.

Multiple metrics can certainly represent the requests
more accurately than using a single measure. However, it
is well known that the problem of finding a route subject
to multiple constraints is inherently hard [35]. When some
metrics take real or unbounded integer values [12], satisfy-
ing two boolean constraints (saying whether or not a route
is feasible), or a boolean constraint and a quantitative con-
straint (i.e., optimizing a metric) is NP-complete [34, 35,
12]. For example the set of constraints C = (delay ≤
40msec,min(Cost)) is intractable. For this reason, most of
the implemented algorithms in this area apply heuristics to
reduce the complexity. The unicast problem can be recon-
ducted to the generic Multi-Constrained Optimal Path prob-
lem [12], while the multicast case refers to the Constrained
Steiner Tree [35]; both these problems are NP-complete in
their nature.

Regarding unicast QoS Routing, in [21] the authors pro-
pose another heuristic approach for the multi-constrained
optimal path problem (defined a H MCOP), which opti-
mizes a non-linear function (for feasibility) and a primary
function (for optimality). The approach proposed in [23]
exploits the dependencies among resources, e.g., available
bandwidth, delay, and buffer space, to simplify the prob-
lem; then, a modified version Bellman-Ford algorithm can
be used. Multicast QoS routing is generally more complex
than unicast QoS routing, and for this reason less propos-
als have been elaborated in this area [35]: in MOSPF [26]
the authors extend the classical (unicast) OSPF algorithm in
order to optimize the delay, while the Delay Variation Mul-
ticast Algorithm (DVMA) [31] computes a multicast tree
with both bounded delay and bounded jitter. Also, delay-
bounded and cost-optimized multicast routing can be for-
mulated as a Steiner tree: an example approach is QoS-
aware Multicast Routing Protocol [13] (QMRP).

Scale-free Networks. In Section 6.2 we present some
results obtained by testing our framework with generated
scale-free networks, since several works as [19, 33] show
that Internet topology can be modeled with such model.
Small-world networks may belong to three classes: single-
scale, broad-scale, or scale-free depending on their connec-
tivity distribution P (k), which is the probability that a ran-
domly selected node has exactly k edges. Scale-free net-
works follow a power law of the generic form P (k) v
k−γ [19]: in words, in these networks some nodes act as
“highly connected hubs” (with a high degree), although
most nodes are of low degree. Intuitively, the nodes that al-
ready have many links are more likely to acquire even more
links when new nodes join in the graph: this is the so-called
“rich gets richer” phenomenon. These hubs are the respon-
sible for the small world phenomenon. The consequences
of this behavior are that, compared to a random graph with
the same size and the same average degree, the average path

2

14

International Journal On Advances in Networks and Services, vol 2 no 1, year 2009, http://www.iariajournals.org/networks_and_services/

Figure 1. a) a network with a clustering coef-
ficient of 0.1, and b) with a clustering coeffi-
cient of 0.62.

length of the scale-free model is somewhat smaller, and the
clustering coefficient of the network is higher, suggesting
that the graph is partitioned in sub-communities. As an ex-
ample, see in Figure 1 the difference between a scale-free
network with a very high clustering coefficient (i.e., Fig-
ure 1b) and a network with a lower one (Figure 1a). Black
nodes show the big hubs in both networks, and it is graph-
ically visible how Figure 1b is more partitioned in sub-
communities.

Several works as [19, 33] show that Internet topology can
be modeled with scale-free graphs: in [33], the authors dis-
tinguish between the Autonomous System (AS) level, where
each AS refers to one single administrative domain of the
Internet, and the Internet Router level (IR). At the IR level,
we have graphs with nodes representing the routers and
links representing the physical connections among them; at
the AS level graphs each node represents an AS and each
link represents a peer connection trough the use of the Bor-
der Gateway Protocol (BGP) protocol. Each AS groups
a generally large number of routers, and therefore the AS
maps are in some sense a coarse-grained view of the IR
maps. The scale-free property of both these kinds of graphs
is confirmed in [33] with a γ = 2.1± 0.1, even if IR graphs
have a power-law behavior smoothed by an exponential cut-
off: for large k the connectivity distribution follows a faster
decay, i.e., we have much less nodes with a high degree.
This truncation is probably due to the limited number of
physical router interfaces. In [14] the authors prove that
scale free networks with 2 < γ < 3 have a very small di-
ameter, i.e., ln ln N , where N is the number of nodes in the
graph.

3 Soft Constraint Logic Programming

The SCLP framework [4, 6], is based on the notion of
c-semiring introduced in [7]. A c-semiring S is a tuple
〈A, +,×,0,1〉 where A is a set with two special elements
(0,1 ∈ A) and with two operations + and× that satisfy cer-

Table 1. A simple SCLP program.
s(X) :- p(X,Y). q(a) :- t(a).
p(a,b) :- q(a). t(a) :- 2.
p(a,c) :- r(a). r(a) :- 3.

tain properties: + is defined over (possibly infinite) sets of
elements of A and thus is commutative, associative, idem-
potent, it is closed and 0 is its unit element and 1 is its
absorbing element; × is closed, associative, commutative,
distributes over +, 1 is its unit element, and 0 is its ab-
sorbing element (for the exhaustive definition, please refer
to [7]). The + operation defines a partial order ≤S over A
such that a ≤S b iff a + b = b; we say that a ≤S b if b
represents a value better than a. Other properties related to
the two operations are that + and× are monotone on≤S , 0
is its minimum and 1 its maximum, 〈A,≤S〉 is a complete
lattice and + is its lub. Finally, if × is idempotent, then +
distributes over×, 〈A,≤S〉 is a complete distributive lattice
and × its glb.

Semiring-based constraint satisfaction problems (SC-
SPs) are constraint problems where each variable instanti-
ation is associated to an element of a c-semiring A (to be
interpreted as a cost, level of preference or, in this case, as a
trust/reputation level), and constraints are combined via the
× operation and compared via the≤S ordering. Varying the
set A and the meaning of the + and × operations, we can
represent many different kinds of problems, having features
like fuzziness, probability, and optimization. In Section 4,
the set A is used to collect the values of a QoS metric, the×
operator to combine them into a result for a complete end-
to-end route, and + to find the best route w.r.t. the chosen
QoS metric.

A simple example of a SCLP program over the semiring
〈N, min,+, +∞, 0〉, where N is the set of non-negative in-
tegers and D = {a, b, c}, is represented in Table 1. The in-
tuitive meaning of a semiring value like 3 associated to the
atom r(a) (in Table 1) is that r(a) costs 3 units. Thus the
set N contains all possible costs, and the choice of the two
operations min and + implies that we intend to minimize
the sum of the costs. This gives us the possibility to select
the atom instantiation which gives the minimum cost over-
all. Given a goal like s(x) to this program, the operational
semantics collects both a substitution for x (in this case,
x = a) and also a semiring value (in this case, 2) which
represents the minimum cost among the costs for all deriva-
tions for s(x). To find one of these solutions, it starts from
the goal and uses the clauses as usual in logic programming,
except that at each step two items are accumulated and com-
bined with the current state: a substitution and a semiring
value (both provided by the used clause). The combination
of these two items with what is contained in the current goal

3

15

International Journal On Advances in Networks and Services, vol 2 no 1, year 2009, http://www.iariajournals.org/networks_and_services/

is done via the usual combination of substitutions (for the
substitution part) and via the multiplicative operation of the
semiring (for the semiring value part), which in this exam-
ple is the arithmetic +. Thus, in the example of goal s(X),
we get two possible solutions, both with substitution X = a
but with two different semiring values: 2 and 3. Then, the
combination of such two solutions via the min operation
give us the semiring value 2.

4 Using and-or Graphs to Represent Net-
works with QoS Requirements

An and-or graph [25] is defined essentially as a hyper-
graph. Namely, instead of arcs connecting pairs of nodes
there are hyperarcs connecting an n-tuple of nodes (n =
1, 2, 3, . . .). The arcs are called connectors and they must
be considered as directed from their first node to all others.
Formally an and-or graph is a pair G = (N, C), where
N is a set of nodes and C is a set of connectors C ⊆
N ×⋃k

i=0 N i. Note that the definition allows 0-connectors,
i.e., connectors with one input and no output node. In the
following of the explanation we will also use the concept of
and tree [25]: given an and-or graph G, an and tree H is
a solution tree of G with start node nr, if there is a func-
tion g mapping nodes of H into nodes of G such that: i)
the root of H is mapped in nr, and ii) if (ni0 , ni1 , . . . , nik

)
is a connector of H , then (g(ni0), g(ni1), . . . , g(nik

)) is a
connector of G.

Informally, a solution tree of an and-or graph is anal-
ogous to a path of an ordinary graph: it can be obtained
by selecting exactly one outgoing connector for each node,
and we use the resulting tree to model the multicast delivery.
The unicast case is even simpler: we use an or graph (i.e., a
classical graph) to represent the network and selecting one
connector for each node clearly results in a path (not a tree).

In Figure 2 we directly represent a very simple network
as a weighted and-or graph. Each of the nodes can be eas-
ily cast in a corresponding node of the and-or graph. In
Figure 2, different icons feature the different role of the
node in the network: the source of packets n0, the routers
n1, n2 and n3, a subnetwork n5 or plain receiver host n4).
To model the networks links between two nodes we use 1-
connectors: (n0, n1), (n1, n2), (n1, n3), (n2, n4), (n3, n4)
and (n3, n5). We remind that the connectors are directed,
and thus, for example the connector (n0, n1) means that n0

can send packets to n1. Moreover, since we are possibly
interested in a multicast communication, we need to repre-
sent the event of sending the same packet to multiple des-
tinations at the same time. To attain this, in Figure 2 we
can see the two 2-connectors (n1, n2, n3) and (n3, n4, n5):
we draw these n-connectors (with n > 1) as curved ori-
ented arcs where the set of their output nodes corresponds
to the destination nodes of the 1-connectors traversed by the

Subnetwork

<10,1>

<6,1>

<7,2>

<8,1>

< ,0>

<4,3>

<7,1>

n

n

n
n

0

2

3

4

5
n

n1

<4,3>

<6,1>

<6,1>

8

Figure 2. A network in and-or graph represen-
tation.

curved arc. Considering the ordering of the nodes in the tu-
ple describing the connector, the input node is at the first
position and the output nodes (when more than one) follow
the orientation of the related arc in the graph (in Figure 2
this orientation is lexicographic). Notice that in the exam-
ple we decided to use connectors with dimension at most
equal to 2 (i.e., 2-connectors) for sake of simplicity. How-
ever it is possible to represent whatever cardinality (e.g., n)
of multicast destination nodes (i.e., with a n-connector). 0-
connectors are represented as a line ending with a square in
Figure 2 and are added only for receiver nodes.

In the example we propose here, we are interested in QoS
link-state information concerning only the bandwidth and a
generic money cost (e.g., to supply the service or to main-
tain a device). Bandwidth and cost can be seen as either
QoS or policy constraints. Therefore, each link cost of the
network can be labeled with a 2-dimensional cost for the
related connector. For example, the pair 〈8, 1〉 for the con-
nector (n0, n1) tells us that the maximum bandwidth on that
represented link is 80Mbps and a cost of 10e. In general,
we could have a cost expressed with a v-dimensional vec-
tor, where v is the number of metrics to be taken in ac-
count while computing the best distribution tree. In the
case when a connector represent a multicast delivery (i.e.,
a n-connector with n > 1), its cost is decided by assem-
bling the costs of all the n links with the composition op-
eration ◦, which takes as many v-dimensional cost vectors
as operands, as the n number of links represented by the
connector. For this example, the result of ◦ is the minimum
bandwidth and the highest cost, ergo, the worst QoS metric
values among the considered links:

◦(〈b1, c1〉, 〈b2, c2〉, . . . , 〈bn, cn〉) −→

〈min(b1, b2, . . . , bn), max(c1, c2, . . . , cn)〉
For example, the cost of the connector (n1, n2, n3)
in Figure 2 is 〈4, 3〉, since the costs of connectors
(n1, n2) and (n1, n3) are respectively 〈4, 3〉 and 〈7, 2〉:
◦(〈4, 3〉, 〈7, 2〉) = 〈4, 3〉. All the costs of the connectors
are reported in Table 2.

4

16

International Journal On Advances in Networks and Services, vol 2 no 1, year 2009, http://www.iariajournals.org/networks_and_services/

Then, we need some algebraic framework to model
our preferences for the links in order to find the
best route; to attain this, we use the semiring struc-
ture as described in Section 3. Since we are in-
terested in maximizing the bandwidth of the distribu-
tion tree, we can use the c-semiring SBandwidth =
〈R+, max, min, 0, +∞〉 (otherwise, we could be interested
in finding the route with the minimal feasible bandwidth
with 〈R+, min, min, +∞, 0〉, for traffic engineering rea-
sons). We can use SCost = 〈R+, min,+, +∞, 0〉 as
the semiring to represent the cost, if we need to min-
imize it (here, + is the arithmetic operator). Since
the composition of c-semirings is still a c-semiring [7],
SNetwork = 〈〈R+,R+〉, +′,×′, 〈0,+∞〉, 〈+∞, 0〉〉 is the
adopted semiring, where +′ and ×′ correspond to the
vectorization of the + and × operations in the two c-
semirings: 〈b1, c1〉+′ 〈b2, c2〉 = 〈max(b1, b2), min(c1, c2)〉
and 〈b1, c1〉 ×′ 〈b2, c2〉 = 〈min(b1, b2), c1 + c2〉.

Clearly, the problem of finding best route is multi-
criteria, since both bandwidth and delay must be optimized.
We consider the criteria as independent among them, other-
wise they can be rephrased to a single criteria [34]. Thus,
the multidimensional costs of the connectors are not ele-
ments of a totally ordered set, and it may be possible to
obtain several routes for the same destination (or destina-
tions, if looking for a multicast distribution), all of which
are not dominated by others, but which have different in-
comparable costs. The set of constraints for our problem
is C = (max(Bandwidth),min(Cost)), which are both
quantitative constraints: the semiring structure is suitable
for metric optimization (i.e., to represent quantitative con-
straints), but in Section 5 we will apply also boolean con-
straints, e.g., only paths with Cost < 22e.

For each possible receiver node, the cost of its outgoing
0-connector will be always included in every route reaching
it. As a remind, a 0-connector has only one input node but
no destination nodes. If we consider a receiver as a plain
node (e.g., n4 in Figure 2), we can set this cost as the 1
element of the adopted c-semiring (1 is the unit element
for ×), since the cost to reach the node is already com-
pletely described by the other connectors in the route: prac-
tically, we associate the highest possible QoS values to this
0-connector, in this case infinite bandwidth and null cost.
Otherwise we can imagine a receiver as a more complex
subnetwork (as n5 in Figure 2), and thus we can set the cost
of the 0-connector as the cost needed to finally reach a node
in that subnetwork (as the cost 〈6, 1〉 for the 0-connector
after node n5 in Figure 2), in case we do not want, or can-
not, show the topology of the subnetwork, e.g., for security
reasons.

Table 2. The CIAO program representing all
the routes over the weighted and-or graph
problem in Figure 2.

E
d

g
e
s

2)

3)

4)5)

L
e
a
v
e
s

:- module(network,_,_).
:- use_module(library(lists)).

min([X, Y], X) :- X < Y.
min([X, Y], Y) :- X >= Y.
max([X, Y], X) :- X > Y.
max([X, Y], Y) :- X =< Y.

times([B1, C1], [B2, C2], [B, C]) :-
 min([B1, B2], B),
 C is (C1 + C2).

leaf([n4], [1000, 0]).
leaf([n5], [6, 1]).

edge(n0, [n1], [8, 1]).
edge(n1, [n2], [4, 3]).
edge(n1, [n3], [7, 2]).
edge(n2, [n4], [10, 1]).
edge(n3, [n4], [6, 1]).
edge(n3, [n5], [7, 1]).

connector(X, [Y], L, [B,C]):-
 nocontainsx(L, Y),
 edge(X, Y, [B,C]).

connector(X, [Y|Ys], L, [B,C]):-
 edge(X, Y, [B1,C2]),
 nocontainsx(L,Y),
 insert_last(L, Y, Z),
 connector(X, Ys, Z, [B2,C2]),
 min([B1,B2], B]),
 max([C1,C2], C).

1)

routeList([X|Xs], Z, [B, C]):-
 route(X, Z1, [B1, C1]),
 append(Z1, Z2, Z),
 routeList(Xs, Z2, [B2, C2]),
 times([B1, C1], [B2, C2], [B, C]).

routeList([], [], [100, 0]).

route(X, [X], [B, C]):-
 leaf([X], [B, C]).

route(X, Z, [B, C]):-
 connector(X, W, [], [B1, C1]),
 routeList(W, Z, [B2, C2]),
 times([B1, C1], [B2, C2], [B, C]).

5 And-or graphs using SCLP

In this Section, we represent the and-or graph in Fig-
ure 2 with a program in SCLP. programming environment
and the semiring structure is a very parametric tool where to
represent several and different cost models, with respect to
QoS metrics. Using this framework, we can easily solve the
Constraint-Based Routing problem by querying for either
multicast trees or unicast paths.

To represent the network edges (i.e., 1-connectors), in
SCLP we can write clauses like edge(n1, n2) : −〈4, 3〉,
stating that the graph has a connector from n1 to nodes
n2 and n3 with a bandwidth cost of 40Mbps and a money
cost of 30e. Other SCLP clauses can properly describe the
structure of the route we desire to search over the graph.

We chose to represent an and-or graph with a program
in CIAO Prolog [11], a system that offers a complete Pro-
log system supporting ISO-Prolog and several extensions.
CIAO Prolog has also a fuzzy extension, but since it does
not completely conform to the semantic of SCLP defined
in [6] (due to interpolation in the interval of the fuzzy set),
we decided to use the CIAO operators among constraints
(as < and≤), and to model the× operator of the c-semiring
with them. For this reason, we added the cost of the connec-
tor in the head of the clauses, differently from SCLP clauses
which have the cost in the body of the clause.

From the weighted and-or graph problem in Figure 2 we
can build the corresponding CIAO program of Table 2 as
follows. The set of network edges (or 1-connectors) is high-

5

17

International Journal On Advances in Networks and Services, vol 2 no 1, year 2009, http://www.iariajournals.org/networks_and_services/

lighted as Edges in Table 2. Each fact has the structure

edge(source node, [dest nodes], [bandwidth, cost])

e.g., the fact edge(n1, [n2], [4, 3]) represents the 1-
connector of the graph (n1, n2) with bandwidth equal to
40Mbps and cost 30e. The Rules 1 in Table 2 are used to
compose the edges (i.e., the 1-connectors) together in or-
der to find all the possible n-connectors with n ≥ 1, by
aggregating the costs of 1-connectors with the ◦ composi-
tion operator, as described in Section 4 (the lowest of the
bandwidths and the greatest of the costs of the composed
1-connectors). Therefore, with these clauses (in Rules 1)
we can automatically generate the set of all the connec-
tors outgoing from the considered node (in Table 2, no-
contains and insert last are CIAO predicates used to build
a well-formed connector). The Leaves in Table 2 repre-
sent the 0-connectors (a value of 1000 represents ∞ for
bandwidth). The time rule in Table 2 mimics the × oper-
ation of the semiring proposed in Section 4: SNetwork =
〈〈R+,R+〉, +′,×′, 〈0,+∞〉, 〈+∞, 0〉〉, where +′ is equal
to 〈max, min〉 and ×′ is equal to 〈min, +〉, as defined in
Section 4. At last, the rules 2-3-4-5 of Table 2 describe the
structure of the routes we want to find over the graph. Rule
2 represents a route made of only one leaf node, Rule 3 out-
lines a route made of a connector plus a list of sub-routes
with root nodes in the list of the destination nodes of the
connector, Rule 4 is the termination for Rule 5, and Rule 4
is needed to manage the junction of the disjoint sub-routes
with roots in the list [X|Xs]; clearly, when the list [X|Xs]
of destination nodes contains more than one node, it means
we are looking for a multicast route. When we compose
connectors or trees (Rule 2 and Rule 5), we use the times
rule to compose their costs together. In Rule 5, append is a
CIAO predicate used to join together the lists of destination
nodes, when the query asks for a multicast route.

To solve the CBR problem it is enough to perform a
query in the Prolog language: for example, if we want to
compute the cost of all the multicast trees rooted at n0

and having as leaves the nodes representing the receivers
(in this case, n4 and n5), we have to perform the query
route(n0, [n4, n5], [B, C]), where B and C variables will
be instantiated with the bandwidth and cost of the found
trees. For this query, the best output (in terms of the adopted
QoS metrics) of the CIAO program corresponds to the cost
of the tree in Figure 3a, i.e., 〈6, 5〉, since ×′ computes the
minimum bandwidth - cost sum of the connectors.

The best unicast path between n0 and n4 can instead be
found with the query route(n0, [n4], [B,C]), and it is rep-
resented in Figure 3b; its cost is 〈6, 4〉. Notice that the best
path or tree is directly computed by the SCLP engine as
described in the example in Section 3: given a query, the
operational semantics collects a semiring value which rep-
resents the best cost (w.r.t. the + operator) among the costs

Path cost = <6,4>

<7,2><8,1> < ,0>

n n n
0

3 4n1

<6,1> 8

(times = <min,+>)

Subnetwork

Tree cost = <6,5>

<7,2><8,1>

< ,0>

n n

n

0
3

4

5
n

n1

<6,1>

<6,1>

8

(times = <min,+>)

a)

b)

Figure 3. a) The best multicast tree among n0

and n4-n5, and b) the best unicast path be-
tween n0 and n4.

of all the derivations satisfying the query. In Table 2, the
SCLP engine is prototyped with a CIAO Prolog program.

As anticipated in Section 4, semiring structures are the
ideal to represent quantitative constraints since the + op-
eration of the semiring defines a partial order over A (see
Section 3), i.e., over the set of QoS metric values. This oper-
ation can be consequently used to optimize the route. How-
ever, also boolean constraints, e.g., a route is accepted only
if its cost is below a given threshold (e.g., Cost < 30e),
can be modeled in our framework. For example, with the
query route(n0, [n4], [B, C]), C < 3 no path is returned
since the best possible path in Figure 3 has a money cost
equal to 4. The C < 3 requirement can be directly embed-
ded in the times rule of the CIAO program Table 2, in order
to also optimize the search by stopping it as soon as C < 3
is no longer true.

Other constraints that could be easily represented in our
framework are those based on modalities [8], where each
link has an associated information about the modality to be
used to traverse it. For example, a list of protocols, ports
or applications admitted on that link (e.g., RSVP, port 80,
VPN), or reserved time slots. shortest-paths have been stud-
ied in [8].

6 Implementing the Framework

To develop and test a practical implementation of our
model, we adopt the Java Universal Network/Graph Frame-
work (JUNG) [28], a software library for the modeling,
analysis, and visualization of a graph or network. With this
library it is also possible to generate scale-free networks ac-
cording to the preferential attachment proposed in [3]: each
time a new vertex vn is added to the network G, the proba-

6

18

International Journal On Advances in Networks and Services, vol 2 no 1, year 2009, http://www.iariajournals.org/networks_and_services/

bility p of creating an edge between an existing vertex v and
vn is p = (degree(v) + 1)/(|E|+ |V |), where |E| and |V |
are respectively the current number of edges and vertices
in G. Therefore, vertices with higher degree have a higher
probability of being selected for attachment. We generated
the scale-free network in Figure 4 (the edges are undirected)
and then we automatically produced the corresponding pro-
gram in CIAO (where the edges are directed), as shown in
Section 5. This translation can be easily achieved by writ-
ing a text file (from the same Java program generating the
network) with all the clauses representing the edges. The
clauses that find the best paths/trees are instead always the
same ones.

The statistics in Figure 4 suggest the scale-free nature of
our network: a quite high clustering coefficient, a low av-
erage shortest path and a high variability of vertex degrees
(between average and max). These features are evidences
of the presence of few big hubs that can be used to shortly
reach the destinations. To generate the network in Figure 4,
we used the JUNG constructor public BarabasiAlbertGen-
erator(int init vertices, int numEdgesToAttach, boolean di-
rected, boolean parallel, int seed) with parameters respec-
tively instantiated to 100, 3, false, false, 1: init vertices
represents the number of unconnected “seed” vertices that
the graph should start with, numEdgesToAttach is the num-
ber of edges that should be attached from the new ver-
tex to pre-existing vertices at each time step; the follow-
ing two instantiated parameters state that we want directed
and not parallel edges in the graph, while the last parameter
is a random number seed. Then, the public void evolve-
Graph(int numTimeSteps) Java method instructs the algo-
rithm to evolve the graph numTimeSteps time steps (instan-
tiated to 200) and returns the most current evolved state of
the graph.

However, with the CIAO program representing the net-
work in Figure 4, all the queries we tried to perform over
that graph were explicitly stopped after 5 minutes without
discovering the best QoS route solution. Therefore, a prac-
tical implementation definitely needs a strong performance
improvement: in Section 6.1 and Section 6.2 we show some
possible solutions that could all be used also together. In
Section 6.1 we suggest that tabling techniques could help
for such problem. In Section 6.2 we show an implementa-
tion of the exactly same program in ECLiPSe [2]: in addi-
tion, we use branch-and-bound to prune the search and we
claim that only this technique is sufficient to experience a
feasible response time for the queries.

Nodes Edges Clustering Avg. SP
265 600 0.13 3.74

Min Deg Max Deg. Avg. Deg Diameter
1 20 4.52 8

Figure 4. The test scale-free network and the
related statistics.

6.1 Tabled Soft Constraint Logic Pro-
gramming and Network Decomposi-
tion

In logic programming, the basic idea behind tabling (or
memoing) is that the calls to tabled predicates are stored in
a searchable structure together with their proven instances:
subsequent identical calls can use the stored answers with-
out repeating the computation.

Tabling improves the computability power of Prolog sys-
tems and for this reason many programming frameworks
have been extended in this direction. Due to the power
of this extension, many efforts have been made to in-
clude it also in CLP, thus leading to the Tabled Constraint
Logic Programming (TCLP) framework. In [16] the authors
present a TCLP framework for constraint solvers written us-
ing attributed variables; however, when programming with
attributed variables, the user have to take care of of many
implementation issues such as constraint store representa-
tion and scheduling strategies. A more recent work [32]
explains how to port Constraint Handling Rules (CHR) to
XSB (acronym of eXtended Stony Brook), and in particu-
lar its focus is on technical issues related to the integra-
tion of CHR with tabled resolution: as a result, a CHR li-
brary is presently combined with tabling techniques within
the XSB system. CHR is a high-level natural formalism
to specify constraint solvers and propagation algorithms.
This represents a promising framework where to solve QoS

7

19

International Journal On Advances in Networks and Services, vol 2 no 1, year 2009, http://www.iariajournals.org/networks_and_services/

routing problems and improve the performance (for exam-
ple, tabling efficiency is shown in [29]), since soft con-
straints have already been successfully ported to the CHR
system [5]. Hence, part of the soft constraint solving can be
performed once and reused many times.

6.2 An branch-and-bound implementa-
tion in ECLiPSe

As shown in Section 4, the representation of the outgoing
edges of node in the multicast model can be composed by a
total of O(2n) connectors, thus in the worst case it is expo-
nential in the number of graph nodes. This drawback, which
is vigorously perceived in strongly connected networks, and
together with considering a real case network linking hun-
dreds of nodes, would heavily impact on the time-response
performance during a practical application of our model.
Therefore, it is necessary to elaborate some improvements
to reduce the complexity of the tree search, for example
by visiting as few branches of the SCLP tree as possible
(thus, restricting the solution space to be explored). For this
reason, we provide a further implementation by using the
ECLiPSe [2] system.

ECLiPSe is a software system for the development and
deployment of constraint programming applications, e.g.,
in the areas of planning, scheduling, resource allocation,
timetabling, transport and more. It contains several con-
straint solver libraries, a high-level modelling and con-
trol language, interfaces to third-party solvers, an inte-
grated development environment and interfaces for embed-
ding into host environments [2]. In particular, we exploit
the branch and bound library in order to reduce the space
of explored solutions and consequently improve the perfor-
mance. Branch-and-bound is a well-known technique for
optimization problems, which is used to immediately cut
away not promising partial solutions, by basing on a “cost”
function. Unfortunately, as far as we know, ECLiPSe does
not support tabling techniques (introduced in Section 6.1)
and therefore it cannot be adopted to compose the benefits
of both techniques.

In Figure 5 we show a program in ECLiPSe that rep-
resents the unicast QoS routing problem for the scale-free
network in Figure 4. We decided to show only the unicast
case for sakes of clarity, but feasible time responses can be
similarly obtained for the multicast case (i.e., searching for
a tree instead of a plain path) by working on the branch-and-
bound interval of explored costs, as we will better explain
in the following. Clearly, in Figure 5 we report only some
of the 600 edges of the network.

The code in Figure 5 has been automatically gener-
ated with a Java program using JUNG, as done for the
CIAO program in Section 6: the corresponding text file is
30Kbyte. The size can be halved by not printing the reverse

:- lib(ic).
:- lib(branch_and_bound).
:- lib(lists).

edge(n0,[n192], [9, 2]).
edge(n1,[n119], [4, 2]).
edge(n2,[n183], [5, 9]).
edge(n2,[n23], [7,7]).
edge(n2,[n260], [2, 1]).
edge(n2,[n115], [6, 9]).
edge(n2,[n156], [9, 4]).
edge(n2,[n4], [6, 5]).
 .
 .
 .
edge(n263,[n167], [2, 4]).
edge(n263,[n191], [6, 9]).
edge(n263,[n70], [5, 2]).
edge(n263,[n108], [6, 4]).
edge(n263,[n26], [5, 9]).
edge(n263,[n46], [8, 5]).
edge(n263,[n171], [6, 7]).
edge(n263,[n35], [6, 3]).
edge(n264,[n102], [6, 4]).
edge(n264,[n189], [3, 1]).
edge(n264,[n68], [8, 6]).
edge(n264,[n119], [5, 9]).
edge(n264,[n156], [5, 1]).

path(X, [Y], C, D, L, [Y]):-
 edge(X, [Y], [A, B]),
 C #= A + B,
 nonmember(Y, L),
 D is 1.

path(X, [Y], C, D, L, N):-
 C1 #>= 0, C2 #>=0,
 C1 #= A + B,
 C #= C1 + C2,
 D #= 1 + D2,
 edge(X, [Z], [A, B]),
 nonmember(Z, L),
 append(L, [Z], L2),
 path(Z, [Y], C2, D2, L2, N2),
 append(N2, [Z], N).

searchpath_bb(X, Y, C, D, L, N):-
 D #>= 1, D #=< 16,
 C #>= 0, C #=< 160,
 minimize(path(X, [Y], C, D, L, N2), C),
 append(N2, [X], N).

searchpath_all(X, Y, C, D , K, L, N):-
 findall(C, path(X, [Y], C, D, K, N2), L),
 append(N2, [X], N).

Figure 5. The representation in ECLiPSe (with
branch-and-bound optimization) of the QoS
routing problem for the network in Figure 4;
clearly, only some of the 600 edges are
shown.

links and generating them with a specific clause, if each link
and its reverse one have the same cost.

The branch-and-bound optimization is achieved
with minimize(+Goal, ?Cost) (importing the
branch and bound library) in the searchpath bb clause
in Figure 5, where the Goal is a nondeterministic search
routine (the clauses that describe the path structure) that
instantiates a Cost variable (i.e., the QoS cost of the path)
when a solution is found. Notice that for each of the
edges of the network we randomly generated two different
QoS costs by using the java.util.Random Class, each of
them in the interval [1..10]. Therefore, the cost of a link
is represented by a pair of values: the cost of the path is
computed by summing the two QoS features together (i.e.,
A and B in Figure 5): we compute w1A + w2B and we
suppose w1 = w2 = 1, i.e., the composed cost of a link
is in the interval [2..20]. The reason we compose the two
costs together is that ECLiPSe natively allows to apply a
branch-and-bound procedure focused only on a single cost
variable (it can be extended to consider more costs).

The two clauses searchpath bb and searchpath all
represent the queries that can be asked to the system: they
respectively use and not use the branch-and-bound opti-
mization, i.e., searchpath all finds all the possible paths in
order to find the best one. In order to describe the structure

8

20

International Journal On Advances in Networks and Services, vol 2 no 1, year 2009, http://www.iariajournals.org/networks_and_services/

Figure 6. The ECLiPSe shell with the query
searchpath bb(n6, n261, C, D, [n6], L) and the
corresponding found result for the program
in Figure 5.

of a searchpath bb query (see Figure 5), we take as ex-
ample searchpath bb(n2, n262, C, D, [n2], L): with this
query we want to find the best path between the nodes n2
and n262, C is the cost of the path (used also by the branch-
and-bound pruning), D is the number of hops, L (in Fig-
ure 5) is the list of already traversed nodes and N is a list
used to collect the nodes of the path (in reverse order). The
result of this query is reported in Figure 6, by showing di-
rectly the ECLiPSe window: the best cost value (i.e., 20)
was found after 0.33 seconds with a path of 4 hops, i.e.,
n2-n260-n125-n202-n262.

The query searchpath all(n6, n261, C, D, K, [n6], N)
(K is the list of solutions found by the findall predicate),
which does not use the branch-and-bound pruning (and con-
straints), was explicitly interrupted after 10 minutes without
finding an answer for the goal. Other queries are satisfied
in even less than one second, depending on the efficiency of
the pruning efficiency for the specific case.

To better describe and accelerate the search we added
also some constraints, which are explained in Table 3. In
Figure 5 we also import the hybrid integer/real interval
arithmetic constraint solver of ECLiPSe to use them, i.e.,

 C #>= 0,
C #=< 160

 D #>= 1,
D #=< 16

D #= 1 + D2

 C1 #>= 0,
 C2 #>=0,
 C1 #= A + B,
 C #= C1 + C2

Used to limit the space of cost values: its
reduction sensibly improves the performance. It is
possible to start the search with a small threshold
and then raise it if no solution is found. For the
example in Fig. 15 it was computed as the
maximum possible cost of a path: EdgeMaxCost
x Diameter = 20 x 8 = 160.

These two constraints are used to limit the depth
(i.e. the number of hops) of the path we want to
find. For the example in Fig. 15 it was computed
as Diameter x 2 = 8 x 2 = 16. It is a good
overestimation since we are dealing with a
scale-free network (see Sec 7.1).

Used to compute the depth of the path.

Four constraints are used to compute the cost of
the path: it is the cost of an edge (i.e. C1 is
obtained by summing the two QoS features A
and B) plus the cost of the remaining part of the
path (i.e. C2). Clearly, both C1 and C2 must be
greater than 0.

Table 3. The description of the constraints
used in Figure 5.

the ic library. Notice that the constraints depending on the
Diameter of the network (i.e., 8, as shown in Figure 4) limit
the search space and provides a mild approximation at the
same time: in scale-free networks, the average distance be-
tween two nodes can be ln ln N , where N is the number
of nodes [14] (see also Section 2). This property of scale-
free networks clearly helps in improving the performance of
our model, and scale-free networks show better end-to-end
performance in general [27]. Therefore, considering a max
depth of the path as twice the diameter value (i.e., 16) still
results in a large number of alternative routes, since, for the
scale-free network in Figure 4, this value is 4-5 times the
average shortest path of the network (i.e., 3.74 as shown in
Figure 4). Notice that, after the execution of the program
in Figure 5, if no solution is found or we want to try if the
obtained solution is really the one with the best cost, it is
possible to change the constraints in Table 3 by trying dis-
joint intervals (e.g., C #> 160, C #<= 320 or D #> 16,
D #<= 32), and then executing the program one more time
(since performance permit to do so). The bound values for
these intervals can be directly obtained from the statistics
acquired during the network generation (see Figure 4). No-
tice that without the constraints in Table 3, the branch-and-
bound optimization alone cannot improve the performance
below the 5 minutes threshold.

In order to show the scalability property of our frame-
work, in Table 5 we summarize the performance results
of k queries executed on three distinct scale-free networks
with a different number of n nodes: n = 50 (50 < 26),
n = 265 (265 < 29) i.e., the network in Figure 4 and
n = 877 (877 < 210). The k number of queries is respec-

9

21

International Journal On Advances in Networks and Services, vol 2 no 1, year 2009, http://www.iariajournals.org/networks_and_services/

Nodes Queries Min Time Avg. Time
50 30 ∼ 0s 0.1s

265 45 0.02s 4.08s
877 50 0.5s 4.89s

Nodes Avg. Cost Avg. Depth Max Depth
50 17.54 3.04 7

265 29.8 5.46 11
877 37.72 6.72 14

Table 4. Some performance statistics ob-
tained with the ECLiPSe framework (with
branch-and-bound), collected on three differ-
ent size networks (i.e., 50, 265 and 877 nodes).
On each network we performed 50 queries.

tively scaled with the network size: k = 30 (i.e., 6 × 5),
k = 45 (i.e., 9× 5) and k = 50 (i.e., 10× 5). These statis-
tics are related to the Min/Average Time needed to obtain
a path, its Average Cost and its Max/Average Depth. For
each query, the source and destination nodes have been ran-
domly generated. We can see that Min Time sensibly differs
from the Average Time, and this is due to the poor efficiency
of the branch-and-bound pruning in some cases. However,
this technique performs very well in most of cases, as the
low Average Time in Table 5 shows (even for n = 877).
The performance results in Table 5 have been collected on
a Pentium M 1.7Ghz and 1Gb of memory.

Comparable performance results are achievable as well
also for the multicast case, by enforcing the structure of the
tree with other ad-hoc constraints: for example, by con-
straining the width of the searched tree to the number of
the multicast receivers in the query, since it is useless to
find wider trees. Moreover, the problem can be first over-
constrained and then relaxed step-by-step if no solution is
found. For example, we can start by searching a solution
in the cost interval [0..35] and then, if the best solution is
not included in this interval, setting the interval to [36..70]
(and so on until the best solution is found). Notice that in
this way we strongly speed-up the search while preserv-
ing all the information, due to the characteristics of the
branch-and-bound technique. This behaviour can be eas-
ily reproduced in ECLiPSe, since the customizable options
of bb min(+Goal, ?Cost, ?Options) (i.e., another clause
to express branch-and-bound) include the [From..To] in-
terval parameters.

Finally, the ECLiPSe system can be used to further im-
prove the performance, since it is possible to change the pa-
rameters of branch-and-bound, e.g., by changing the strat-
egy after finding a solution [2]: continue search with the
newly found bound imposed on Cost, restart or perform a
dichotomic after finding a solution, by splitting the remain-

Nodes Queries Min Time Avg. Time
50 50 10.63s 107s

Table 5. Performance reported for the multi-
cast program in Figure 7.

ing cost range and restart search to find a solution in the
lower sub-range. If it fails, the procedure assumes the up-
per sub-range as the remaining cost range and splits again.
Moreover, it is possible to add Local Search to the tree
search, and to program specific heuristics [2].

Just as a first example, in Figure 7 we provide an
ECLiPSe implementation also for the multicast routing
case. Figure 7 does not report the imported libraries (which
are the same of Figure 5) and the facts representing the
edges in the graph. This program represents a first step
towards a fast solution for the problem: even with only
branch-and-bound techniques the problem becomes solv-
able inside the framework (without, the computation takes
too much time and needs to be interrupted), as the results
obtained for the network with 50 nodes: with 50 queries
(one sender to 3 receivers) we have obtained an average re-
sponse time of 107 seconds, with a minimum response time
of 10.63 (see Table 5). The disJoint clauses are used to pre-
vent the search from visiting the same node twice.

7 Related Work

Concerning the related works, in [18] and [20] the au-
thors adopt a hypergraph model in joint with semirings too,
but the minimal path between two nodes (thus, not over an
entire tree) is computed via a hypergraph rewriting system
instead of SCLP. At the moment, all these frameworks are
not comparable from the computational performance point
of view, since they have not yet been implemented. Even
the work in [24] presents some general algebraic operators
in order to handle QoS in networks, but without any prac-
tical results. We compare our work only with other the-
oretical frameworks, since our study aims at representing
general routing constraints in order to solve different prob-
lems: due to the complexity of QoS routing, state-of-the-art
practical solutions (presented in Section 2) deal only with
a subset of metrics and constraints. On the other hand, a
more general framework can help to analyze the problem
from a global point of view, not linked to specific algo-
rithms. With Declarative routing [22], a routing protocol
is implemented by writing a simple query in a declarative
query language (like Datalog as in [22]), which is then exe-
cuted in a distributed fashion at some or all of the nodes. It
is based on the observation that recursive query languages
are a natural-fit for expressing routing protocols. However,
the authors of [22] did not go deep in modelling QoS fea-

10

22

International Journal On Advances in Networks and Services, vol 2 no 1, year 2009, http://www.iariajournals.org/networks_and_services/

disJoint(L1,L2,X):-
 member(A,L1),
 X\=A,
 member(A,L2), !, fail.

disJoint(L1,L2,X).

tree(X, [X], L, 0, [X]):-
 leaf([X], [_, _]).

tree(X, Z, L, Q, Nodes):-
 Q #= C1 + C2, C2 #>= 0,
 CL #>= 1, CL #=< 3,
 connector(X, W, [], C1),
 length(W, CL),
 disJoint(L, W, X),
 append(L, W, K),
 treeList(W, Z, K, C2, Nodes).

treeList([], [], L, 0, L).

treeList([X|Xs], Z, L, Q, Nodes):-
 C1 #>= 0, C2 #>= 0, Q #= C1 + C2,
 tree(X, Z1, L, C1, Nodes1),
 disJoint(L,Z1,X),
 append(L, Z1, K),
 treeList(Xs, Z2, K, C2, Nodes2),
 append(Z1, Z2, Z),
 append(Nodes1, Nodes2, NNN),
 sort(NNN,Nodes).

connector(X, [Y], L, Q):-
 edge(X, [Y], [B,C]),
 Q #= B + C,
 append(L, [Y], Z),
 sort(Z,Z),
 nonmember(Y, L).

connector(X, [Y|Ys], L, Q):-
 Q2 #>= 0, Q #= (B1 + C1 + Q2),
 sort(L,L),
 edge(X, [Y], [B1,C1]),
 nonmember(Y,L),
 append(L, [Y], Z),
 sort(Z,Z),
 connector(X, Ys, Z, Q2).

route(X, Y, Q, Nodes):-
 Q #>= 0, Q #=< 50,
 minimize(tree(X, Y, [X], Q, Nodes), Q)

Figure 7. The ECLiPSe program for the multi-
cast routing.

tures, and we think that c-semirings represent a very good
method to include these metrics.

To go further, aside the elegant formalization due to the
SCLP framework, we build a bridge to a real implementa-
tion of the model (Section 6) and several ideas to improve
the experienced performance. The final SCLP tool can be
used to quickly prototype and test different routing paths.
As far as we know, other formal representations completely
miss this practical implementation [24]. Therefore, our pa-
per vertically covers the problem: from theoretical to prac-
tical aspects, without reaching the performance of existing
routing algorithms implemented inside the routers, but thor-
oughly and expressively facing the problem. The drawback
of being so expressive is clearly represented by resulting
performance: however, our goal is to deal with the off-line
study of a network (e.g., to plan the laying of new cables and
routers) and the shown performance easily permit to do so;
in this sense, to build a routing table in a proactive way cor-
responds to a faster answer provided to the final user [17].
In this case our expressivity can be used to easily optimize
the sets of QoS metrics (and features) for which no algo-
rithm has been provided yet, especially for the less-studied
multicast case [35] (only delay and cost metrics are opti-

mized).

8 Conclusion

We have described a method to represent and solve the
CBR problem with the combination of and-or graph and the
declarative SCLP environment: the best multicast or unicast
route found on an and-or graph corresponds to the seman-
tics of a SCLP program. The route satisfies multiple con-
straints regarding QoS requirements, e.g., minimizing the
global bandwidth consumption, reducing the delay, or ac-
cepting only the routes that use k hops at most. The semir-
ing structure is a very parametric tool where to represent
different QoS metrics. Since it is well-known that even a
shortest path problem with two or more independent met-
rics is NP-complete (see Section 1), we have proposed a
framework based on AI techniques (i.e., soft constraints).
The convenience is to use a declarative framework where
constraints on the routes can be easily represented. More-
over we have provided a practical implementation of the
framework and a test on a scale-free network, whose results
are quite promising. We have used the ECLiPSe program-
ming environment in order to use the branch-and-bound li-
brary to improve the results. The framework can be used to
prototype and test new constraints in small networks (i.e.,
100-1000 nodes) or parts of wider graphs.

Concerning future works, we want to produce more tests,
also with different scale-free/small-world topology gener-
ators. We plan to improve the computational results by
adding to the program some clauses that describe the topol-
ogy of the network. Moreover, we will study ad-hoc mem-
oization techniques to reduce the complexity of big hubs.

References

[1] S. Bistarelli and F. Santini. A formal and practical frame-
work for constraint-based routing. In Seventh International
Conference on Networking (ICN), pages 162–167. IEEE
Computer Society, 2008.

[2] K. R. Apt and M. Wallace. Constraint Logic Programming
using Eclipse. Cambridge University Press, New York, NY,
USA, 2007.

[3] A. L. Barabasi and R. Albert. Emergence of scaling in ran-
dom networks. Science, 286:509, 1999.

[4] S. Bistarelli. Semirings for Soft Constraint Solving and Pro-
gramming, volume 2962 of Lecture Notes in Computer Sci-
ence. Springer, 2004.

[5] S. Bistarelli, T. Frühwirth, and M. Marte. Soft constraint
propagation and solving in chrs. In SAC ’02: Proceedings
of the 2002 ACM symposium on Applied computing, pages
1–5, New York, NY, USA, 2002. ACM Press.

[6] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based
constraint logic programming. In Proc. IJCAI97 (Morgan
Kaufman), pages 352–357. Morgan Kaufman, 1997.

11

23

International Journal On Advances in Networks and Services, vol 2 no 1, year 2009, http://www.iariajournals.org/networks_and_services/

[7] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based
constraint solving and optimization. Journal of the ACM,
44(2):201–236, 1997.

[8] S. Bistarelli, U. Montanari, and F. Rossi. Soft constraint
logic programming and generalized shortest path problems.
Journal of Heuristics, 8(1):25–41, 2002.

[9] S. Bistarelli, U. Montanari, F. Rossi, and F. Santini. Mod-
elling multicast qos routing by using best-tree search in and-
or graphs and soft constraint logic programming. Electr.
Notes Theor. Comput. Sci., 190(3):111–127, 2007.

[10] S. Bistarelli, U. Montanari, F. Rossi, and F. Santini. Uni-
cast and multicast QoS routing with soft constraint logic
programming. CoRR, abs/0704.1783, 2007.

[11] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-
Garcı́a, and G. Puebla. The ciao prolog system: reference
manual. Technical Report CLIP3/97.1, School of Computer
Science, Technical University of Madrid (UPM), 1997.

[12] S. Chen and K. Nahrstedt. An overview of quality of service
routing for next-generation high-speed networks: Problems
and solutions. IEEE Network, 12(6):64–79, 1998.

[13] S. Chen, K. Nahrstedt, and Y. Shavitt. A QoS-aware multi-
cast routing protocol. In INFOCOM Joint Conference of the
IEEE Computer and Communications Societies (3), pages
1594–1603. IEEE, 2000.

[14] R. Cohen and S. Havlin. Scale-free networks are ultrasmall.
Phys. Rev. Lett., 90(5):058701, Feb 2003.

[15] E. Crawley, R. Nair, B. Rajagopalan, and H. Sandick. RFC
2386: A framework for QoS-based routing in the Internet,
August 1998. Informational.

[16] B. Cui and D. S. Warren. A system for tabled constraint logic
programming. In CL ’00: Proceedings of the First Interna-
tional Conference on Computational Logic, pages 478–492,
London, UK, 2000. Springer-Verlag.

[17] S. R. Das, R. Castaneda, J. Yan, and R. Sengupta. Compar-
ative performance evaluation of routing protocols for mo-
bile, ad hoc networks. In Mobile Networks and Applications,
pages 153–161, 1998.

[18] R. De Nicola, G. L. Ferrari, U. Montanari, R. Pugliese, and
E. Tuosto. A formal basis for reasoning on programmable
QoS. In Verification: Theory and Practice, volume 2772,
pages 436–479. Springer, 2003.

[19] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law
relationships of the internet topology. In SIGCOMM ’99,
pages 251–262. ACM Press, 1999.

[20] D. Hirsch and E. Tuosto. SHReQ: coordinating application
level QoS. In SEFM ’05: Software Engineering and Formal
Methods, pages 425–434. IEEE Computer Society, 2005.

[21] T. Korkmaz and M. Krunz. Multi-constrained optimal path
selection. In INFOCOM, pages 834–843, 2001.

[22] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrish-
nan. Declarative routing: extensible routing with declarative
queries. In SIGCOMM ’05: Proceedings of the 2005 confer-
ence on Applications, technologies, architectures, and pro-
tocols for computer communications, pages 289–300, New
York, NY, USA, 2005. ACM.

[23] Q. Ma and P. Steenkiste. Quality of service routing for traffic
with performance guarantees, May 1997.

[24] Z. Mammeri. Towards a formal model for qos specification
and handling in networks. In IWQoS, pages 148–152. IEEE,
2004.

[25] A. Martelli and U. Montanari. Optimizing decision trees
through heuristically guided search. Commun. ACM,
21(12):1025–1039, 1978.

[26] J. Moy. OSPF Version 2. RFC 2328 (IETF Standard), Apr.
1998.

[27] H. Ohsaki, K. Yagi, and M. Imase. On the effect of scale-free
structure of network topology on end-to-end performance.
In SAINT ’07: Proceedings of the 2007 International Sym-
posium on Applications and the Internet, page 12, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

[28] J. O’Madadhain, D. Fisher, S. White, and Y. Boey. The
JUNG (Java Universal Network/Graph) framework. Tech-
nical report, UC Irvine, 2003.

[29] I. V. Ramakrishnan, P. Rao, K. F. Sagonas, T. Swift, and
D. S. Warren. Efficient tabling mechanisms for logic pro-
grams. In International Conference on Logic Programming,
pages 697–711. The MIT Press, 1995.

[30] E. Rosen, A. Viswanathan, and R. Callon. IETF-RFC3031:
Multiprotocol Label Switching Architecture, 2001.

[31] G. N. Rouskas and I. Baldine. Multicast routing with end-
to-end delay and delay variation constraints. IEEE Journal
of Selected Areas in Communications, 15(3):346–356, 1997.

[32] T.Schrijvers and D. S. Warren. Constraint handling rules and
tabled execution. In B. Demoen and V. Lifschitz, editors,
ICLP, volume 3132 of Lecture Notes in Computer Science,
pages 120–136. Springer, 2004.

[33] A. Vazquez, R. Pastor-Satorras, and A. Vespignani. Internet
topology at the router and autonomous system level, 2002.

[34] Z. Wang and J. Crowcroft. Quality-of-service routing for
supporting multimedia applications. IEEE Journal on Se-
lected Areas in Communications, 14(7):1228–1234, 1996.

[35] O. Younis and S. Fahmy. Constraint-based routing in the
internet: basic principles and recent research. IEEE Com-
munications Surveys and Tutorials, 5(1):2–13, 2003.

12

24

International Journal On Advances in Networks and Services, vol 2 no 1, year 2009, http://www.iariajournals.org/networks_and_services/

