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Abstract—Folded Clos Networks (FCNs) are switching 

networks constructed by connecting small switches aligned to 

(2p + 1)-stages (p = 1, 2, 3, …). FCNs have often been examined 

in previous studies on data center networks. To take advantage 

of the high bandwidth provided by an FCN, it is necessary to 

establish an adequate routing method that uniformly diffuses 

flows. A previous study proposed the rebalancing algorithm as 

such a method, which is executable with locally obtainable 

information at each switch. By applying the rebalancing 

algorithm to an FCN, it becomes possible to impose an upper 

bound on the number of flows passing through a link. This 

means that the rebalancing algorithm prevents the link load 

from becoming excessively high. This paper reviews theoretical 

aspects of the algorithm applied to three- and five-stage FCNs. 

Then, two techniques are proposed for improving the 

rebalancing algorithm in terms of the load equality between 

links. The techniques distribute traffic more uniformly and do 

not affect the upper bound on the number of flows on a link. The 

effectiveness of the two techniques is assessed via computer 

simulation for different traffic and network models. The 

network models include a three-stage FCN and a five-stage FCN. 

The simulation results demonstrate the effectiveness of the two 

proposed techniques. 

Keywords- network; algorithm; routing; data center; packet. 

I.  INTRODUCTION 

Data center networks are becoming increasingly important, 
as the majority of popular information services are provided 
via data centers. It is thus essential to establish topologies for 
high-performance data center networks. To this end, studies 
on data center networks have been performed based on several 
topologies, including the Clos network [1], [2] fat-tree [3], 
DCell [4], and BCube [5]. Among these topologies, the Clos 
network has often been studied because it functions as a 
scalable and high-bandwidth network by interconnecting 
small commodity switches. Various data center networks 
based on the Clos network topology have been implemented 
[2], [6]–[8]. 

A Clos network is a three-stage nonblocking switching 
network originally developed by Charles Clos in 1953 [9]. On 
the basis of this three-stage network, it is possible to configure 
nonblocking switching networks with (2p + 1)-stages (p = 1, 
2, 3, …). In data center network applications, the network 
appears in the form of a Folded Clos Network (FCN). A three-
stage FCN is roughly equivalent to a three-stage network; 
however, it is constructed by folding the corresponding three-

stage Clos network at its center. Similarly, it is also possible 
to construct a five- or seven-stage FCN. 

To apply an FCN to data center networks, the routing of a 
packet is important. Inadequate routing may cause a load 
imbalance between the links, which in turn may cause traffic 
congestion and degrade performance. However, if the load is 
uniformly distributed among the links, an FCN can achieve 
high throughput by fully utilizing the bandwidth of every link. 

Several previous studies [7], [8], [10] have used a routing 
method that involves forwarding a packet to a randomly 
selected route. This method is reasonable, as it uniformly 
distributes the average number of flows between links. 
However, using this method, there is a high probability that 
the load on a given link will become excessively large. 
Consequently, traffic congestion may occur due to heavily 
loaded links, thus degrading network performance. As 
discussed in [11], this problem may be critical for big data 
applications, which require high-bandwidth transmission. It is 
therefore important to develop a routing algorithm that 
diffuses the traffic load more uniformly than random routing. 

A routing algorithm for an FCN should be executable in a 
distributed manner to decrease the processing overhead 
generated by handling frequent route decisions. In addition, 
the algorithm should function without global information of 
the entire network to eliminate the communication overhead 
associated with gathering information.  

Routing can be performed on either a per-packet or per-
flow basis. The former method determines a route in a packet-
by-packet manner. Thus, packets that belong to the same flow 
may pass through different routes. Since delays are also 
different depending on the routes, packet reordering occurs for 
per-packet routing. Meanwhile, the latter method determines 
a unique route for a flow. Every packet of the flow goes 
through that route. This study examines a method based on 
per-flow routing because packet reordering is unavoidable for 
per-packet routing. 

Ohta [12] presented two distributed algorithms – the 
rebalancing algorithm and the load sum algorithm – that 
diffuse flows in FCNs. Using computer simulations, it was 
demonstrated that these methods diffuse flows more 
uniformly than random routing. Of the two methods, the 
rebalancing algorithm uses information that is locally 
obtainable at the source switch of a flow. Although the load 
sum algorithm has superior performance with respect to load 
equality, it is less practical due to the communication 
overhead between switches. Thus, if the rebalancing 
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algorithm is improved to diffuse flows more uniformly, a 
more practical and efficient algorithm can be obtained. 

In [1], Ohta proposed techniques for improving the 
rebalancing algorithm with respect to load equality. These 
techniques are based on information that is locally obtainable 
at the source switch of a flow. The first technique modifies the 
algorithm to distribute uplink loads more evenly, while the 
second technique utilizes the fact that the algorithm has a 
process for scanning middle switch indices for routing and 
rerouting. Therefore, using the second method, the order of 
scanning the middle switch indices is determined to uniformly 
diffuse flows. 

An advantage of the rebalancing algorithm is that an upper 
bound is theoretically derived for the number of flows on a 
link. When using the abovementioned improvement 
techniques, this upper bound is not affected. Therefore, the 
worst-case link load is limited, as in the case in which these 
techniques are not applied. The effectiveness of the two 
techniques was confirmed via computer simulations. 

This paper expands the work of [1] and offers the 
following contributions: 

 A discussion of the presented techniques applied to a 
five-stage FCN. 

 Performance evaluation under traffic conditions not 
considered in [1]. 

A theoretical upper bound is derived for the number of 
flows on a link for a five-stage FCN as well as a three-stage 
FCN. The performance of the proposed techniques applied to 
a five-stage FCN is also evaluated through computer 
simulation. With respect to traffic conditions, this paper 
examines several different traffic models in simulation. In one 
traffic model, flows are equally generated for every pair of 
source and destination switches. Other traffic models are 
lightly or heavily skewed. For these traffic conditions, flows 
are destined to a limited number of destination switches from 
a certain source switch. A traffic model that generates light 
load is also examined. The simulation results reveal that one 
of the proposed techniques is not effective for a highly skewed 
traffic model. However, this technique is more effective for 
light traffic load. The load equality is effectively improved for 
every examined traffic model if both proposed methods are 
used simultaneously. 

The remainder of this paper is organized as follows. 
Section II provides a discussion of the FCN, while Section III 
reviews related work. Section IV explains the rebalancing 
algorithm, while Section V presents two modification 
techniques. Section VI evaluates the effectiveness of the 
techniques, and Section VII concludes the paper. 

II. FOLDED CLOS NETWORK 

Figure 1 presents an example of a Clos network. As 
illustrated, the network is a three-stage switching network that 
consists of r first-stage switches, m second-stage switches, and 
r third-stage switches. Each first-stage switch has n input ports 
whereas each third-stage switch has n output ports. This 
switching network was originally proposed by Charles Clos 
[9] and has been comprehensively investigated over a long 
period of time [13]. 

It is possible to construct a five-stage Clos network by 

replacing the second-stage switches with three-stage Clos 

networks. For example, consider the case where n = m = 2 and 

r = 6 in the configuration in Figure 1. Then, by replacing the 

second-stage switch with a three-stage network of n = m = 2 

and r = 3, a five-stage network is obtained, as illustrated in 

Figure 2. By repeating this procedure, it is possible to 

construct a (2p + 1)-stage Clos network for any p > 1. 

 

Figure 1.  Example of a three-stage Clos network. 

 
Figure 2.  Example of a five-stage Clos network. 

The advantages of the Clos network are its small amount 

of hardware and nonblocking nature. To demonstrate its 

advantages in hardware amount, let N denote the total number 

of input or output ports. In the classical switching network 

theory, the hardware amount of a switching network is often 

measured by the number of crosspoints, assuming that each 

small switch is a crossbar. A single crossbar switch with N 

ports has N2 crosspoints, and the number of crosspoints is 

O(N3/2) for a three-stage Clos network [9]. Thus, the amount 

of hardware is much smaller for a Clos network than for a 

single crossbar switch. In addition, the number of crosspoints 

is O(N4/3) for a five-stage Clos network. Thus, a five-stage 

configuration can be constructed with less hardware for a 

larger value of N. It is also known that the amount of hardware 

for a Clos network is 2 (log 2) (log )( )e e NO Ne  when the number of 

stages is optimized for N [14]. 
A three-stage FCN is roughly equivalent to a three-stage 

Clos network. However, an FCN is constructed by folding the 
three-stage network at its center. An example of a three-stage 
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FCN is provided in Figure 3. In a three-stage FCN, the first- 
and third-stage switches are integrated into input/output 
switches, and the second-stage switches are middle switches 
that connect the input/output switches. 

 

Figure 3.  Example of a three-stage FCN. 

As illustrated in Figure 3, r input/output switches are 
labeled S0, S1, …, Sr – 1, while m middle switches are labeled 
M0, M1, …, Mm – 1. Every middle switch is connected to every 
input/output switch via an uplink and downlink. An uplink is 
set from an input/output switch to a middle switch, whereas a 
downlink is set in the reverse direction. Each input/output 
switch has n input/output ports. 

By implementing each switch as an IP (Internet Protocol) 
layer 2 or 3 switch, a data center network can be constructed 
on the basis of an FCN. It is known that a data center network 
based on Clos topology has the advantages of scalability and 
high bandwidth. 

Because this paper considers applications to data center 
networks, the information passes through the FCN via packets. 
Since a middle switch is connected to every input/output 
switch, a packet can reach its destination switch from an 
arbitrary middle switch via a downlink. Therefore, the source 
switch can transmit a packet to the destination switch via any 
middle switch. However, the traffic load on an uplink or 
downlink depends on the routing at the source switch. If the 
routing is inadequate, traffic congestion occurs, which 
degrades performance. Congestion can be avoided if the 
traffic is evenly diffused between the uplinks and downlinks 
in an FCN. It is therefore important to establish a routing 
method that is executed at the source switch of a packet. 

This paper assumes that routing is performed on a flow 
basis. A flow is a packet stream identified by a set of fields in 
the packet header [15]. A frequently used field set is {source 
address, destination address, protocol, source port, 
destination port}, which is associated with an IP socket. A 
different field set can also be used as flow identifiers. If a fixed 
route is assigned to a flow, packet reordering does not occur. 
This is advantageous because packet reordering leads to 
throughput degradation. This paper considers the case in 
which an FCN connects many hosts and processes via its N = 
nr input/output ports. In this situation, many concurrent flows 
exist between ports. 

Flows are categorized as elastic or stream [16] depending 
on the nature of the traffic. In this paper, it is assumed that the 
network handles elastic flows. This assumption is reasonable 
because many services are supported by TCP (Transmission 
Control Protocol), and TCP traffic is elastic. For elastic flows, 
the throughput of a flow is restricted by the link capacity 
portion shared with other flows. Therefore, to achieve high 
throughput, it is indispensable to uniformly diffuse the 
number of flows among links and decrease the maximum 
number of flows on a link. Thus, in this paper, the link load is 
assessed by the number of flows. 

Whereas the network illustrated in Figure 3 is based on a 
three-stage Clos network, it is also possible to construct an 
FCN from a five-stage Clos network. Figure 4 presents an 
example of a five-stage FCN. This network is the 
configuration that results from replacing a middle switch with 
an FCN in the configuration in Figure 3. This type of five-
stage FCN is used as a data center network, as reported in [6]. 

 
Figure 4.  Example of a five-stage FCN. 

III. RELATED WORK 

An FCN first appeared in the original work by Clos [9] as 
the triangular array configuration. The configuration has also 
been referred to as a Clos truncated network [17] or single-
sided Clos network [18]. Clos networks or FCNs have been 
used for various applications including telephone switching 
[9], [17] cross-connect systems [19]–[21], multi-processor 
computers [10], network-on-chip [22]–[24], and data center 
networks [1], [2], [6]–[8], [11], [12], [25]–[28]. 

For computer network applications, including data center 
networks, Clos networks are treated as packet switching 
networks. Various studies have investigated the application of 
Clos networks as packet switching networks. The routing 
methods examined in those studies are categorized as per-
packet routing and per-flow routing. As an example of per-
packet routing, Hassen and Mhamdi [25] investigated a Clos 
network that had crossbar switches with small-size buffers in 
each stage. For this configuration, Hassen and Mhamdi 
proposed distributed and centralized packet scheduling 
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mechanisms to achieve low packet delay and high throughput. 
However, their proposed method involves per-packet 
processing to perform scheduling. Thus, the processing load 
generated by each packet arrival will become critical for a 
large network that handles a large number of packets in a unit 
time. In addition, the advantage of a small-size buffer may not 
be significant because buffer memory is not expensive. 

In another study, Hassen and Mhamdi [26] investigated a 
modified Clos network configuration that employed a multi-
directional network on a chip as a switching module in each 
stage. This module provides interconnections between middle 
stage switching modules. For this network configuration, 
inter-module routing is performed based on global network 
congestion information. However, it is uncertain whether 
gathering congestion information for routing is practical. 

A quite different per-packet routing method was proposed 
by Yang et al. [27]. This method determines the switch 
connections in each stage from a given traffic matrix, where 
each element of the matrix represents the number of packets 
to be transmitted from a source to a destination during a 
certain period. The connections are reconfigured several times 
to minimize the cost during the transmission period. 
Unfortunately, it is very unlikely that an exact traffic matrix 
could be obtained in a real-world data center network. Thus, 
it may be difficult to apply their method. 

To avoid congestion in a Clos network, Ghorbani et al. 
[28] proposed a method that diffuses traffic on a packet-by-
packet basis. This method determines the next hop of a packet 
according to the queue length of each output buffer in a switch. 
Consequently, packets of a flow may go through routes with 
different queueing delays, and this delay variation may cause 
packet reordering. Ghorbani et al. performed a computer 
simulation and observed that 0.02 % of packets were delivered 
out of order. The extent to which this rate of packet reordering 
affects TCP throughput is unclear. 

The studies of [25]–[28] are theoretical, and the proposed 
methods are evaluated through computer simulations. 
However, an actual implementation of per-packet routing was 
reported by Scott et al. [10]. Their Clos network is designed 
for the interconnection of a multi-processor high performance 
computer. The routing method employed in their work 
determines the next hop of a packet depending on the buffer 
space. The proposed method is based on a custom packet 
format developed for the multi-processor computer. 
Consequently, their method will not be directly applicable to 
datacenter networks. 

A more practical approach to congestion avoidance is 
traffic diffusion based on per-flow routing methods. A 
common method of flow-based traffic diffusion involves 
routing a flow to a randomly selected middle switch. This 
technique, which is referred to as Valiant load balancing, is 
employed in the system implemented by Greenberg et al. [7] 
and was originally proposed by Valiant [29] for a binary cube 
topology. Al-Fares et al. [8] explored a method of computing 
routing table entries from the indices of switches and host 
identifiers. This is equivalent to randomly assigning route 
flows using the output of a hash function fed by switch indices 
and host identifiers. The architecture reported by Scott et al. 
employs a per-packet adaptive routing mechanism as well as 

per-flow deterministic routing [10]. For deterministic routing, 
flows are diffused to random middle switches via a hash 
function fed by input ports and destinations. 

The idea of randomly routing flows is reasonable because 
the average number of flows is balanced between links. 
However, there is a high probability that the worst-case load 
on a certain link will become excessively large. This can cause 
traffic congestion and degrade performance, such as packet 
latency or network throughput. The adaptive routing proposed 
by Zahavi et al. [11] may reduce this disadvantage of random 
routing. Initially, this method semi-randomly selects routes 
for the flows at the source switches. Then, the destination 
switches identify bad links, which are excessively loaded by 
the initial routing. Next, the destination switches notify the 
source switches of the flows, passing the bad links as bad 
flows. With this notification, the source switches can reroute 
the bad flows, and the rerouting is repeated until there are no 
bad links. In [11], the convergence of the rerouting was 
evaluated using a theoretical analysis based on Markov chain 
models and computer simulation. However, the number of 
times the flows must be rerouted to eliminate all bad links in 
the worst case is not theoretically known. It is also unclear 
whether bad links are definitively removed by Zahavi et al.’s 
method. As a result, this method may not be practical. 

Ohta [12] presented two flow-based routing methods that 
diffuse flows more uniformly than random routing. Using 
these methods, a flow is routed (or rerouted) at its source 
switch in a distributed manner. One of these methods is the 
rebalancing algorithm, which runs using locally obtainable 
information. The other method is the load sum algorithm, 
which requires communication between source and 
destination switches. Simulation results demonstrate that 
these methods both outperform random routing. In addition, 
the load sum algorithm is shown to diffuse flows more 
uniformly than the rebalancing algorithm. 

The simulation results reported in [12] indicate that all 
flow equality metrics are smaller for the load sum algorithm 
than for the rebalancing algorithm. However, the load sum 
algorithm may be inefficient with respect to the 
communication overhead between switches, in particular in 
the case of short-duration flows. Namely, the amount of traffic 
exchanged by a short-duration flow may become comparable 
to or smaller than that exchanged by the communication 
between switches, which is highly inefficient. From this 
viewpoint, the rebalancing algorithm is likely to be more 
practical. With improvements to this method in terms of the 
uniformity of flow diffusion, the rebalancing algorithm can 
become more effective. 

IV. REBALANCING ALGORITHM 

This paper focuses on the rebalancing algorithm presented 
in [12]. This algorithm is in fact a packet stream version of the 
method described in [30]. It assumes that the route of a newly 
generated flow is determined when its first packet arrives at 
the input switch. Implementing such a mechanism with 
currently available technology would not be simple; however, 
it is important to investigate potential methods that display 
higher performance than conventional routing. 
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This section presents several definitions, specifies local 
information, and outlines the algorithm. 

A. Definitions 

Throughout this paper, the following variables are used for 
a three-stage FCN: 

 F(i, j, k): number of flows that pass through a source 
switch Si, middle switch Mj, and destination switch Sk 

(0 , 1,0 1)i k r j m       

 U(i, j): number of flows on the uplink set from Si to 
Mj 

 D( j, k): number of flows on the downlink set from Mj 
to Sk 

In an FCN, if the source switch of a flow is the same as its 
destination, it is not necessary to route the flow to a middle 
switch. The flow can be directly routed to the destination 
within the source/destination switch. In view of this 
characteristic, U(i, j) and D( j, k) are related to F(i, j, k) as 
follows: 


1

0,

( , ) ( , , )
r

k i k

U i j F i j k


 

   (1)


1

0,

( , ) ( , , )
r

i i k

D j k F i j k


 

   (2)

The algorithm is described using these variables. Table I 
summarizes the symbols used in this paper. 

TABLE I.  TABLE OF SYMBOLS. 

Symbol Definition 

m Number of middle switches in a three-stage FCN 

n Number of input/output ports that an input/output switch 

has in a three-stage FCN 

r Number of input/output switches in a three-stage FCN 

m1 Number of sub-FCNs in a five-stage FCN 

n1 Number of input/output ports that a 1st/5th stage switch has 
in a five-stage FCN 

r1 Number of 1st/5th stage switches in a five-stage FCN 

m2 Number of 3rd srage switches in a sub-FCN of a five-stage 

FCN 

n2 Number of input/output ports that a 2nd/4th stage switch has 

in a five-stage FCN 

r2 The number of 2nd/4th stage switches in a sub-FCN of a five-

stage FCN 

Si Input/output switch of a three-stage FCN 

Mj Middle switch of a three-stage FCN 

F(i, j, k) Number of flows established from Si to Sk via Mj 

U(i, j) Number of flows on the uplink from Si to Mj 

D(j, k) Number of flows on the downlink from Mj to Sk 

 Positive integer used  

f0 Maximum number of flows for an input/output port 

f1 Maximum number of flows on a link between an 

input/output (1st/5th stage) switch and a middle (2nd/4th 
stage) switch for a three-stage FCN (five-stage FCN) 

f2 Maximum number of flows on a link between a 2nd/4th stage 

switch and a 3rd srage switch for a five-stage FCN 

 

B. Locally obtainable information 

For data center network applications, flows may be 
frequently generated and completed in the FCN. In this 
situation, the routing of a flow should be executed in a 
distributed manner because the load resulting from frequent 
route decisions becomes excessively high for concentrated 
computations. In addition, it is impractical to perform 
communication between switches because there may be very 
short flows consisting of only several packets. As described in 
Section III, it is inefficient to exchange packets between 
switches for the routing of such short flows. Therefore, the 
route of a flow should be determined at its source switch using 
locally obtainable information. 

Let us consider the case in which the FCN is a three-stage 
configuration. An input/output switch can obtain the headers 
of the packets, which arrive from its input port and are 
forwarded to middle switches. From these headers, the switch 
can identify the flows to which the packets belong. Because 
the switch determines the routes for the flows at the source, it 
can count the number of flows that travel from itself to each 
middle switch. Therefore, U(i, j) can be managed at the source 
switch Si. In addition, the switch can extract the destination 
switch of the flows from the packet headers. Using this 
information, the source switch Si can also count F(i, j, k).  

Suppose that a new flow is generated and that its source 
switch is Si. Then, assume that Si can detect the arrival of a 
new flow. This is possible by comparing the flow identifiers 
to the routing table. It is also possible for Si to detect the 
completion of a flow by a timeout. Therefore, Si can launch 
routing or rerouting processes at flow arrival or completion. 

C. Algorithm properties 

The rebalancing algorithm is detailed in [12]. The 

algorithm utilizes parameter , positive integer that controls 
its behavior. The rebalancing algorithm has the following 
property: 

Property 1: With the rebalancing algorithm, 

 ( , , ) ( , , )F i j k F i j k    (3) 

for 0 , 1,j j m   0 , 1.i k r    

The proof for Property 1 is found in [12]. An advantage of 
the rebalancing algorithm is that an upper bound exists for the 
number of flows on an uplink or downlink. Let f0 denote the 
maximum number of flows for an input or output port. In 
addition, let f1 denote the number of flows on an uplink and 
downlink. Then, the following property is obtained [12]: 
Property 2: When the rebalancing algorithm is performed on 
a three-stage FCN characterized by parameters m, n, and r, 

 0
1

1
1 ( 1)

nf
f r

m m
  

    
 

 (4) 

Property 2 is proved from (1), (2), and (3) via the method 
outlined in [12]. This property ensures that the load on a link 
does not become very high. 
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In the rebalancing algorithm, parameter  determines the 
frequency of rerouting as well as the uniformity of flow 

diffusion. If  is large, rerouting never occurs. In this case, 
flows are diffused via route decision when they arrive at their 
source switches. Simulation results demonstrate that the 
algorithm works well even without rerouting. Following [12], 
a rebalancing algorithm that omits the rerouting process is 
hereafter referred to as balancing algorithm. 

D. Rebalancing algorithm for five-stage FCNs 

The rebalancing or balancing algorithm can be also 
applied to five-stage FCNs. This subsection shows that the 
number of flows on a link is upper bounded by the rebalancing 
algorithm for a five-stage FCN as well as for a three-stage 
FCN. The characteristic of the rebalancing algorithm applied 
to a five-stage FCN has never been reported elsewhere. Thus, 
the analysis on the five-stage FCN case is a main contribution 
of this paper. 

As illustrated in Figure 5, a five-stage FCN can be seen as 
a combination of three-stage FCNs. In Figure 5, the 
second/fourth-stage switches and third-stage switches 
configure m1 sub-FCNs, 0, 1, …, m1 – 1. By considering these 
sub-FCNs as m1 switches, the algorithm can be executed at the 
first/fifth-stage switches. Within each sub-FCN, it is also 
possible to run the algorithm at each second/fourth-stage 
switch. For this scheme, it should be noted that flow rerouting 
between first/fifth-stage switches causes a new flow 
generation and flow completion in the affected sub-FCNs. 
This means that flow rerouting may generate additional flow 
rerouting in the sub-FCN. 

 
Figure 5.  Parameters m1, m2, n1, n2, r1, and r2 for a five-stage FCN. 

In the five-stage FCN case, the number of flows is upper 
bounded by employing the rebalancing algorithm as well as in 
the three-stage FCN case. Let n1 denote the number of 
input/output ports of a first/fifth-stage switch, and let n2 
denote the number of input/output ports of a second/fourth-
stage switch. In addition, let r1 be the total number of 
first/fifth-stage switches. Assume that each sub-FCN is 
constructed by m2 third-stage switches and r2 second/fourth-
stage switches. For this configuration, r1 must be equal to r2n2. 

Let f1 be the maximum number of flows on an uplink or 
downlink between a first/fifth-stage switch and a 

second/fourth-stage switch. Additionally, let f0 denote the 
maximum number of flows for an input or output port. Then, 
from Property 2, 

 1 0
1 1

1 1

1
1 ( 1)

n f
f r

m m

 

    
 

 

Next, let f2 be the maximum number of flows on a link 
between a second/fourth-stage switch and third-stage switch. 
Then, because a sub-FCN is also controlled by the rebalancing 
algorithm, f2 is bounded by f1 as follows: 
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Then, from (5) and (6), 
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Thus, the load on every link is also upper bounded for five-
stage FCNs. 

V. MODIFICATION TECHNIQUES 

This section presents two modification techniques to 
improve the load equality of the rebalancing algorithm. These 
techniques add criteria for selecting the middle switch index. 
However, they do not change the conditions that F(i, j, k)s 
must satisfy. Therefore, (3) holds even if these techniques are 
applied. Consequently, the upper bound expressed by (4) or 
(7) is unchanged by these techniques. 

A. Uplink flow diffusion 

The rebalancing algorithm uses F(i, j, k) and flow arrival 
and completion events from the local information. Therefore, 
of the available local information, U(i, j) remains unused. 
Although the rebalancing algorithm decreases the difference 
between the F(i, j, k)s for a particular pair of i and k, the uplink 
load U(i, j) is not necessarily uniformly distributed. For a new 
flow arrival, the middle switch MJ is selected such that 
F(i, J, k) is the minimum of the F(i, j, k)s. In this process, there 
may be two or more candidates for J. Let us select J from the 
candidates so that U(i, J) is the minimum of the candidates. 
Then, flows are more uniformly distributed between the 
uplinks. This does not necessarily improve the load equality 
between the downlinks; however, the performance is 
improved for the uplinks. 

Similarly, flow diffusion via rerouting can also be 
modified using U(i, j). For rerouting, middle switch MJ is 
selected such that F(i, J, k) is the maximum of the F(i, j, k)s. 
Suppose that there are two or more such indices J. Then, it is 
possible to use the index that maximizes U(i, J). We refer to 
this modification using U(i, j) as modification 1. 

B. Start index for scanning the middle switches 

The order of searching for middle switch index J also 
affects the performance of the rebalancing algorithm. Assume 
that J is scanned in the order of 0, 1, …, m – 1 for a new flow 

1st/5th Stage

2nd/4th Stage

3rd Stage

.   .   .

.   .   .

.   .   . .   .   .

.   .   ..   .   .

Sub-FCN 0 Sub-FCN m1 – 1.   .   .

0

0

m2 – 1 0 m2 – 1 

r2 – 1

n2

0 r2 – 1

0 1 r1 – 1 

n1 ... ... ...

.........

... ... ...

... ...

... ...

... ...

... ...

r1 Switches

r2m1 switches

m2m1 switches
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arrival. Then, a smaller index is more likely to be selected as 
J. Therefore, F(i, j, k) has a high probability of being larger 
for a smaller index j even though the differences between the 

F(i, j, k)s are bounded by  for fixed i and k. According to (1) 
and (2), this implies that U(i, j) and D( j, k) also tend to be 
larger for a smaller value of j. To avoid this imbalance 
between U(i, j) and D( j, k), the scanning of middle switches 
should start from a different index depending on k for a fixed 
value of i. Similarly, the start index should differ depending 
on i for a fixed value of k. In addition, the start index should 
be evenly distributed between 0, 1, …, m – 1 for different 
values of i or k. To satisfy this requirement, let us examine the 
following start index js: 

 ( ) /sj i k m r      (8) 

If js is greater than m – 1, js is replaced by js mod m. In (8), the 
term /m r    is necessary for evenly distributing js between 0, 
1, …, m – 1 for the case of 2m r . For a new flow arrival, 
the index is scanned in the order of js, js + 1, js + 2, …; if the 
index reaches m, it wraps to 0. 

For rerouting, simulation results reveal that the index 

should be started from (js + m) mod m and then decreased. If 

the index reaches – 1, it wraps to m – 1. The rationale for this 

scheme is as follows. The scheme aims to generate a situation 

in which ( , , )sF i j k  ( , 1, )sF i j k  ( , 2, )sF i j k  . To 

maintain this situation, it is preferable to select J from later 

elements of the sequence js, js + 1, js + 2, …, (js + m) mod m 

because F(i, J, k) decreases due to rerouting. The use of the 

abovementioned start index is hereafter referred to as 

modification 2. 

VI. EVALUATION 

The effectiveness of the improvements was evaluated 
using computer simulations. The simulations examined the 
rebalancing and balancing algorithms to which modifications 
1 and 2 were applied. For comparison, the original rebalancing 
and balancing algorithms reported in [12] were also evaluated. 

In the rebalancing algorithm, parameter  was set to 1. 

A. Load equality metric 

The degree of load equality was estimated using the 
following metrics, which were also used in [12]: 

 Maximum: the maximum number of flows in the links 
at a certain measurement time 

 Variance: the variance in the flow numbers in the 
links at a certain measurement time 

 Bad links: the number of links in which the number 
of flows exceeds threshold C at a certain measurement 
time 

By using three different metrics, it is possible to reliably 
evaluate load equality. Of the metrics, it is evident that 
variance is an adequate measure for load equality. However, 
even for the same variance or standard deviation value, the 
degree of traffic congestion may differ. For example, consider 
two cases that exhibit the same variance value. For these cases, 

suppose that the maximum number of flows passing through 
a link is greater for one case than the other. Then, because the 
flows share the link capacity, the throughput of a flow will 
decrease and the performance will be more strongly degraded 
in the former case. This suggests that the maximum metric is 
necessary as well. 

It is also evident that the employment of the variance and 
maximum metrics are insufficient. Consider two cases with an 
identical maximum metric value. The first case is a situation 
in which the number of flows takes the maximum value for 
only one link but is not large for any other links. In contrast, 
in the second case, the number of flows is equal or close to the 
maximum value for many links. It is clear that a greater 
number of flows will be degraded in the latter case. That is, 
the range of flows affected by congestion differs for these 
cases. The bad links metric is thus essential for distinguishing 
this difference. 

B. Simulation model 

In the simulations, the following two network models were 
employed: 

 Three-stage FCN with r = 48, m = n = 24, and 

 Five-stage FCN: r1 = 144, m1= n1 = 8, and m2 = n2 = 
r2 =12. 

The parameters used for the three-stage FCN were the same 
as those used in the model examined in [11]. Thus, the 
parameters were adequate for simulating a realistic network. 
The parameters for the five-stage FCN model were 
determined so that the same number of links as in the three-
stage model were generated between the stages. Thus, for both 

models, there were m  r = m1  r1 = m1  m2  r2 = 1,152 
uplinks and downlinks between stages. The total number of 

input or output ports was also 1,152 (= r  n = r1  n1). 
A flow was generated by opening a socket between hosts 

a and z, which were connected to two different input/output 
switches. By opening a socket, two flows were generated in 
the direction from a to z as well as in the reverse direction. 

The simulation examined five traffic models. These 
models were constructed as follows. A previous study [7] 
reported that, in a real-world data center, an average machine 
has 10 concurrent flows. By aggregating the traffic from 10 
such machines, the average number of flows is 100 for a port 
on each input/output switch. Four traffic models simulated 
this situation, and one traffic model simulated a lighter load, 
i.e., 25 flows on average for each input/output port. 

The average number of flows was set to 100 or 25 for a 
port as follows. The duration of a socket was a random value 
according to an exponential distribution with an average of 
57.6 s. This value is realistic to some extent because 10’s of 
gigabytes of data are transmitted for some “big-data” 
applications [11]. The transfer time will reach some ten 
seconds for such applications even if the flow throughput 
reaches some Gb/s. To set the average number of flows to 100, 
the interval of opening sockets was randomly determined by 
an exponential distribution at an average of 0.001 s. Now, let 
N flows exist at a certain time in the FCN. Then, on average, 
N/57.6 flows are completed in 1 s whereas 2/0.001 flows are 
generated in 1 s. In equilibrium, these flow completion, and 
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generation rates are balanced. This suggest that N equals 2  
57.6/0.001. Thus, the average number of flows provided to 
one of 1152 input or an output port is 100. Similarly, by setting 
the average interval of opening sockets to 0.004 s, the average 
number of flows to a port is 25. 

The threshold for bad links, C, was set to 105 for the 
models, where the average number of flows given to a port is 
100. When the average number of flows is 25, C was set to 30. 
These values were slightly larger than the average number of 
flows for the given traffic condition. The values of the above 
metrics would have been smaller if the flows were more 
uniformly diffused. 

Four traffic models are the same in point that the average 
number of flows given to a port is 100. Of the models, three 
are intended for the three-stage FCN, while one model is 
intended for the five-stage FCN. The models intended for the 
three-stage FCN differ in their selection of source-destination 
pairs for flows. The models are defined as follows. 

 
Traffic #1: For this model, the source-destination switch pair 
is uniformly distributed. To generate this model, a pair of 
different source and destination switches is randomly selected 
with equal probability. Then, input and output ports are 
randomly selected for the source and destination switches. 
 
Traffic #2: This model simulates lightly skewed traffic. 
Namely, for a randomly selected source switch index i, the 
destination switch index k is selected from a certain range of 
switch indices with equal probability. The difference between 
k and i is kept greater than r/4. Specifically, k is set to a value 
R(i + x) where 

 ( ) modR x x r  (9) 

and r/4 < x < 3r/4. 
 
Traffic #3: This model simulates heavily skewed traffic. For 
a randomly selected source switch index i, the destination 
switch index is selected from the following three numbers: 
R(i + r/2 – 1), R(i + r/2), and R(i + r/2 +1). 
 
Traffic #4: For this model, flows are generated similarly as 
for Traffic #1 except that a flow passes through different 
second/fourth-stage switches for the source and destination 
sides. Thus, every flow passes through a third-stage switch. 
Using this rule, an equal average load is provided to a link 
between first/fifth-stage and second/fourth-stage switches as 
well as to a link between second/fourth-stage and third-stage 
switches. 
 

Additionally, light traffic load was also examined for the 
three-stage FCN by the following model. 

 
Traffic #5: This model is the same as Traffic #1 except that 
the average number of flows given to a port is 25. 
 

The sockets were opened 2  106 times for Traffic #1–#4 

and 5  105 times for Traffic #5. The metrics were measured 

every 1 s in the period from 401–1,900 s. The system was 
considered to be in equilibrium during this period. At each 
measurement time, the metrics were obtained from 2,304 links 
(1,152 uplinks and 1,152 downlinks) for the three-stage FCN, 
and 4,608 links for the five-stage FCN. By executing this 
metric calculation from 401 s to 1,900 s, 1,500 samples were 
obtained for one execution of the simulation program. This 
process was repeated 10 times with different initial values for 
the random function to obtain reliable results. The averages of 
the metrics were computed from the measured data. 

Hereafter, the term maximum signifies the average of the 
sampled maxima. Thus, values labeled as the maximum are 
real numbers, although each sample value of the maximum 
metric is an integer. Similarly, the average value of the bad 
link metric is also a real number, although its sample is an 
integer. 

The simulation was performed by a custom event-driven 
simulation program that listed events, including flow 
generations and flow completions, in a table. Then, the 
program executed the process associated with the event 
according to the scheduled time. Because the proposed 
methods were evaluated for flow characteristics, it was not 
necessary to consider packet behaviors or protocols that are 
precisely modeled by existing simulation platforms (for 
example, ns-3 [19]). For this purpose, the use of a custom 
program was more efficient. The program was built using the 
C language and compiled using GCC 4.8.5. The simulation 
was performed on a Core i3/16GB RAM PC running on 
CentOS 7. 

C. Simulation results 

Table II summarizes the simulation results for the 
rebalancing algorithm and the three-stage FCN fed with 
Traffic #1, while Table III presents the results for the 
balancing algorithm, the three-stage FCN, and Traffic #1. 

TABLE II.  RESULTS FOR THE REBALANCING ALGORITHM, THREE-
STAGE FCN, AND TRAFFIC #1 MODEL. 

Algorithms Maximum 

(flows) 

Variance 

(flows2) 

Bad Links 

(links) 

Original Version 111.701 11.154 122.816 

Modification 1 111.102 7.713 66.366 

Modification 2 109.276 8.710 75.086 

Modifications 1 & 2 110.370 7.163 55.734 

TABLE III.  RESULTS FOR THE BALANCING ALGORITHM, THREE-STAGE 

FCN, AND TRAFFIC #1 MODEL. 

Algorithms Maximum 

(flows) 

Variance 

(flows2) 

Bad Links 

(links) 

Original Version 113.429 15.121 186.507 

Modification 1 112.686 9.996 101.800 

Modification 2 110.846 11.781 127.464 

Modifications 1 & 2 112.420 9.734 97.372 

Tables II and III demonstrate that the load equality was 
successfully improved by modifications 1 and 2. As illustrated 
in the tables, every metric decreased when the modifications 
were applied. In particular, modification 1 effectively 
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improved the variance and bad links metrics. Therefore, this 
modification is effective even though it does not affect the 
equality between the D( j, k)s. The improvements due to 
modification 2 were not as large as those due to modification 
1. However, all metrics also decreased when modification 2 
was applied. The best results were obtained for the variance 
and bad links metrics when both modifications 1 and 2 were 
applied. The improvement in the bad links metric was 
particularly notable. This implies that the number of flows is 
concentrated in a narrow range for most links. For the 
examined network, the bound expressed by (4) is 145 when f0 
is assumed to be 100. Thus, from Table II, the actual 
maximum appears much smaller than that upper bound. 

In a comparison between the rebalancing and balancing 
algorithms, it was found that the former was always superior 
to the latter for any case. However, the rerouting performed 
by the rebalancing algorithm may cause packet reordering, 
which may decrease the throughput. Meanwhile, the proposed 
modifications considerably improved the load equality of the 
balancing algorithm, which does not perform rerouting. When 
the modifications were applied, the load equality was better 
for the balancing algorithm than that for the original version 
of the rebalancing algorithm. Therefore, a practical solution is 
to use the balancing algorithm with the proposed 
modifications. 

Tables IV and V list the results for the three-stage FCN 
and Traffic #2, lightly skewed traffic. Table IV pertains to the 
case of the rebalancing algorithm, while Table V pertains to 
the case of the balancing algorithm. 

TABLE IV.  RESULTS FOR THE REBALANCING ALGORITHM, THREE-
STAGE FCN, AND TRAFFIC #2 MODEL. 

Algorithms Maximum 

(flows) 

Variance 

(flows2) 

Bad Links 

(links) 

Original Version 109.545 8.127 61.666 

Modification 1 109.108 6.224 35.673 

Modification 2 107.823 6.653 36.653 

Modifications 1 & 2 108.570 5.865 29.412 

TABLE V.  RESULTS FOR THE BALANCING ALGORITHM, THREE-STAGE 

FCN, AND TRAFFIC #2 MODEL. 

Algorithms Maximum 

(flows) 

Variance 

(flows2) 

Bad Links 

(links) 

Original Version 110.703 10.365 96.802 

Modification 1 110.209 7.596 55.571 

Modification 2 109.038 8.521 63.876 

Modifications 1 & 2 110.018 7.450 52.879 

Tables IV and V reveal that every metric also decreased 
for the case of Traffic #2 when the modifications were applied. 
Similarly to the case of Traffic #1, the best result was obtained 
by applying both modifications 1 and 2. 

Despite the results presented in Tables II–V, it cannot be 
concluded that the modifications are always effective for all 
traffic models. This is illustrated in Tables VI and VII, which 
display the results for Traffic #3. Table VI displays the results 
for the rebalancing algorithm, while Table VII displays the 
results for the balancing algorithm. 

TABLE VI.  RESULTS FOR THE REBALANCING ALGORITHM, THREE-
STAGE FCN, AND TRAFFIC #3 MODEL. 

Algorithms Maximum 

(flows) 

Variance 

(flows2) 

Bad Links 

(links) 

Original Version 105.863 4.535 12.716 

Modification 1 105.762 4.383 11.224 

Modification 2 105.920 4.801 15.700 

Modifications 1 & 2 105.817 4.407 11.503 

TABLE VII.  RESULTS FOR THE BALANCING ALGORITHM, THREE-STAGE 

FCN, AND TRAFFIC #3 MODEL. 

Algorithms Maximum 

(flows) 

Variance 

(flows2) 

Bad Links 

(links) 

Original Version 106.317 4.858 15.490 

Modification 1 106.157 4.633 13.310 

Modification 2 106.411 5.197 19.384 

Modifications 1 & 2 106.194 4.649 13.475 

For Traffic #3, Tables VI and VII indicate that 
modification 2 is not particularly effective. As illustrated in 
the tables, when modification 2 was applied, every metric 
increased. This result can be explained by the definition of the 
search start index js used in modification 2. As seen in (8), js 
is determined by the indices of the source and destination 
switches. Meanwhile, a source-destination pair is selected 
from very few (namely, three) candidates for Traffic #3. Due 
to this heterogeneity in source-destination pairs, the start 
index js is not efficiently distributed over 0, 1, …, m – 1, thus 
leading to a less uniform load on the links. 

Tables VIII and IX present the results for the five-stage 
FCN and Traffic #4. The results for the rebalancing algorithm 
are presented in Table VIII, while the results for the balancing 
algorithm are presented in Table IX. The tables demonstrate 
that each modification efficiently improved the metrics for the 
five-stage FCN. Similarly to the case of the three-stage FCN, 
the best result was obtained by applying modifications 1 and 
2. However, the advantage of applying modifications 1 and 2 
is not great in comparison with the case of applying only 
modification 1. 

TABLE VIII.  RESULTS FOR THE REBALANCING ALGORITHM, FIVE-STAGE 

FCN, AND TRAFFIC #4 MODEL. 

Algorithms Maximum 

(flows) 

Variance 

(flows2) 

Bad Links 

(links) 

Original Version 120.116 19.729 417.707 

Modification 1 119.098 13.414 283.588 

Modification 2 118.053 17.403 378.419 

Modifications 1 & 2 118.958 13.249 280.890 

TABLE IX.  RESULTS FOR THE BALANCING ALGORITHM, FIVE-STAGE 

FCN, AND TRAFFIC #4 MODEL. 

Algorithms Maximum 

(flows) 

Variance 

(flows2) 

Bad Links 

(links) 

Original Version 122.126 23.903 486.419 

Modification 1 120.941 15.679 319.221 

Modification 2 119.295 20.266 424.823 

Modifications 1 & 2 120.899 15.492 315.647 
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For Traffic #5, Table X shows the results for the 
rebalancing algorithm, and Table XI shows the results for the 
balancing algorithm. As shown in the tables, the characteristic 
for Traffic #5 differs from those for other traffic models. For 
the case of Traffic #5, modification 2 is more effective for the 
maximum and bad links metrics than modification 1. The 
variance metric is smaller for modification 1 than for 
modification 2, although the difference is almost negligible. 
When both modifications 1 and 2 were applied, the maximum 
and bad links metrics are greater than those for the case of 
applying modification 2. However, every metric becomes 
smaller by employing both modifications than that by the 
original version.  

TABLE X.  RESULTS FOR THE REBALANCING ALGORITHM, THREE-
STAGE FCN, AND TRAFFIC #5 MODEL. 

Algorithms Maximum 

(flows) 

Variance 

(flows2) 

Bad Links 

(links) 

Original Version 36.486 11.666 122.128 

Modification 1 35.885 6.495 60.932 

Modification 2 33.308 6.825 37.355 

Modifications 1 & 2 35.399 5.973 51.601 

TABLE XI.  RESULTS FOR THE BALANCING ALGORITHM, THREE-STAGE 

FCN, AND TRAFFIC #5 MODEL. 

Algorithms Maximum 

(flows) 

Variance 

(flows2) 

Bad Links 

(links) 

Original Version 36.558 11.737 123.221 

Modification 1 35.906 6.539 61.762 

Modification 2 33.303 6.832 37.560 

Modifications 1 & 2 35.498 5.995 51.809 

As illustrated in Tables I–XI, the effectiveness of each 
technique depends on the traffic model. For Traffic #1–#4, 
modification 1 is more effective. For Traffic #3, modification 
2 does not improve the metrics. However, for Traffic #5, 
modification 2 works very well. When both modifications 1 
and 2 were applied for Traffic #1 and #2, most metric values 
became smaller than those for the case of applying either one 
of modification 1 or 2. However, even if both modifications 
were applied, the metric values almost equaled those for the 
case of applying modification 1 for Traffic #3. Furthermore, 
when both modifications were applied for Traffic #5, some 
metric values became greater than those for the case of 
applying modification 2. 

These results suggest that the best performance is obtained 
by selecting the technique depending on the characteristic of 
traffic load. For heavy and skewed loads, modification 1 
should be used. If the load is light, modification 2 will be a 
better choice. However, if predicting the load characteristic is 
difficult, both modifications 1 and 2 should be applied. By 
applying both modifications, the metrics were considerably 
improved compared to the original version for every 
examined traffic model. Thus, applying both modifications is 
an effective way to improve load equality, although it does not 
always yield the best results. 

D. Discussion 

In Section VI.C, the proposed techniques are evaluated 
through the number of flows that pass through a link. However, 
it is uncertain whether this advantage in flow number equality 
directly leads to the improvement of the performance 
experienced by users. For the clarification of this point, it is 
necessary to perform additional computer simulation, which 
precisely models the packet-level behaviors including 
protocol and queueing processes. Through this simulation, the 
performance improvement will be confirmed through the 
metrics such as throughputs and response time, which are 
experienced by users. Actually, the packet level simulation of 
the flow diffusion algorithms has been partly done and 
reported in [32]. In [32], the TCP throughput is measured for 
the bulk data transfer application. The result shows that the 
number of flows with small throughputs successfully 
decreases through equal flow diffusion obtained by the 
balancing algorithm. This characteristic implies that the 
proposed techniques will effectively reduce the probability of 
throughput degradation because the techniques successfully 
improve the flow number equality. 

As a future study, implementation of the rebalancing or 
balancing algorithm with the proposed techniques may be 
required to assess the feasibility and advantage of the 
approach. For implementation, it will be necessary to employ 
a mechanism that enables flow-based routing, for example, 
OpenFlow [33]. Additionally, the start and end of a flow must 
be detected to run the rebalancing algorithm. This detection of 
flow start/end will be achieved by the techniques presented in 
[34]. However, further study is necessary to clarify if it is 
possible to set the routing table entry from a flow detection in 
a practical processing time. 

VII. CONCLUSION AND FUTURE WORK 

This paper investigates two techniques to improve the 
rebalancing algorithm [12], which diffuses flows in an FCN. 
The first technique decreases the difference between the 
uplink loads by adding a criterion for determining the middle 
switch used in the routing or rerouting processes. In addition, 
the load equality depends on the scanning order of the middle 
switch indices. Based on this, the second technique 
determines the start index for scanning to balance the loads. 
The two techniques were applied to the rebalancing and 
balancing algorithms and were evaluated using computer 
simulations. The balancing algorithm is a version of the 
rebalancing algorithm that is modified to omit the rerouting 
process. The results demonstrated that the proposed 
techniques successfully improved load equality. 

By expanding the work of a previous study [1], this study 
examined the application of the techniques to a five-stage 
FCN. For a five-stage FCN, the upper bound was analyzed for 
the number of flows on a link on the basis of the upper bound 
for the three-stage FCN case. To the best of the author’s 
knowledge, this bound has never been reported in the 
literature. Thus, the derivation of that bound is an important 
contribution. In addition, computer simulations confirmed 
that the proposed techniques were effective for the five-stage 
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FCN case. This effectiveness has also not been reported in 
previous studies. 

As another expansion of [1], performance against a 
broader range of traffic models was tested via computer 
simulations. Several of the models employed skewed traffic 
matrices, for which the source-destination pair of a generated 
flow was selected from a limited number of candidates. In 
addition, one model simulated a lighter traffic load than other 
models. The results demonstrated that the second technique 
was not effective for a highly skewed traffic matrix. However, 
the second technique is more effective for light traffic loads. 
In addition, load equality was improved for every tested traffic 
model when both proposed techniques were applied. Thus, as 
an important result, it was found that both techniques should 
be used independent of traffic loads. 

Further study is necessary to determine how the load 
equality enhanced by the proposed techniques affects packet-
level performance, such as packet latency and throughput. To 
achieve this, a more precise packet-level computer simulation 
is required. The implementation of the two proposed 
techniques is also important for future work. 

ACKNOWLEDGMENT 

This work was supported by JSPS KAKENHI Grant 
Number JP19K11928. The author would like to thank Enago 
(www.enago.jp) for the English language review.  

REFERENCES 

[1] S. Ohta, “Techniques to improve a flow diffusion algorithm for folded 
Clos networks,” The Eighteenth International Conference on Networks 
(ICN 2019), Valencia, Spain, Mar. 2019, pp. 68–73, ISBN: 978-1-
61208-695-8. 

[2] A. Singh et al., “Jupiter rising: a decade of Clos topologies and 
centralized control in Google’s datacenter network,” The 2015 ACM 
Conference on Special Interest Group on Data Communication, 
London, United Kingdom, Aug. 2015, pp. 183–197, ISBN: 978-1-
4503-3542-3, doi: 10.1145/2785956.2787508. 

[3] Z. Guo and Y. Yang, “On nonblocking multicast fat-tree data center 
networks with server redundancy,” IEEE Trans. on Computers, vol. 64, 
no. 4, pp. 1058–1073, Apr. 2014. 

[4] C. Guo et al., “DCell: a scalable and fault-tolerant network structure 
for data centers,” ACM SIGCOMM 2008 Conference on Data 
communication, Seattle, WA, USA, Aug. 2008, pp. 75–86, ISBN: 978-
1-60558-175-0, doi: 10.1145/1402958.1402968. 

[5] C. Guo et al., “BCube: a high performance, server-centric network 
architecture for modular data centers,” ACM SIGCOMM 2009 
Conference on Data communication, Barcelona, Spain, Aug. 2009, pp. 
63–74, ISBN: 978-1-60558-594-9, doi:10.1145/1592568.1592577. 

[6] N. Farrington and A. Andreyev, “Facebook’s data center network 
architecture,” 2013 Optical Interconnects Conference, Santa Fe, NM, 
USA, May 2013, pp. 49–50, ISSN: 2376-8665, doi: 
10.1109/OIC.2013.6552917. 

[7] A. Greenberg et al., “VL2: a scalable and flexible data center network,” 
Communications of the ACM, vol. 54, no. 3, pp. 95–104, Mar. 2011. 

[8] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity 
data center network architecture,” ACM SIGCOMM 2008 conference 
on Data communication, Seattle, WA, USA, Aug. 2008, pp. 63–74, 
ISBN: 978-1-60558-175-0, doi:10.1145/1402958.1402967. 

[9] C. Clos, “A study of nonblocking switching networks,” Bell System 
Technical Journal, vol. 32, no. 2, pp. 406–424, Mar. 1953. 

[10] S. Scott, D. Abts, J. Kim, and W.J. Dally, “The BlackWidow high-
radix Clos network,” The 33rd Annual International Symposium on 
Computer Architecture (ISCA ’06), Boston, MA, USA, June 2006, 

pp. 16–28, ISBN:0-7695-2608-X, ISSN: 1063-6897, doi: 
10.1109/ISCA.2006.40. 

[11] E. Zahavi, I. Keslassy, and A. Kolodny, “Distributed adaptive routing 
for big-data applications running on data center networks,” 2012 
ACM/IEEE Symposium on Architectures for Networking and 
Communications Systems (ANCS ’12), Austin, Tx, USA, Oct. 2012, 
pp. 99–110, ISBN: 978-1-4503-1685-9. 

[12] S. Ohta, “Flow diffusion algorithms based on local and semi-local 
information for folded Clos networks,” The Fourth International 
Conference on Electronics and Software Science (ICESS 2018), 
Takamatsu, Japan, Nov. 2018, pp. 46–54, ISBN: 978-1-941968-52-9. 

[13] A.Jajszczyk, “Nonblocking, repackable, and rearrangeable Clos 
networks: fifty years of theory evolution,” IEEE Communications 
Magazine, vol. 41, no. 10, pp.28–33, Oct. 2003. 

[14] D. G. Cantor, “On nonblocking switching networks,” Networks, vol. 1, 
no. 4, pp. 367–377, winter 1971. 

[15] H.-A. Kim and D. R. O’Hallaron, “Counting network flows in real 
time,” IEEE Global Telecommunications Conference (GLOBECOM 
2003), San Francisco, CA, USA, Dec. 2003, pp. 3888–3893, ISBN: 0-
7803-7974-8, doi: 10.1109/GLOCOM.2003.1258959. 

[16] J. W. Roberts, “Traffic theory and the Internet,” IEEE Communications 
Magazine, vol. 39, no. 1, pp.94–99, Jan. 2001. 

[17] L. A. Bassalygo, I. I. Grushko, and V. I. Neiman, “The Structures of 
One-Sided Connecting Networks,” The Sixth International Teletraffic 
Congress (ITC 6), Munich, Germany, Sept. 1970. Available from 
https://itc-conference.org/en/itc-library/itc6.html, 2019.11.18. 

[18] G. Broomel and J. R. Heath, “Classification categories and historical 
development of circuit switching topologies,” Computing Surveys, vol. 
15, no. 2, pp. 95–133, June 1983. 

[19] N. Fujii, “Application of a rearrangement algorithm for digital cross-
connect system control,” The Eighth Annual Joint Conference of the 
IEEE Computer and Communications Societies (IEEE 
INFOCOM ’89), Ottawa, Canada, Apr. 1989, pp. 228–233, ISBN: 0-
8186-1920-1, doi: 10.1109/INFCOM.1989.101458. 

[20] M. K. Panda, T. Venkatesh, V. Sridhar, and Y. N. Singh, “Architecture 
for a class of scalable optical cross-connects,” First International 
Conference on Broadband Networks, San Jose, CA, USA, Oct. 2004, 
pp. 233–242, ISBN: 0-7695-2221-1, doi: 
10.1109/BROADNETS.2004.16. 

[21] Y. –K. Chen and C. –C. Lee, “Fiber Bragg grating-based large 
nonblocking multiwavelength cross-connects,” Journal of Lightwave 
Technology, vol. 16, no 10, pp. 1746–1756, Oct. 1998. 

[22] Y. –H. Kao, N. Alfaraj, M. Yang and H. J. Chao, “Design of high-radix 
Clos network-on-chip,” The 2010 Fourth ACM/IEEE International 
Symposium on Networks-on-Chip (NOCS ’10), Grenoble, France, 
May 2010, pp. 181–188, ISBN: 978-0-7695-4053-5 doi: 
10.1109/NOCS.2010.27. 

[23] A. Zia, S. Kannan, G. Rose and H. J. Chao, “Highly-scalable 3D Clos 
NOC for many-core CMPs,” The 8th IEEE International NEWCAS 
Conference 2010 (NEWCAS2010), Montreal, QC, Canada, June 2010, 
pp. 229–232, doi: 10.1109/NEWCAS.2010.5603776. 

[24] A. Joshi et al., “Silicon-photonic Clos networks for global on-chip 
communication,” The 2009 Third ACM/IEEE International 
Symposium on Networks-on-Chip (NOCS ’09), , San Diego, CA, USA, 
May 2009, pp. 124 – 133, ISBN: 978-1-4244-4142-6, doi: 
10.1109/NOCS.2009.5071460. 

[25] F. Hassen and L. Mhamdi, “A Clos-network switch architecture based 
on partially buffered crossbar fabrics,” 2016 IEEE 24th Annual 
Symposium on High-Performance Interconnects (HOTI), Santa Clara, 
CA, USA, Aug. 2016, pp. 45–52, ISSN: 2332-5569, doi: 
10.1109/HOTI.2016.020. 

[26] F. Hassen and L. Mhamdi, “High-capacity Clos-network switch for 
data center networks,” 2017 IEEE International Conference on 
Communications (ICC 2017), Paris, France, May 2017, paper 
NGNI07-1, pp. 1–7, ISSN: 1938-1883, ISBN: 978-1-4673-8999-0, doi: 
10.1109/ICC.2017.7997147. 

79

International Journal on Advances in Networks and Services, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/networks_and_services/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[27] S. Yang, S. Xin, Z. Zhao, and B. Wu, “Minimizing packet delay via 
load balancing in Clos switching networks for datacenters,” 2016 
International Conference on Networking and Network Applications 
(NaNA 2016), Hakodate, Japan, July 2016, pp. 23–28, doi: 
10.1109/NaNA.2016.14. 

[28] S. Ghorbani, B. Godfrey, Y. Ganjali, and A. Firoozshahian, “Micro 
load balancing in data centers with DRILL,” The 14th ACM Workshop 
on Hot Topics in Networks (HotNets-XIV), Philadelphia, PA, USA, 
Nov. 2015, paper 17, ISBN: 978-1-4503-4047-2, 
doi:10.1145/2834050.2834107. 

[29] L. G. Valiant, “A scheme for fast parallel communication,” SIAM J. 
Computing, vol. 11, no. 2, pp. 350–361, May 1982. 

[30] S. Ohta, “A simple control algorithm for rearrangeable switching 
networks with time division multiplexed links,” IEEE J. on Selected 
Areas in Communications, vol. SAC-5, no. 8, pp.1302–1308, Oct. 
1987. 

[31] ns developers, ns-3, Network Simulator [Online], Available from 
https://www.nsnam.org/, 2019.11.09. 

[32] S. Ohta, “TCP throughput achieved by a folded Clos network 
controlled by different flow diffusion algorithms,” International 
Journal of Information and Electronics Engineering, in press.. 

[33] O. Cocker and S. Azodolmolky, Software-Defined Networking with 
OpenFlow - Second Edition: Deliver innovative business solutions, 
Packt, Birmingham, UK, 2017. 

[34] S. Zhu and S. Ohta, “Real-time flow counting in IP networks: strict 
analysis and design issues,” Cyber Journals: Multidisciplinary Journals 
in Science and Technology, Journal of Selected Areas in 
Telecommunications, vol. 2, no. 2, pp. 7–17, Feb. 2012. 

 

 

80

International Journal on Advances in Networks and Services, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/networks_and_services/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


