
Techniques for Enhancing the Rebalancing Algorithm for Folded Clos Networks

Satoru Ohta

Department of Electrical and Computer Engineering, Faculty of Engineering

Toyama Prefectural University

Imizu, Toyama, Japan

e-mail: ohta@pu-toyama.ac.jp

Abstract—Folded Clos Networks (FCNs) are switching

networks constructed by connecting small switches aligned to

(2p + 1)-stages (p = 1, 2, 3, …). FCNs have often been examined

in previous studies on data center networks. To take advantage

of the high bandwidth provided by an FCN, it is necessary to

establish an adequate routing method that uniformly diffuses

flows. A previous study proposed the rebalancing algorithm as

such a method, which is executable with locally obtainable

information at each switch. By applying the rebalancing

algorithm to an FCN, it becomes possible to impose an upper

bound on the number of flows passing through a link. This

means that the rebalancing algorithm prevents the link load

from becoming excessively high. This paper reviews theoretical

aspects of the algorithm applied to three- and five-stage FCNs.

Then, two techniques are proposed for improving the

rebalancing algorithm in terms of the load equality between

links. The techniques distribute traffic more uniformly and do

not affect the upper bound on the number of flows on a link. The

effectiveness of the two techniques is assessed via computer

simulation for different traffic and network models. The

network models include a three-stage FCN and a five-stage FCN.

The simulation results demonstrate the effectiveness of the two

proposed techniques.

Keywords- network; algorithm; routing; data center; packet.

I. INTRODUCTION

Data center networks are becoming increasingly important,
as the majority of popular information services are provided
via data centers. It is thus essential to establish topologies for
high-performance data center networks. To this end, studies
on data center networks have been performed based on several
topologies, including the Clos network [1], [2] fat-tree [3],
DCell [4], and BCube [5]. Among these topologies, the Clos
network has often been studied because it functions as a
scalable and high-bandwidth network by interconnecting
small commodity switches. Various data center networks
based on the Clos network topology have been implemented
[2], [6]–[8].

A Clos network is a three-stage nonblocking switching
network originally developed by Charles Clos in 1953 [9]. On
the basis of this three-stage network, it is possible to configure
nonblocking switching networks with (2p + 1)-stages (p = 1,
2, 3, …). In data center network applications, the network
appears in the form of a Folded Clos Network (FCN). A three-
stage FCN is roughly equivalent to a three-stage network;
however, it is constructed by folding the corresponding three-

stage Clos network at its center. Similarly, it is also possible
to construct a five- or seven-stage FCN.

To apply an FCN to data center networks, the routing of a
packet is important. Inadequate routing may cause a load
imbalance between the links, which in turn may cause traffic
congestion and degrade performance. However, if the load is
uniformly distributed among the links, an FCN can achieve
high throughput by fully utilizing the bandwidth of every link.

Several previous studies [7], [8], [10] have used a routing
method that involves forwarding a packet to a randomly
selected route. This method is reasonable, as it uniformly
distributes the average number of flows between links.
However, using this method, there is a high probability that
the load on a given link will become excessively large.
Consequently, traffic congestion may occur due to heavily
loaded links, thus degrading network performance. As
discussed in [11], this problem may be critical for big data
applications, which require high-bandwidth transmission. It is
therefore important to develop a routing algorithm that
diffuses the traffic load more uniformly than random routing.

A routing algorithm for an FCN should be executable in a
distributed manner to decrease the processing overhead
generated by handling frequent route decisions. In addition,
the algorithm should function without global information of
the entire network to eliminate the communication overhead
associated with gathering information.

Routing can be performed on either a per-packet or per-
flow basis. The former method determines a route in a packet-
by-packet manner. Thus, packets that belong to the same flow
may pass through different routes. Since delays are also
different depending on the routes, packet reordering occurs for
per-packet routing. Meanwhile, the latter method determines
a unique route for a flow. Every packet of the flow goes
through that route. This study examines a method based on
per-flow routing because packet reordering is unavoidable for
per-packet routing.

Ohta [12] presented two distributed algorithms – the
rebalancing algorithm and the load sum algorithm – that
diffuse flows in FCNs. Using computer simulations, it was
demonstrated that these methods diffuse flows more
uniformly than random routing. Of the two methods, the
rebalancing algorithm uses information that is locally
obtainable at the source switch of a flow. Although the load
sum algorithm has superior performance with respect to load
equality, it is less practical due to the communication
overhead between switches. Thus, if the rebalancing

69

International Journal on Advances in Networks and Services, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/networks_and_services/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

algorithm is improved to diffuse flows more uniformly, a
more practical and efficient algorithm can be obtained.

In [1], Ohta proposed techniques for improving the
rebalancing algorithm with respect to load equality. These
techniques are based on information that is locally obtainable
at the source switch of a flow. The first technique modifies the
algorithm to distribute uplink loads more evenly, while the
second technique utilizes the fact that the algorithm has a
process for scanning middle switch indices for routing and
rerouting. Therefore, using the second method, the order of
scanning the middle switch indices is determined to uniformly
diffuse flows.

An advantage of the rebalancing algorithm is that an upper
bound is theoretically derived for the number of flows on a
link. When using the abovementioned improvement
techniques, this upper bound is not affected. Therefore, the
worst-case link load is limited, as in the case in which these
techniques are not applied. The effectiveness of the two
techniques was confirmed via computer simulations.

This paper expands the work of [1] and offers the
following contributions:

 A discussion of the presented techniques applied to a
five-stage FCN.

 Performance evaluation under traffic conditions not
considered in [1].

A theoretical upper bound is derived for the number of
flows on a link for a five-stage FCN as well as a three-stage
FCN. The performance of the proposed techniques applied to
a five-stage FCN is also evaluated through computer
simulation. With respect to traffic conditions, this paper
examines several different traffic models in simulation. In one
traffic model, flows are equally generated for every pair of
source and destination switches. Other traffic models are
lightly or heavily skewed. For these traffic conditions, flows
are destined to a limited number of destination switches from
a certain source switch. A traffic model that generates light
load is also examined. The simulation results reveal that one
of the proposed techniques is not effective for a highly skewed
traffic model. However, this technique is more effective for
light traffic load. The load equality is effectively improved for
every examined traffic model if both proposed methods are
used simultaneously.

The remainder of this paper is organized as follows.
Section II provides a discussion of the FCN, while Section III
reviews related work. Section IV explains the rebalancing
algorithm, while Section V presents two modification
techniques. Section VI evaluates the effectiveness of the
techniques, and Section VII concludes the paper.

II. FOLDED CLOS NETWORK

Figure 1 presents an example of a Clos network. As
illustrated, the network is a three-stage switching network that
consists of r first-stage switches, m second-stage switches, and
r third-stage switches. Each first-stage switch has n input ports
whereas each third-stage switch has n output ports. This
switching network was originally proposed by Charles Clos
[9] and has been comprehensively investigated over a long
period of time [13].

It is possible to construct a five-stage Clos network by

replacing the second-stage switches with three-stage Clos

networks. For example, consider the case where n = m = 2 and

r = 6 in the configuration in Figure 1. Then, by replacing the

second-stage switch with a three-stage network of n = m = 2

and r = 3, a five-stage network is obtained, as illustrated in

Figure 2. By repeating this procedure, it is possible to

construct a (2p + 1)-stage Clos network for any p > 1.

Figure 1. Example of a three-stage Clos network.

Figure 2. Example of a five-stage Clos network.

The advantages of the Clos network are its small amount

of hardware and nonblocking nature. To demonstrate its

advantages in hardware amount, let N denote the total number

of input or output ports. In the classical switching network

theory, the hardware amount of a switching network is often

measured by the number of crosspoints, assuming that each

small switch is a crossbar. A single crossbar switch with N

ports has N2 crosspoints, and the number of crosspoints is

O(N3/2) for a three-stage Clos network [9]. Thus, the amount

of hardware is much smaller for a Clos network than for a

single crossbar switch. In addition, the number of crosspoints

is O(N4/3) for a five-stage Clos network. Thus, a five-stage

configuration can be constructed with less hardware for a

larger value of N. It is also known that the amount of hardware

for a Clos network is 2 (log 2) (log)()e e NO Ne when the number of

stages is optimized for N [14].
A three-stage FCN is roughly equivalent to a three-stage

Clos network. However, an FCN is constructed by folding the
three-stage network at its center. An example of a three-stage

. . .
. . .

. . .

. . .
. . .

. . .

. . .

. . .

. . .

. . .
. . .

. . .

. . .
. . .

. . .

. . .
. . .

. . .

. . .
. . .

. . .

1st Stage 2nd Stage 3rd Stage

n
In

p
u

t
Po

rt
s

n
O

u
tp

u
t

Po
rt

s

r Switches m Switches r Switches

1st Stage 2nd Stage 3rd Stage 4th Stage 5th Stage

70

International Journal on Advances in Networks and Services, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/networks_and_services/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

FCN is provided in Figure 3. In a three-stage FCN, the first-
and third-stage switches are integrated into input/output
switches, and the second-stage switches are middle switches
that connect the input/output switches.

Figure 3. Example of a three-stage FCN.

As illustrated in Figure 3, r input/output switches are
labeled S0, S1, …, Sr – 1, while m middle switches are labeled
M0, M1, …, Mm – 1. Every middle switch is connected to every
input/output switch via an uplink and downlink. An uplink is
set from an input/output switch to a middle switch, whereas a
downlink is set in the reverse direction. Each input/output
switch has n input/output ports.

By implementing each switch as an IP (Internet Protocol)
layer 2 or 3 switch, a data center network can be constructed
on the basis of an FCN. It is known that a data center network
based on Clos topology has the advantages of scalability and
high bandwidth.

Because this paper considers applications to data center
networks, the information passes through the FCN via packets.
Since a middle switch is connected to every input/output
switch, a packet can reach its destination switch from an
arbitrary middle switch via a downlink. Therefore, the source
switch can transmit a packet to the destination switch via any
middle switch. However, the traffic load on an uplink or
downlink depends on the routing at the source switch. If the
routing is inadequate, traffic congestion occurs, which
degrades performance. Congestion can be avoided if the
traffic is evenly diffused between the uplinks and downlinks
in an FCN. It is therefore important to establish a routing
method that is executed at the source switch of a packet.

This paper assumes that routing is performed on a flow
basis. A flow is a packet stream identified by a set of fields in
the packet header [15]. A frequently used field set is {source
address, destination address, protocol, source port,
destination port}, which is associated with an IP socket. A
different field set can also be used as flow identifiers. If a fixed
route is assigned to a flow, packet reordering does not occur.
This is advantageous because packet reordering leads to
throughput degradation. This paper considers the case in
which an FCN connects many hosts and processes via its N =
nr input/output ports. In this situation, many concurrent flows
exist between ports.

Flows are categorized as elastic or stream [16] depending
on the nature of the traffic. In this paper, it is assumed that the
network handles elastic flows. This assumption is reasonable
because many services are supported by TCP (Transmission
Control Protocol), and TCP traffic is elastic. For elastic flows,
the throughput of a flow is restricted by the link capacity
portion shared with other flows. Therefore, to achieve high
throughput, it is indispensable to uniformly diffuse the
number of flows among links and decrease the maximum
number of flows on a link. Thus, in this paper, the link load is
assessed by the number of flows.

Whereas the network illustrated in Figure 3 is based on a
three-stage Clos network, it is also possible to construct an
FCN from a five-stage Clos network. Figure 4 presents an
example of a five-stage FCN. This network is the
configuration that results from replacing a middle switch with
an FCN in the configuration in Figure 3. This type of five-
stage FCN is used as a data center network, as reported in [6].

Figure 4. Example of a five-stage FCN.

III. RELATED WORK

An FCN first appeared in the original work by Clos [9] as
the triangular array configuration. The configuration has also
been referred to as a Clos truncated network [17] or single-
sided Clos network [18]. Clos networks or FCNs have been
used for various applications including telephone switching
[9], [17] cross-connect systems [19]–[21], multi-processor
computers [10], network-on-chip [22]–[24], and data center
networks [1], [2], [6]–[8], [11], [12], [25]–[28].

For computer network applications, including data center
networks, Clos networks are treated as packet switching
networks. Various studies have investigated the application of
Clos networks as packet switching networks. The routing
methods examined in those studies are categorized as per-
packet routing and per-flow routing. As an example of per-
packet routing, Hassen and Mhamdi [25] investigated a Clos
network that had crossbar switches with small-size buffers in
each stage. For this configuration, Hassen and Mhamdi
proposed distributed and centralized packet scheduling

. . .

. . .

.

. . .

. . .
. . .

m Middle Switches

. . .

r Input/Output
Switches

.

n Input/Output Ports

M0 M1 Mm – 1

S0 S1 Sr – 1

1st/5th Stage

2nd/4th Stage

3rd Stage

71

International Journal on Advances in Networks and Services, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/networks_and_services/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

mechanisms to achieve low packet delay and high throughput.
However, their proposed method involves per-packet
processing to perform scheduling. Thus, the processing load
generated by each packet arrival will become critical for a
large network that handles a large number of packets in a unit
time. In addition, the advantage of a small-size buffer may not
be significant because buffer memory is not expensive.

In another study, Hassen and Mhamdi [26] investigated a
modified Clos network configuration that employed a multi-
directional network on a chip as a switching module in each
stage. This module provides interconnections between middle
stage switching modules. For this network configuration,
inter-module routing is performed based on global network
congestion information. However, it is uncertain whether
gathering congestion information for routing is practical.

A quite different per-packet routing method was proposed
by Yang et al. [27]. This method determines the switch
connections in each stage from a given traffic matrix, where
each element of the matrix represents the number of packets
to be transmitted from a source to a destination during a
certain period. The connections are reconfigured several times
to minimize the cost during the transmission period.
Unfortunately, it is very unlikely that an exact traffic matrix
could be obtained in a real-world data center network. Thus,
it may be difficult to apply their method.

To avoid congestion in a Clos network, Ghorbani et al.
[28] proposed a method that diffuses traffic on a packet-by-
packet basis. This method determines the next hop of a packet
according to the queue length of each output buffer in a switch.
Consequently, packets of a flow may go through routes with
different queueing delays, and this delay variation may cause
packet reordering. Ghorbani et al. performed a computer
simulation and observed that 0.02 % of packets were delivered
out of order. The extent to which this rate of packet reordering
affects TCP throughput is unclear.

The studies of [25]–[28] are theoretical, and the proposed
methods are evaluated through computer simulations.
However, an actual implementation of per-packet routing was
reported by Scott et al. [10]. Their Clos network is designed
for the interconnection of a multi-processor high performance
computer. The routing method employed in their work
determines the next hop of a packet depending on the buffer
space. The proposed method is based on a custom packet
format developed for the multi-processor computer.
Consequently, their method will not be directly applicable to
datacenter networks.

A more practical approach to congestion avoidance is
traffic diffusion based on per-flow routing methods. A
common method of flow-based traffic diffusion involves
routing a flow to a randomly selected middle switch. This
technique, which is referred to as Valiant load balancing, is
employed in the system implemented by Greenberg et al. [7]
and was originally proposed by Valiant [29] for a binary cube
topology. Al-Fares et al. [8] explored a method of computing
routing table entries from the indices of switches and host
identifiers. This is equivalent to randomly assigning route
flows using the output of a hash function fed by switch indices
and host identifiers. The architecture reported by Scott et al.
employs a per-packet adaptive routing mechanism as well as

per-flow deterministic routing [10]. For deterministic routing,
flows are diffused to random middle switches via a hash
function fed by input ports and destinations.

The idea of randomly routing flows is reasonable because
the average number of flows is balanced between links.
However, there is a high probability that the worst-case load
on a certain link will become excessively large. This can cause
traffic congestion and degrade performance, such as packet
latency or network throughput. The adaptive routing proposed
by Zahavi et al. [11] may reduce this disadvantage of random
routing. Initially, this method semi-randomly selects routes
for the flows at the source switches. Then, the destination
switches identify bad links, which are excessively loaded by
the initial routing. Next, the destination switches notify the
source switches of the flows, passing the bad links as bad
flows. With this notification, the source switches can reroute
the bad flows, and the rerouting is repeated until there are no
bad links. In [11], the convergence of the rerouting was
evaluated using a theoretical analysis based on Markov chain
models and computer simulation. However, the number of
times the flows must be rerouted to eliminate all bad links in
the worst case is not theoretically known. It is also unclear
whether bad links are definitively removed by Zahavi et al.’s
method. As a result, this method may not be practical.

Ohta [12] presented two flow-based routing methods that
diffuse flows more uniformly than random routing. Using
these methods, a flow is routed (or rerouted) at its source
switch in a distributed manner. One of these methods is the
rebalancing algorithm, which runs using locally obtainable
information. The other method is the load sum algorithm,
which requires communication between source and
destination switches. Simulation results demonstrate that
these methods both outperform random routing. In addition,
the load sum algorithm is shown to diffuse flows more
uniformly than the rebalancing algorithm.

The simulation results reported in [12] indicate that all
flow equality metrics are smaller for the load sum algorithm
than for the rebalancing algorithm. However, the load sum
algorithm may be inefficient with respect to the
communication overhead between switches, in particular in
the case of short-duration flows. Namely, the amount of traffic
exchanged by a short-duration flow may become comparable
to or smaller than that exchanged by the communication
between switches, which is highly inefficient. From this
viewpoint, the rebalancing algorithm is likely to be more
practical. With improvements to this method in terms of the
uniformity of flow diffusion, the rebalancing algorithm can
become more effective.

IV. REBALANCING ALGORITHM

This paper focuses on the rebalancing algorithm presented
in [12]. This algorithm is in fact a packet stream version of the
method described in [30]. It assumes that the route of a newly
generated flow is determined when its first packet arrives at
the input switch. Implementing such a mechanism with
currently available technology would not be simple; however,
it is important to investigate potential methods that display
higher performance than conventional routing.

72

International Journal on Advances in Networks and Services, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/networks_and_services/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

This section presents several definitions, specifies local
information, and outlines the algorithm.

A. Definitions

Throughout this paper, the following variables are used for
a three-stage FCN:

 F(i, j, k): number of flows that pass through a source
switch Si, middle switch Mj, and destination switch Sk

(0 , 1,0 1)i k r j m

 U(i, j): number of flows on the uplink set from Si to
Mj

 D(j, k): number of flows on the downlink set from Mj
to Sk

In an FCN, if the source switch of a flow is the same as its
destination, it is not necessary to route the flow to a middle
switch. The flow can be directly routed to the destination
within the source/destination switch. In view of this
characteristic, U(i, j) and D(j, k) are related to F(i, j, k) as
follows:

1

0,

(,) (, ,)
r

k i k

U i j F i j k

 (1)

1

0,

(,) (, ,)
r

i i k

D j k F i j k

 (2)

The algorithm is described using these variables. Table I
summarizes the symbols used in this paper.

TABLE I. TABLE OF SYMBOLS.

Symbol Definition

m Number of middle switches in a three-stage FCN

n Number of input/output ports that an input/output switch

has in a three-stage FCN

r Number of input/output switches in a three-stage FCN

m1 Number of sub-FCNs in a five-stage FCN

n1 Number of input/output ports that a 1st/5th stage switch has
in a five-stage FCN

r1 Number of 1st/5th stage switches in a five-stage FCN

m2 Number of 3rd srage switches in a sub-FCN of a five-stage

FCN

n2 Number of input/output ports that a 2nd/4th stage switch has

in a five-stage FCN

r2 The number of 2nd/4th stage switches in a sub-FCN of a five-

stage FCN

Si Input/output switch of a three-stage FCN

Mj Middle switch of a three-stage FCN

F(i, j, k) Number of flows established from Si to Sk via Mj

U(i, j) Number of flows on the uplink from Si to Mj

D(j, k) Number of flows on the downlink from Mj to Sk

 Positive integer used

f0 Maximum number of flows for an input/output port

f1 Maximum number of flows on a link between an

input/output (1st/5th stage) switch and a middle (2nd/4th
stage) switch for a three-stage FCN (five-stage FCN)

f2 Maximum number of flows on a link between a 2nd/4th stage

switch and a 3rd srage switch for a five-stage FCN

B. Locally obtainable information

For data center network applications, flows may be
frequently generated and completed in the FCN. In this
situation, the routing of a flow should be executed in a
distributed manner because the load resulting from frequent
route decisions becomes excessively high for concentrated
computations. In addition, it is impractical to perform
communication between switches because there may be very
short flows consisting of only several packets. As described in
Section III, it is inefficient to exchange packets between
switches for the routing of such short flows. Therefore, the
route of a flow should be determined at its source switch using
locally obtainable information.

Let us consider the case in which the FCN is a three-stage
configuration. An input/output switch can obtain the headers
of the packets, which arrive from its input port and are
forwarded to middle switches. From these headers, the switch
can identify the flows to which the packets belong. Because
the switch determines the routes for the flows at the source, it
can count the number of flows that travel from itself to each
middle switch. Therefore, U(i, j) can be managed at the source
switch Si. In addition, the switch can extract the destination
switch of the flows from the packet headers. Using this
information, the source switch Si can also count F(i, j, k).

Suppose that a new flow is generated and that its source
switch is Si. Then, assume that Si can detect the arrival of a
new flow. This is possible by comparing the flow identifiers
to the routing table. It is also possible for Si to detect the
completion of a flow by a timeout. Therefore, Si can launch
routing or rerouting processes at flow arrival or completion.

C. Algorithm properties

The rebalancing algorithm is detailed in [12]. The

algorithm utilizes parameter , positive integer that controls
its behavior. The rebalancing algorithm has the following
property:

Property 1: With the rebalancing algorithm,

 (, ,) (, ,)F i j k F i j k (3)

for 0 , 1,j j m 0 , 1.i k r

The proof for Property 1 is found in [12]. An advantage of
the rebalancing algorithm is that an upper bound exists for the
number of flows on an uplink or downlink. Let f0 denote the
maximum number of flows for an input or output port. In
addition, let f1 denote the number of flows on an uplink and
downlink. Then, the following property is obtained [12]:
Property 2: When the rebalancing algorithm is performed on
a three-stage FCN characterized by parameters m, n, and r,

 0
1

1
1 (1)

nf
f r

m m

 (4)

Property 2 is proved from (1), (2), and (3) via the method
outlined in [12]. This property ensures that the load on a link
does not become very high.

73

International Journal on Advances in Networks and Services, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/networks_and_services/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In the rebalancing algorithm, parameter determines the
frequency of rerouting as well as the uniformity of flow

diffusion. If is large, rerouting never occurs. In this case,
flows are diffused via route decision when they arrive at their
source switches. Simulation results demonstrate that the
algorithm works well even without rerouting. Following [12],
a rebalancing algorithm that omits the rerouting process is
hereafter referred to as balancing algorithm.

D. Rebalancing algorithm for five-stage FCNs

The rebalancing or balancing algorithm can be also
applied to five-stage FCNs. This subsection shows that the
number of flows on a link is upper bounded by the rebalancing
algorithm for a five-stage FCN as well as for a three-stage
FCN. The characteristic of the rebalancing algorithm applied
to a five-stage FCN has never been reported elsewhere. Thus,
the analysis on the five-stage FCN case is a main contribution
of this paper.

As illustrated in Figure 5, a five-stage FCN can be seen as
a combination of three-stage FCNs. In Figure 5, the
second/fourth-stage switches and third-stage switches
configure m1 sub-FCNs, 0, 1, …, m1 – 1. By considering these
sub-FCNs as m1 switches, the algorithm can be executed at the
first/fifth-stage switches. Within each sub-FCN, it is also
possible to run the algorithm at each second/fourth-stage
switch. For this scheme, it should be noted that flow rerouting
between first/fifth-stage switches causes a new flow
generation and flow completion in the affected sub-FCNs.
This means that flow rerouting may generate additional flow
rerouting in the sub-FCN.

Figure 5. Parameters m1, m2, n1, n2, r1, and r2 for a five-stage FCN.

In the five-stage FCN case, the number of flows is upper
bounded by employing the rebalancing algorithm as well as in
the three-stage FCN case. Let n1 denote the number of
input/output ports of a first/fifth-stage switch, and let n2
denote the number of input/output ports of a second/fourth-
stage switch. In addition, let r1 be the total number of
first/fifth-stage switches. Assume that each sub-FCN is
constructed by m2 third-stage switches and r2 second/fourth-
stage switches. For this configuration, r1 must be equal to r2n2.

Let f1 be the maximum number of flows on an uplink or
downlink between a first/fifth-stage switch and a

second/fourth-stage switch. Additionally, let f0 denote the
maximum number of flows for an input or output port. Then,
from Property 2,

 1 0
1 1

1 1

1
1 (1)

n f
f r

m m

Next, let f2 be the maximum number of flows on a link
between a second/fourth-stage switch and third-stage switch.
Then, because a sub-FCN is also controlled by the rebalancing
algorithm, f2 is bounded by f1 as follows:

 2 1
2 2

2 2

1
1 (1)

n f
f r

m m

Then, from (5) and (6),

 1 2 0 2
2 1 2

1 2 2 1 2

1 1
1 (1) 1 (1)

n n f n
f r r

m m m m m

Thus, the load on every link is also upper bounded for five-
stage FCNs.

V. MODIFICATION TECHNIQUES

This section presents two modification techniques to
improve the load equality of the rebalancing algorithm. These
techniques add criteria for selecting the middle switch index.
However, they do not change the conditions that F(i, j, k)s
must satisfy. Therefore, (3) holds even if these techniques are
applied. Consequently, the upper bound expressed by (4) or
(7) is unchanged by these techniques.

A. Uplink flow diffusion

The rebalancing algorithm uses F(i, j, k) and flow arrival
and completion events from the local information. Therefore,
of the available local information, U(i, j) remains unused.
Although the rebalancing algorithm decreases the difference
between the F(i, j, k)s for a particular pair of i and k, the uplink
load U(i, j) is not necessarily uniformly distributed. For a new
flow arrival, the middle switch MJ is selected such that
F(i, J, k) is the minimum of the F(i, j, k)s. In this process, there
may be two or more candidates for J. Let us select J from the
candidates so that U(i, J) is the minimum of the candidates.
Then, flows are more uniformly distributed between the
uplinks. This does not necessarily improve the load equality
between the downlinks; however, the performance is
improved for the uplinks.

Similarly, flow diffusion via rerouting can also be
modified using U(i, j). For rerouting, middle switch MJ is
selected such that F(i, J, k) is the maximum of the F(i, j, k)s.
Suppose that there are two or more such indices J. Then, it is
possible to use the index that maximizes U(i, J). We refer to
this modification using U(i, j) as modification 1.

B. Start index for scanning the middle switches

The order of searching for middle switch index J also
affects the performance of the rebalancing algorithm. Assume
that J is scanned in the order of 0, 1, …, m – 1 for a new flow

1st/5th Stage

2nd/4th Stage

3rd Stage

. . .

. . .

.

.

Sub-FCN 0 Sub-FCN m1 – 1. . .

0

0

m2 – 1 0 m2 – 1

r2 – 1

n2

0 r2 – 1

0 1 r1 – 1

n1

.........

...

... ...

... ...

... ...

... ...

r1 Switches

r2m1 switches

m2m1 switches

74

International Journal on Advances in Networks and Services, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/networks_and_services/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

arrival. Then, a smaller index is more likely to be selected as
J. Therefore, F(i, j, k) has a high probability of being larger
for a smaller index j even though the differences between the

F(i, j, k)s are bounded by for fixed i and k. According to (1)
and (2), this implies that U(i, j) and D(j, k) also tend to be
larger for a smaller value of j. To avoid this imbalance
between U(i, j) and D(j, k), the scanning of middle switches
should start from a different index depending on k for a fixed
value of i. Similarly, the start index should differ depending
on i for a fixed value of k. In addition, the start index should
be evenly distributed between 0, 1, …, m – 1 for different
values of i or k. To satisfy this requirement, let us examine the
following start index js:

 () /sj i k m r (8)

If js is greater than m – 1, js is replaced by js mod m. In (8), the
term /m r is necessary for evenly distributing js between 0,
1, …, m – 1 for the case of 2m r . For a new flow arrival,
the index is scanned in the order of js, js + 1, js + 2, …; if the
index reaches m, it wraps to 0.

For rerouting, simulation results reveal that the index

should be started from (js + m) mod m and then decreased. If

the index reaches – 1, it wraps to m – 1. The rationale for this

scheme is as follows. The scheme aims to generate a situation

in which (, ,)sF i j k (, 1,)sF i j k (, 2,)sF i j k . To

maintain this situation, it is preferable to select J from later

elements of the sequence js, js + 1, js + 2, …, (js + m) mod m

because F(i, J, k) decreases due to rerouting. The use of the

abovementioned start index is hereafter referred to as

modification 2.

VI. EVALUATION

The effectiveness of the improvements was evaluated
using computer simulations. The simulations examined the
rebalancing and balancing algorithms to which modifications
1 and 2 were applied. For comparison, the original rebalancing
and balancing algorithms reported in [12] were also evaluated.

In the rebalancing algorithm, parameter was set to 1.

A. Load equality metric

The degree of load equality was estimated using the
following metrics, which were also used in [12]:

 Maximum: the maximum number of flows in the links
at a certain measurement time

 Variance: the variance in the flow numbers in the
links at a certain measurement time

 Bad links: the number of links in which the number
of flows exceeds threshold C at a certain measurement
time

By using three different metrics, it is possible to reliably
evaluate load equality. Of the metrics, it is evident that
variance is an adequate measure for load equality. However,
even for the same variance or standard deviation value, the
degree of traffic congestion may differ. For example, consider
two cases that exhibit the same variance value. For these cases,

suppose that the maximum number of flows passing through
a link is greater for one case than the other. Then, because the
flows share the link capacity, the throughput of a flow will
decrease and the performance will be more strongly degraded
in the former case. This suggests that the maximum metric is
necessary as well.

It is also evident that the employment of the variance and
maximum metrics are insufficient. Consider two cases with an
identical maximum metric value. The first case is a situation
in which the number of flows takes the maximum value for
only one link but is not large for any other links. In contrast,
in the second case, the number of flows is equal or close to the
maximum value for many links. It is clear that a greater
number of flows will be degraded in the latter case. That is,
the range of flows affected by congestion differs for these
cases. The bad links metric is thus essential for distinguishing
this difference.

B. Simulation model

In the simulations, the following two network models were
employed:

 Three-stage FCN with r = 48, m = n = 24, and

 Five-stage FCN: r1 = 144, m1= n1 = 8, and m2 = n2 =
r2 =12.

The parameters used for the three-stage FCN were the same
as those used in the model examined in [11]. Thus, the
parameters were adequate for simulating a realistic network.
The parameters for the five-stage FCN model were
determined so that the same number of links as in the three-
stage model were generated between the stages. Thus, for both

models, there were m r = m1 r1 = m1 m2 r2 = 1,152
uplinks and downlinks between stages. The total number of

input or output ports was also 1,152 (= r n = r1 n1).
A flow was generated by opening a socket between hosts

a and z, which were connected to two different input/output
switches. By opening a socket, two flows were generated in
the direction from a to z as well as in the reverse direction.

The simulation examined five traffic models. These
models were constructed as follows. A previous study [7]
reported that, in a real-world data center, an average machine
has 10 concurrent flows. By aggregating the traffic from 10
such machines, the average number of flows is 100 for a port
on each input/output switch. Four traffic models simulated
this situation, and one traffic model simulated a lighter load,
i.e., 25 flows on average for each input/output port.

The average number of flows was set to 100 or 25 for a
port as follows. The duration of a socket was a random value
according to an exponential distribution with an average of
57.6 s. This value is realistic to some extent because 10’s of
gigabytes of data are transmitted for some “big-data”
applications [11]. The transfer time will reach some ten
seconds for such applications even if the flow throughput
reaches some Gb/s. To set the average number of flows to 100,
the interval of opening sockets was randomly determined by
an exponential distribution at an average of 0.001 s. Now, let
N flows exist at a certain time in the FCN. Then, on average,
N/57.6 flows are completed in 1 s whereas 2/0.001 flows are
generated in 1 s. In equilibrium, these flow completion, and

75

International Journal on Advances in Networks and Services, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/networks_and_services/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

generation rates are balanced. This suggest that N equals 2
57.6/0.001. Thus, the average number of flows provided to
one of 1152 input or an output port is 100. Similarly, by setting
the average interval of opening sockets to 0.004 s, the average
number of flows to a port is 25.

The threshold for bad links, C, was set to 105 for the
models, where the average number of flows given to a port is
100. When the average number of flows is 25, C was set to 30.
These values were slightly larger than the average number of
flows for the given traffic condition. The values of the above
metrics would have been smaller if the flows were more
uniformly diffused.

Four traffic models are the same in point that the average
number of flows given to a port is 100. Of the models, three
are intended for the three-stage FCN, while one model is
intended for the five-stage FCN. The models intended for the
three-stage FCN differ in their selection of source-destination
pairs for flows. The models are defined as follows.

Traffic #1: For this model, the source-destination switch pair
is uniformly distributed. To generate this model, a pair of
different source and destination switches is randomly selected
with equal probability. Then, input and output ports are
randomly selected for the source and destination switches.

Traffic #2: This model simulates lightly skewed traffic.
Namely, for a randomly selected source switch index i, the
destination switch index k is selected from a certain range of
switch indices with equal probability. The difference between
k and i is kept greater than r/4. Specifically, k is set to a value
R(i + x) where

 () modR x x r (9)

and r/4 < x < 3r/4.

Traffic #3: This model simulates heavily skewed traffic. For
a randomly selected source switch index i, the destination
switch index is selected from the following three numbers:
R(i + r/2 – 1), R(i + r/2), and R(i + r/2 +1).

Traffic #4: For this model, flows are generated similarly as
for Traffic #1 except that a flow passes through different
second/fourth-stage switches for the source and destination
sides. Thus, every flow passes through a third-stage switch.
Using this rule, an equal average load is provided to a link
between first/fifth-stage and second/fourth-stage switches as
well as to a link between second/fourth-stage and third-stage
switches.

Additionally, light traffic load was also examined for the
three-stage FCN by the following model.

Traffic #5: This model is the same as Traffic #1 except that
the average number of flows given to a port is 25.

The sockets were opened 2 106 times for Traffic #1–#4

and 5 105 times for Traffic #5. The metrics were measured

every 1 s in the period from 401–1,900 s. The system was
considered to be in equilibrium during this period. At each
measurement time, the metrics were obtained from 2,304 links
(1,152 uplinks and 1,152 downlinks) for the three-stage FCN,
and 4,608 links for the five-stage FCN. By executing this
metric calculation from 401 s to 1,900 s, 1,500 samples were
obtained for one execution of the simulation program. This
process was repeated 10 times with different initial values for
the random function to obtain reliable results. The averages of
the metrics were computed from the measured data.

Hereafter, the term maximum signifies the average of the
sampled maxima. Thus, values labeled as the maximum are
real numbers, although each sample value of the maximum
metric is an integer. Similarly, the average value of the bad
link metric is also a real number, although its sample is an
integer.

The simulation was performed by a custom event-driven
simulation program that listed events, including flow
generations and flow completions, in a table. Then, the
program executed the process associated with the event
according to the scheduled time. Because the proposed
methods were evaluated for flow characteristics, it was not
necessary to consider packet behaviors or protocols that are
precisely modeled by existing simulation platforms (for
example, ns-3 [19]). For this purpose, the use of a custom
program was more efficient. The program was built using the
C language and compiled using GCC 4.8.5. The simulation
was performed on a Core i3/16GB RAM PC running on
CentOS 7.

C. Simulation results

Table II summarizes the simulation results for the
rebalancing algorithm and the three-stage FCN fed with
Traffic #1, while Table III presents the results for the
balancing algorithm, the three-stage FCN, and Traffic #1.

TABLE II. RESULTS FOR THE REBALANCING ALGORITHM, THREE-
STAGE FCN, AND TRAFFIC #1 MODEL.

Algorithms Maximum

(flows)

Variance

(flows2)

Bad Links

(links)

Original Version 111.701 11.154 122.816

Modification 1 111.102 7.713 66.366

Modification 2 109.276 8.710 75.086

Modifications 1 & 2 110.370 7.163 55.734

TABLE III. RESULTS FOR THE BALANCING ALGORITHM, THREE-STAGE

FCN, AND TRAFFIC #1 MODEL.

Algorithms Maximum

(flows)

Variance

(flows2)

Bad Links

(links)

Original Version 113.429 15.121 186.507

Modification 1 112.686 9.996 101.800

Modification 2 110.846 11.781 127.464

Modifications 1 & 2 112.420 9.734 97.372

Tables II and III demonstrate that the load equality was
successfully improved by modifications 1 and 2. As illustrated
in the tables, every metric decreased when the modifications
were applied. In particular, modification 1 effectively

76

International Journal on Advances in Networks and Services, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/networks_and_services/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

improved the variance and bad links metrics. Therefore, this
modification is effective even though it does not affect the
equality between the D(j, k)s. The improvements due to
modification 2 were not as large as those due to modification
1. However, all metrics also decreased when modification 2
was applied. The best results were obtained for the variance
and bad links metrics when both modifications 1 and 2 were
applied. The improvement in the bad links metric was
particularly notable. This implies that the number of flows is
concentrated in a narrow range for most links. For the
examined network, the bound expressed by (4) is 145 when f0
is assumed to be 100. Thus, from Table II, the actual
maximum appears much smaller than that upper bound.

In a comparison between the rebalancing and balancing
algorithms, it was found that the former was always superior
to the latter for any case. However, the rerouting performed
by the rebalancing algorithm may cause packet reordering,
which may decrease the throughput. Meanwhile, the proposed
modifications considerably improved the load equality of the
balancing algorithm, which does not perform rerouting. When
the modifications were applied, the load equality was better
for the balancing algorithm than that for the original version
of the rebalancing algorithm. Therefore, a practical solution is
to use the balancing algorithm with the proposed
modifications.

Tables IV and V list the results for the three-stage FCN
and Traffic #2, lightly skewed traffic. Table IV pertains to the
case of the rebalancing algorithm, while Table V pertains to
the case of the balancing algorithm.

TABLE IV. RESULTS FOR THE REBALANCING ALGORITHM, THREE-
STAGE FCN, AND TRAFFIC #2 MODEL.

Algorithms Maximum

(flows)

Variance

(flows2)

Bad Links

(links)

Original Version 109.545 8.127 61.666

Modification 1 109.108 6.224 35.673

Modification 2 107.823 6.653 36.653

Modifications 1 & 2 108.570 5.865 29.412

TABLE V. RESULTS FOR THE BALANCING ALGORITHM, THREE-STAGE

FCN, AND TRAFFIC #2 MODEL.

Algorithms Maximum

(flows)

Variance

(flows2)

Bad Links

(links)

Original Version 110.703 10.365 96.802

Modification 1 110.209 7.596 55.571

Modification 2 109.038 8.521 63.876

Modifications 1 & 2 110.018 7.450 52.879

Tables IV and V reveal that every metric also decreased
for the case of Traffic #2 when the modifications were applied.
Similarly to the case of Traffic #1, the best result was obtained
by applying both modifications 1 and 2.

Despite the results presented in Tables II–V, it cannot be
concluded that the modifications are always effective for all
traffic models. This is illustrated in Tables VI and VII, which
display the results for Traffic #3. Table VI displays the results
for the rebalancing algorithm, while Table VII displays the
results for the balancing algorithm.

TABLE VI. RESULTS FOR THE REBALANCING ALGORITHM, THREE-
STAGE FCN, AND TRAFFIC #3 MODEL.

Algorithms Maximum

(flows)

Variance

(flows2)

Bad Links

(links)

Original Version 105.863 4.535 12.716

Modification 1 105.762 4.383 11.224

Modification 2 105.920 4.801 15.700

Modifications 1 & 2 105.817 4.407 11.503

TABLE VII. RESULTS FOR THE BALANCING ALGORITHM, THREE-STAGE

FCN, AND TRAFFIC #3 MODEL.

Algorithms Maximum

(flows)

Variance

(flows2)

Bad Links

(links)

Original Version 106.317 4.858 15.490

Modification 1 106.157 4.633 13.310

Modification 2 106.411 5.197 19.384

Modifications 1 & 2 106.194 4.649 13.475

For Traffic #3, Tables VI and VII indicate that
modification 2 is not particularly effective. As illustrated in
the tables, when modification 2 was applied, every metric
increased. This result can be explained by the definition of the
search start index js used in modification 2. As seen in (8), js
is determined by the indices of the source and destination
switches. Meanwhile, a source-destination pair is selected
from very few (namely, three) candidates for Traffic #3. Due
to this heterogeneity in source-destination pairs, the start
index js is not efficiently distributed over 0, 1, …, m – 1, thus
leading to a less uniform load on the links.

Tables VIII and IX present the results for the five-stage
FCN and Traffic #4. The results for the rebalancing algorithm
are presented in Table VIII, while the results for the balancing
algorithm are presented in Table IX. The tables demonstrate
that each modification efficiently improved the metrics for the
five-stage FCN. Similarly to the case of the three-stage FCN,
the best result was obtained by applying modifications 1 and
2. However, the advantage of applying modifications 1 and 2
is not great in comparison with the case of applying only
modification 1.

TABLE VIII. RESULTS FOR THE REBALANCING ALGORITHM, FIVE-STAGE

FCN, AND TRAFFIC #4 MODEL.

Algorithms Maximum

(flows)

Variance

(flows2)

Bad Links

(links)

Original Version 120.116 19.729 417.707

Modification 1 119.098 13.414 283.588

Modification 2 118.053 17.403 378.419

Modifications 1 & 2 118.958 13.249 280.890

TABLE IX. RESULTS FOR THE BALANCING ALGORITHM, FIVE-STAGE

FCN, AND TRAFFIC #4 MODEL.

Algorithms Maximum

(flows)

Variance

(flows2)

Bad Links

(links)

Original Version 122.126 23.903 486.419

Modification 1 120.941 15.679 319.221

Modification 2 119.295 20.266 424.823

Modifications 1 & 2 120.899 15.492 315.647

77

International Journal on Advances in Networks and Services, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/networks_and_services/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

For Traffic #5, Table X shows the results for the
rebalancing algorithm, and Table XI shows the results for the
balancing algorithm. As shown in the tables, the characteristic
for Traffic #5 differs from those for other traffic models. For
the case of Traffic #5, modification 2 is more effective for the
maximum and bad links metrics than modification 1. The
variance metric is smaller for modification 1 than for
modification 2, although the difference is almost negligible.
When both modifications 1 and 2 were applied, the maximum
and bad links metrics are greater than those for the case of
applying modification 2. However, every metric becomes
smaller by employing both modifications than that by the
original version.

TABLE X. RESULTS FOR THE REBALANCING ALGORITHM, THREE-
STAGE FCN, AND TRAFFIC #5 MODEL.

Algorithms Maximum

(flows)

Variance

(flows2)

Bad Links

(links)

Original Version 36.486 11.666 122.128

Modification 1 35.885 6.495 60.932

Modification 2 33.308 6.825 37.355

Modifications 1 & 2 35.399 5.973 51.601

TABLE XI. RESULTS FOR THE BALANCING ALGORITHM, THREE-STAGE

FCN, AND TRAFFIC #5 MODEL.

Algorithms Maximum

(flows)

Variance

(flows2)

Bad Links

(links)

Original Version 36.558 11.737 123.221

Modification 1 35.906 6.539 61.762

Modification 2 33.303 6.832 37.560

Modifications 1 & 2 35.498 5.995 51.809

As illustrated in Tables I–XI, the effectiveness of each
technique depends on the traffic model. For Traffic #1–#4,
modification 1 is more effective. For Traffic #3, modification
2 does not improve the metrics. However, for Traffic #5,
modification 2 works very well. When both modifications 1
and 2 were applied for Traffic #1 and #2, most metric values
became smaller than those for the case of applying either one
of modification 1 or 2. However, even if both modifications
were applied, the metric values almost equaled those for the
case of applying modification 1 for Traffic #3. Furthermore,
when both modifications were applied for Traffic #5, some
metric values became greater than those for the case of
applying modification 2.

These results suggest that the best performance is obtained
by selecting the technique depending on the characteristic of
traffic load. For heavy and skewed loads, modification 1
should be used. If the load is light, modification 2 will be a
better choice. However, if predicting the load characteristic is
difficult, both modifications 1 and 2 should be applied. By
applying both modifications, the metrics were considerably
improved compared to the original version for every
examined traffic model. Thus, applying both modifications is
an effective way to improve load equality, although it does not
always yield the best results.

D. Discussion

In Section VI.C, the proposed techniques are evaluated
through the number of flows that pass through a link. However,
it is uncertain whether this advantage in flow number equality
directly leads to the improvement of the performance
experienced by users. For the clarification of this point, it is
necessary to perform additional computer simulation, which
precisely models the packet-level behaviors including
protocol and queueing processes. Through this simulation, the
performance improvement will be confirmed through the
metrics such as throughputs and response time, which are
experienced by users. Actually, the packet level simulation of
the flow diffusion algorithms has been partly done and
reported in [32]. In [32], the TCP throughput is measured for
the bulk data transfer application. The result shows that the
number of flows with small throughputs successfully
decreases through equal flow diffusion obtained by the
balancing algorithm. This characteristic implies that the
proposed techniques will effectively reduce the probability of
throughput degradation because the techniques successfully
improve the flow number equality.

As a future study, implementation of the rebalancing or
balancing algorithm with the proposed techniques may be
required to assess the feasibility and advantage of the
approach. For implementation, it will be necessary to employ
a mechanism that enables flow-based routing, for example,
OpenFlow [33]. Additionally, the start and end of a flow must
be detected to run the rebalancing algorithm. This detection of
flow start/end will be achieved by the techniques presented in
[34]. However, further study is necessary to clarify if it is
possible to set the routing table entry from a flow detection in
a practical processing time.

VII. CONCLUSION AND FUTURE WORK

This paper investigates two techniques to improve the
rebalancing algorithm [12], which diffuses flows in an FCN.
The first technique decreases the difference between the
uplink loads by adding a criterion for determining the middle
switch used in the routing or rerouting processes. In addition,
the load equality depends on the scanning order of the middle
switch indices. Based on this, the second technique
determines the start index for scanning to balance the loads.
The two techniques were applied to the rebalancing and
balancing algorithms and were evaluated using computer
simulations. The balancing algorithm is a version of the
rebalancing algorithm that is modified to omit the rerouting
process. The results demonstrated that the proposed
techniques successfully improved load equality.

By expanding the work of a previous study [1], this study
examined the application of the techniques to a five-stage
FCN. For a five-stage FCN, the upper bound was analyzed for
the number of flows on a link on the basis of the upper bound
for the three-stage FCN case. To the best of the author’s
knowledge, this bound has never been reported in the
literature. Thus, the derivation of that bound is an important
contribution. In addition, computer simulations confirmed
that the proposed techniques were effective for the five-stage

78

International Journal on Advances in Networks and Services, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/networks_and_services/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

FCN case. This effectiveness has also not been reported in
previous studies.

As another expansion of [1], performance against a
broader range of traffic models was tested via computer
simulations. Several of the models employed skewed traffic
matrices, for which the source-destination pair of a generated
flow was selected from a limited number of candidates. In
addition, one model simulated a lighter traffic load than other
models. The results demonstrated that the second technique
was not effective for a highly skewed traffic matrix. However,
the second technique is more effective for light traffic loads.
In addition, load equality was improved for every tested traffic
model when both proposed techniques were applied. Thus, as
an important result, it was found that both techniques should
be used independent of traffic loads.

Further study is necessary to determine how the load
equality enhanced by the proposed techniques affects packet-
level performance, such as packet latency and throughput. To
achieve this, a more precise packet-level computer simulation
is required. The implementation of the two proposed
techniques is also important for future work.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant
Number JP19K11928. The author would like to thank Enago
(www.enago.jp) for the English language review.

REFERENCES

[1] S. Ohta, “Techniques to improve a flow diffusion algorithm for folded
Clos networks,” The Eighteenth International Conference on Networks
(ICN 2019), Valencia, Spain, Mar. 2019, pp. 68–73, ISBN: 978-1-
61208-695-8.

[2] A. Singh et al., “Jupiter rising: a decade of Clos topologies and
centralized control in Google’s datacenter network,” The 2015 ACM
Conference on Special Interest Group on Data Communication,
London, United Kingdom, Aug. 2015, pp. 183–197, ISBN: 978-1-
4503-3542-3, doi: 10.1145/2785956.2787508.

[3] Z. Guo and Y. Yang, “On nonblocking multicast fat-tree data center
networks with server redundancy,” IEEE Trans. on Computers, vol. 64,
no. 4, pp. 1058–1073, Apr. 2014.

[4] C. Guo et al., “DCell: a scalable and fault-tolerant network structure
for data centers,” ACM SIGCOMM 2008 Conference on Data
communication, Seattle, WA, USA, Aug. 2008, pp. 75–86, ISBN: 978-
1-60558-175-0, doi: 10.1145/1402958.1402968.

[5] C. Guo et al., “BCube: a high performance, server-centric network
architecture for modular data centers,” ACM SIGCOMM 2009
Conference on Data communication, Barcelona, Spain, Aug. 2009, pp.
63–74, ISBN: 978-1-60558-594-9, doi:10.1145/1592568.1592577.

[6] N. Farrington and A. Andreyev, “Facebook’s data center network
architecture,” 2013 Optical Interconnects Conference, Santa Fe, NM,
USA, May 2013, pp. 49–50, ISSN: 2376-8665, doi:
10.1109/OIC.2013.6552917.

[7] A. Greenberg et al., “VL2: a scalable and flexible data center network,”
Communications of the ACM, vol. 54, no. 3, pp. 95–104, Mar. 2011.

[8] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” ACM SIGCOMM 2008 conference
on Data communication, Seattle, WA, USA, Aug. 2008, pp. 63–74,
ISBN: 978-1-60558-175-0, doi:10.1145/1402958.1402967.

[9] C. Clos, “A study of nonblocking switching networks,” Bell System
Technical Journal, vol. 32, no. 2, pp. 406–424, Mar. 1953.

[10] S. Scott, D. Abts, J. Kim, and W.J. Dally, “The BlackWidow high-
radix Clos network,” The 33rd Annual International Symposium on
Computer Architecture (ISCA ’06), Boston, MA, USA, June 2006,

pp. 16–28, ISBN:0-7695-2608-X, ISSN: 1063-6897, doi:
10.1109/ISCA.2006.40.

[11] E. Zahavi, I. Keslassy, and A. Kolodny, “Distributed adaptive routing
for big-data applications running on data center networks,” 2012
ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS ’12), Austin, Tx, USA, Oct. 2012,
pp. 99–110, ISBN: 978-1-4503-1685-9.

[12] S. Ohta, “Flow diffusion algorithms based on local and semi-local
information for folded Clos networks,” The Fourth International
Conference on Electronics and Software Science (ICESS 2018),
Takamatsu, Japan, Nov. 2018, pp. 46–54, ISBN: 978-1-941968-52-9.

[13] A.Jajszczyk, “Nonblocking, repackable, and rearrangeable Clos
networks: fifty years of theory evolution,” IEEE Communications
Magazine, vol. 41, no. 10, pp.28–33, Oct. 2003.

[14] D. G. Cantor, “On nonblocking switching networks,” Networks, vol. 1,
no. 4, pp. 367–377, winter 1971.

[15] H.-A. Kim and D. R. O’Hallaron, “Counting network flows in real
time,” IEEE Global Telecommunications Conference (GLOBECOM
2003), San Francisco, CA, USA, Dec. 2003, pp. 3888–3893, ISBN: 0-
7803-7974-8, doi: 10.1109/GLOCOM.2003.1258959.

[16] J. W. Roberts, “Traffic theory and the Internet,” IEEE Communications
Magazine, vol. 39, no. 1, pp.94–99, Jan. 2001.

[17] L. A. Bassalygo, I. I. Grushko, and V. I. Neiman, “The Structures of
One-Sided Connecting Networks,” The Sixth International Teletraffic
Congress (ITC 6), Munich, Germany, Sept. 1970. Available from
https://itc-conference.org/en/itc-library/itc6.html, 2019.11.18.

[18] G. Broomel and J. R. Heath, “Classification categories and historical
development of circuit switching topologies,” Computing Surveys, vol.
15, no. 2, pp. 95–133, June 1983.

[19] N. Fujii, “Application of a rearrangement algorithm for digital cross-
connect system control,” The Eighth Annual Joint Conference of the
IEEE Computer and Communications Societies (IEEE
INFOCOM ’89), Ottawa, Canada, Apr. 1989, pp. 228–233, ISBN: 0-
8186-1920-1, doi: 10.1109/INFCOM.1989.101458.

[20] M. K. Panda, T. Venkatesh, V. Sridhar, and Y. N. Singh, “Architecture
for a class of scalable optical cross-connects,” First International
Conference on Broadband Networks, San Jose, CA, USA, Oct. 2004,
pp. 233–242, ISBN: 0-7695-2221-1, doi:
10.1109/BROADNETS.2004.16.

[21] Y. –K. Chen and C. –C. Lee, “Fiber Bragg grating-based large
nonblocking multiwavelength cross-connects,” Journal of Lightwave
Technology, vol. 16, no 10, pp. 1746–1756, Oct. 1998.

[22] Y. –H. Kao, N. Alfaraj, M. Yang and H. J. Chao, “Design of high-radix
Clos network-on-chip,” The 2010 Fourth ACM/IEEE International
Symposium on Networks-on-Chip (NOCS ’10), Grenoble, France,
May 2010, pp. 181–188, ISBN: 978-0-7695-4053-5 doi:
10.1109/NOCS.2010.27.

[23] A. Zia, S. Kannan, G. Rose and H. J. Chao, “Highly-scalable 3D Clos
NOC for many-core CMPs,” The 8th IEEE International NEWCAS
Conference 2010 (NEWCAS2010), Montreal, QC, Canada, June 2010,
pp. 229–232, doi: 10.1109/NEWCAS.2010.5603776.

[24] A. Joshi et al., “Silicon-photonic Clos networks for global on-chip
communication,” The 2009 Third ACM/IEEE International
Symposium on Networks-on-Chip (NOCS ’09), , San Diego, CA, USA,
May 2009, pp. 124 – 133, ISBN: 978-1-4244-4142-6, doi:
10.1109/NOCS.2009.5071460.

[25] F. Hassen and L. Mhamdi, “A Clos-network switch architecture based
on partially buffered crossbar fabrics,” 2016 IEEE 24th Annual
Symposium on High-Performance Interconnects (HOTI), Santa Clara,
CA, USA, Aug. 2016, pp. 45–52, ISSN: 2332-5569, doi:
10.1109/HOTI.2016.020.

[26] F. Hassen and L. Mhamdi, “High-capacity Clos-network switch for
data center networks,” 2017 IEEE International Conference on
Communications (ICC 2017), Paris, France, May 2017, paper
NGNI07-1, pp. 1–7, ISSN: 1938-1883, ISBN: 978-1-4673-8999-0, doi:
10.1109/ICC.2017.7997147.

79

International Journal on Advances in Networks and Services, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/networks_and_services/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[27] S. Yang, S. Xin, Z. Zhao, and B. Wu, “Minimizing packet delay via
load balancing in Clos switching networks for datacenters,” 2016
International Conference on Networking and Network Applications
(NaNA 2016), Hakodate, Japan, July 2016, pp. 23–28, doi:
10.1109/NaNA.2016.14.

[28] S. Ghorbani, B. Godfrey, Y. Ganjali, and A. Firoozshahian, “Micro
load balancing in data centers with DRILL,” The 14th ACM Workshop
on Hot Topics in Networks (HotNets-XIV), Philadelphia, PA, USA,
Nov. 2015, paper 17, ISBN: 978-1-4503-4047-2,
doi:10.1145/2834050.2834107.

[29] L. G. Valiant, “A scheme for fast parallel communication,” SIAM J.
Computing, vol. 11, no. 2, pp. 350–361, May 1982.

[30] S. Ohta, “A simple control algorithm for rearrangeable switching
networks with time division multiplexed links,” IEEE J. on Selected
Areas in Communications, vol. SAC-5, no. 8, pp.1302–1308, Oct.
1987.

[31] ns developers, ns-3, Network Simulator [Online], Available from
https://www.nsnam.org/, 2019.11.09.

[32] S. Ohta, “TCP throughput achieved by a folded Clos network
controlled by different flow diffusion algorithms,” International
Journal of Information and Electronics Engineering, in press..

[33] O. Cocker and S. Azodolmolky, Software-Defined Networking with
OpenFlow - Second Edition: Deliver innovative business solutions,
Packt, Birmingham, UK, 2017.

[34] S. Zhu and S. Ohta, “Real-time flow counting in IP networks: strict
analysis and design issues,” Cyber Journals: Multidisciplinary Journals
in Science and Technology, Journal of Selected Areas in
Telecommunications, vol. 2, no. 2, pp. 7–17, Feb. 2012.

80

International Journal on Advances in Networks and Services, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/networks_and_services/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

