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Abstract - We propose a spectrum enforcement framework 
across multiple channels by mobile, crowdsourced agents (also 
called volunteers), who work in collaboration with a 
trustworthy infrastructure. The success of spectrum sharing 
relies on the automated enforcement of spectrum policies. The 
primary challenge addressed here is to ensure efficient ex post 
spectrum enforcement. In order to achieve this, we focus on 
attaining maximum coverage of the area of enforcement and of 
all channels, and on ensuring reliable and accurate detection of 
spectrum violation. Maximum coverage of the given area of 
enforcement is ensured by proposing to divide it into smaller 
regions using the Lloyd’s algorithm and solving the enforcement 
problem by a divide and conquer mechanism over the entire 
area. We determine the qualification of volunteers based on 
their likelihood of being in a region, and on their 
trustworthiness.  We define algorithms to select qualified 
volunteers for every region in an online manner such that every 
channel is efficiently covered. The enforcement framework is 
simulated in CSIM19 (C++ version) and extensive analysis of the 
performance of the proposed methodologies is performed. 

Keywords- volunteer; sentinel; ex post spectrum enforcement; 
crowdsourced spectrum enforcement; volunteer selection; 
channel assignment; mobility. 

I.  INTRODUCTION  
With the exponential increase in use of wireless services, 

the demand for additional spectrum is steadily on the rise. In 
order to address this potential spectrum scarcity problem, the 
Federal Communications Commission (FCC) proposed 
Dynamic Spectrum Access (DSA), wherein licensed 
frequency bands when idle, are utilized by unlicensed users. 
In April 2015, the FCC adopted a three-tiered spectrum 
sharing infrastructure that is administered and enforced by 
Spectrum Access System (SAS). This architecture consists of 
Incumbents in tier 1, Priority Access Licensed (PAL) devices 
in tier 2 and General Authorized Access (GAA) devices in 
tier 3. Incumbents, in general, include military radars, fixed 
satellite service Earth stations and several of the Wireless 
Broadband Services (3650 – 3700 MHz) [2]. The SAS 

ensures that the spectrum is always available to the 
incumbent users when and where needed. The next level of 
access is provided to the users who buy PAL for a given 
location and period of time (usually for a three-year term). 
The remaining spectrum can then be used by devices having 
GAA. These devices have no protection from interference. 
They must, however, protect incumbents and PALs, while 
accessing spectrum [2].  

 
As spectrum sharing becomes more intense and more 

granular with more stakeholders, we can expect an increasing 
number of potentially enforceable events. Thus, the success 
of spectrum sharing systems is dependent on our ability to 
automate their enforcement. The three key aspects of any 
enforcement regime are — the timing of enforcement action, 
the form of enforcement sanction and whether the 
enforcement action is private or public [3]. This paper 
focuses on detection of spectrum misuse. Thus, the key aspect 
of enforcement action for our consideration, is the timing of 
enforcement. Timing of an enforcement can be either ex ante 
(before a potentially “harmful” action has occurred) or ex 
post (after a potentially “harmful” action has occurred, but 
potentially before or after an actual “harm” has been done) 
[4]. The ex ante and ex post enforcement effects are 
inextricably linked. For example, if the ex ante rules and 
processes are sufficiently strong then ex post harms may be 
prevented before they occur. Also, certain types of ex ante 
rules may be easier to monitor and hence lower the cost of 
enforcement. Even strong ex ante rules may require ex post 
enforcement; for example, licensing approval for equipment 
is usually based on a prototype or pre-production unit, but 
compliance of production units may require some kind of 
policing. Till date, more significance has been given on 
automating ex ante enforcement of usage rights. As an 
example, the TV White Spaces database systems essentially 
work by preventing users with subordinate rights from using 
spectrum when and where other users with superior rights are 
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operating [5]. This concept has been extended in the new 
Citizens Broadband Radio Service (CBRS) to a SAS that is 
designed to distinguish the three classes of user types 
discussed previously [2]. 

 
We observe that both SAS and CBRS have well-developed 

mechanisms to avoid interference but provide no support for 
addressing interference when it occurs. As we consider ex 
post enforcement approaches, the need to detect enforceable 
events, gather information about these events and adjudicate 
claims based on rules and evidence becomes important. In 
this paper, we focus on designing an efficient framework for 
the detection of an interference event that is caused by a 
malicious user. The primary challenge is to ensure efficient 
ex post spectrum enforcement. In order to address this 
challenge, this paper proposes an enforcement framework 
that aims to achieve a) maximum coverage of the entire area 
of enforcement, b) maximum coverage of all the channels in 
a region c) an accurate, reliable and feasible detection of an 
event of violation, d) use of an effective method for hiring 
and deploying detecting agents. We leverage crowdsourced 
spectrum enforcement because it is more cost-effective and 
has the potential for higher accuracy of detection and 
localization of spectrum access violation when compared to 
static enforcement [13][28]. By employing a hybrid 
infrastructure of crowdsourced and trusted, dedicated 
resources, we aim to ensure “optimal” detection of spectrum 
access violation in Dynamic Spectrum Sharing Wireless 
networks. The major contributions of this paper are: 

a) Region Coverage: We use a clustering algorithm to 
organize the area into smaller sized “regions” in 
order to ensure more manageable detection of 
violation. The enforcement problem can then be 
solved by a divide and conquer mechanism over all 
the regions. 

b) Channel Coverage: We develop an algorithm to 
ensure efficient coverage of all channels in a region. 

c) Crowdsourced Enforcement: We explore a 
mechanism to select crowdsourced agents (also 
called volunteers) for ensuring that a spectrum 
access violation is detected with high probability of 
accuracy and efficiency. 

d) Volunteer Selection: We develop a framework to 
assess the qualification of a volunteer across two 
dimensions — location likelihood and trust, which 
is used to select volunteers such that an “optimal” 
quality of spectrum enforcement is ensured. 

 
The paper is organized in the following manner. Section II 

of the paper discusses about the related works, while Section 
III of the paper discusses about the proposed enforcement 
framework. Section IV discusses about the crowdsourced 
monitoring methodology, with a focus on the parameters that 
qualify a volunteer for selection and the appropriate volunteer 
selection mechanism. Section V discusses about the 

experimental setup and the results we obtained from applying 
the proposed volunteer selection algorithm. Finally, we 
conclude the paper and discuss about future works in Section 
VI. 

II. RELATED WORKS 
Jin et al. [20] introduce the first crowdsourced spectrum 

misuse detection framework for DSA systems, where a 
legitimate transmitter is required to embed a spectrum permit 
into its physical layer signals, which can be decoded and 
verified by ubiquitous mobile users. Dutta and Chiang [13] 
discuss about crowdsourced spectrum enforcement for 
accurate detection and location of spectrum enforcement. 
However, they assume that crowdsourced spectrum access 
enforcers are trustworthy and do not examine the effect of 
distrust of enforcers. Li et al. [23] model the spectrum misuse 
problem as a combinatorial multi armed bandit problem to 
decide which channels to monitor, how long to monitor each 
channel, and the order in which channels should be 
monitored. However, they assume that the spectrum 
monitoring agent and the malicious users are always static. 
Salama et al. [22] proposed an optimal channel assignment 
framework for crowdsourced spectrum monitoring, where 
volunteers are assigned to monitor channels based on their 
availability patterns and are awarded with incentives in 
return. Several incentive-based crowdsourced spectrum 
sensing works have been done over the past few years. Yang 
et al. [7] studied two incentive-based crowdsourcing models, 
where a Stackelberg Equilibrium was computed in the 
platform-centric model, and a truthful auction mechanism 
was proposed under the user-centric model. Zhu et al. [14] 
propose an incentive-based auction mechanism to improve 
fairness of bids by taking into consideration the effects of 
malicious competition behavior and the “free-riding” 
phenomenon in crowdsourcing services. Lin et al. [6] take the 
Sybil attack into consideration for incentive-based 
crowdsourced spectrum sensing. The works [11] and [12] 
propose frameworks for crowdsourced spectrum sensing 
without violating the location privacy of mobile users. 
Contrary to majority of the formerly proposed spectrum 
monitoring approaches, which rely exclusively either on 
large deployment of physical monitoring infrastructure [8]-
[10] or on crowdsourcing, we believe that spectrum misuse 
and access rights violations can be effectively prevented by 
using trusted infrastructure (composed of a central DSA 
Enforcement Infrastructure and a minimal number of mobile, 
wireless devices with advanced trust and authentication 
capabilities), augmented with an opportunistic infrastructure 
of wireless devices with various software and hardware 
capabilities. Moreover, in contrast to the usual 
methodologies, we explore the use of an online non-
incentive-based methodology for selection of mobile 
volunteers based on their qualifications to ensure maximum 
coverage of enforcement area, efficient coverage of all the 
channels in an enforcement region and accurate detection of 
spectrum access violations. This work is an extension of our 

59

International Journal on Advances in Networks and Services, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/networks_and_services/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



previous work [1]. Contrary to our previous work, in this 
paper, we propose spectrum enforcement over multiple 
channels. We explore multiple ways to aggregate the 
different parameters for the calculation of qualification of a 
volunteer and develop an efficient algorithm for assignment 
of channels to the selected volunteers for monitoring. In 
contrary to our work in [27], we explore the effect of different 
parameters (trust and location likelihood) in the performance 
of the crowdsourced agents. Finally, in contrast to [1] and 
[27], we conduct more experiments and analyze the results 
for a more comprehensive and extensive evaluation of our 
system.  

III. ENFORCEMENT FRAMEWORK 
The main challenge in the design of a hybrid infrastructure 

stems from the fact that it is not easy to determine where and 
how the resources are to be mobilized, given the non-
deterministic nature of mobile devices’ behavior. It is equally 
difficult to determine how collaboration between these 
devices must take place to ensure swift detection and response 
to spectrum misuse and access rights violation. To address 
this, we broadly follow a crowdsourced monitoring 
infrastructure, supported by sentinel-based monitoring and a 
central DSA Enforcement Infrastructure. 

A. System Model 
The entire area of enforcement R is divided into smaller 

regions, with an Access Point 𝐴𝐴𝐴𝐴𝑟𝑟, associated with every 𝑟𝑟𝑟𝑟𝑟𝑟. 
Authorized users, who are legitimate Secondary Users (SUs) 
gain access to an available channel through the local 𝐴𝐴𝐴𝐴𝑟𝑟 in 
𝑟𝑟. On the contrary, malicious users are unauthorized 
transmitters who intrude on spectrum by illegitimately using 
spectrum frequencies in 𝑟𝑟 that they have not been authorized 
to use by the local 𝐴𝐴𝐴𝐴𝑟𝑟. Some of the authorized users 

volunteer to monitor a given channel for access violation, in 
addition to accessing the spectrum to transmit their own data. 
Such volunteers are mobile agents who can monitor radio 
access behavior within their neighborhood and detect 
anomalous use of spectrum. To carry out spectrum 
monitoring practices, volunteers incur transmit power 
consumption cost and bandwidth consumption cost.  

 
As shown in Figure 1, the system model further consists 

of a central DSA Enforcement Infrastructure, which consists 
of a set of Volunteer Service units 𝑉𝑉𝑉𝑉𝑟𝑟  for every 𝑟𝑟 ∈ 𝑟𝑟, a 
Volunteer Selection Unit and a DSA Database. A volunteer 
𝑣𝑣𝑟𝑟𝑉𝑉 in 𝑟𝑟 ∈ 𝑟𝑟 registers itself to the 𝑉𝑉𝑉𝑉𝑟𝑟  associated with 𝑟𝑟. A 
𝑉𝑉𝑉𝑉𝑟𝑟  stores and updates volunteer attributes over the entire 
period of enforcement. The Volunteer Selection Unit uses the 
latest attributes of all the volunteers in a 𝑉𝑉𝑉𝑉𝑟𝑟  to select 
volunteers for monitoring a given channel in 𝑟𝑟 over the next 
epoch of enforcement. The DSA Database maintains a 
channel-user occupancy list, for the entire area of 
enforcement 𝑟𝑟. The information contained in the DSA 
Database is used to identify the channels and their 
corresponding authorized users in 𝑟𝑟. Finally, the system 
model consists of a set of sentinels 𝑉𝑉′ who monitor a given 
channel in 𝑟𝑟 at random intervals to verify the detection results 
reported by the volunteers and to prevent selection of 
volunteers who have unreliable behavior. 

B. Coverage of Region 
To ensure maximum coverage of an area 𝑟𝑟 for 

enforcement, we follow a divide and conquer method. We 
propose to divide the entire area 𝑟𝑟 into smaller regions and 
then focus on solving the enforcement problem for a single 
region 𝑟𝑟 ∈ 𝑟𝑟. This in turn can be used for solving the problem 
for the whole 𝑟𝑟. For division of 𝑟𝑟 into regions, we propose 
the employment of the Voronoi algorithm [15]. Initially, we 
assume that the volunteers in 𝑉𝑉 are randomly distributed over 
𝑟𝑟 and the access points are spread uniformly over  𝑟𝑟. For 
each volunteer 𝑣𝑣 ∈ 𝑉𝑉, its corresponding Voronoi 
region 𝑟𝑟 consists of every volunteer in the Euclidean plane 
whose distance to the local 𝐴𝐴𝐴𝐴𝑟𝑟 is less than or equal to its 
distance to any other 𝐴𝐴𝐴𝐴𝑟𝑟 [15]. However, the Voronoi 
algorithm may not produce regions that are of equal size. This 
is a disadvantage because it may result in some of the regions 
to have an undersupply of volunteers over time, which in turn 
may result in possible loss in detection of spectrum violation. 
Thus, we propose to apply a relaxation to the Voronoi 
algorithm, called the Lloyd’s Algorithm [16], which 
produces uniformly sized convex regions, and thus improves 
the probability of a fair distribution of volunteers over all 
regions. The number of regions in 𝑟𝑟 is equal to the number 
of access points in 𝑟𝑟.  

IV. CROWDSOURCED SPECTRUM MONITORING 
A volunteer 𝑣𝑣 ∈ 𝑉𝑉 is associated with the following 

parameters:  Serial Number of the sensing device 𝑉𝑉𝑣𝑣 used by  
Figure 1. System Model. 
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𝑣𝑣 and its location 𝐿𝐿𝑣𝑣,𝑡𝑡 at time 𝑡𝑡. While 𝑉𝑉𝑣𝑣 can be used to 
uniquely identify a volunteer, the location 𝐿𝐿𝑣𝑣,𝑡𝑡 allows the 𝑉𝑉𝑉𝑉𝑟𝑟  
of the DSA Enforcement Infrastructure to estimate whether 𝑣𝑣 
will be available to monitor a given channel in 𝑟𝑟 in the future.  

 
As shown in Figure 2, we divide the total enforcement 

time into a set of intervals called the Monitoring Intervals, 
MIs. Each MI is further divided into a set of 𝑛𝑛 sub-intervals 
called the Access Unit Intervals (AUIs). One AUI is defined 
as the smallest interval over which a user, intruder or 
legitimate, can accomplish useful work.  It is used as the 
interference monitoring interval by the selected volunteers to 
determine spectrum access violation or legitimacy. A new set 
of volunteers is selected in region 𝑟𝑟 at the end of every MI by 
the Volunteer Selection Unit using the data from Volunteer 
Service unit 𝑉𝑉𝑉𝑉𝑟𝑟  associated with region 𝑟𝑟. Volunteer selection 
in 𝑟𝑟 is primarily based on twofold parameters of trust and 
location likelihood of a 𝑣𝑣 in 𝑟𝑟. 

A. Trust 
The trust of a volunteer 𝑣𝑣 is determined by its past 

behavior. The behavior of a volunteer 𝑣𝑣 is chiefly determined 
by its accuracy in detection of spectrum access violation. At 
the end of every AUI 𝑖𝑖, a volunteer 𝑣𝑣 reports the observed 
state 𝜙𝜙𝑣𝑣,𝑟𝑟,𝑐𝑐

𝑖𝑖  of a channel 𝑐𝑐 that it monitors in region 𝑟𝑟, over 𝑖𝑖. 
The state of a channel 𝑐𝑐 can be either a) violated, when 𝑐𝑐 is 
being used by a malicious transmitter b) not violated, when 
𝑐𝑐 is either idle, i.e., when no user, authorized or malicious, 
uses 𝑐𝑐 or safe, i.e., when 𝑐𝑐 is used by an authorized 
transmitter. The necessary ground truth required for 
calculating accuracy of interference detection by 𝑣𝑣 in 𝑟𝑟 is 
acquired from the observed state 𝜙𝜙𝑠𝑠,𝑟𝑟,𝑐𝑐

𝑗𝑗  of 𝑐𝑐 by a sentinel 𝑠𝑠 ∈
𝑉𝑉′ that monitors 𝑐𝑐 at a random AUI 𝑗𝑗 in the given MI. A 
sentinel 𝑠𝑠 is a trustworthy agent who helps in verifying 
volunteer detection result and helps to identify unreliable 
volunteers. As shown in Figure 2, a sentinel 𝑠𝑠 monitors 𝑐𝑐 in 𝑟𝑟 
at a random interval 𝑗𝑗,which is not known to the volunteers. 
This helps us to calculate the behavior 𝑏𝑏𝑣𝑣,𝑟𝑟,𝑐𝑐

𝑖𝑖  of 𝑣𝑣 in 𝑟𝑟 at AUI 
𝑖𝑖 by using (1) given below. 

 

 𝑏𝑏𝑣𝑣,𝑟𝑟,𝑐𝑐
𝑖𝑖 = �

1, 𝜙𝜙𝑣𝑣,𝑟𝑟,𝑐𝑐
𝑖𝑖 = 𝜙𝜙𝑠𝑠,𝑟𝑟,𝑐𝑐

𝑗𝑗

0, 𝜙𝜙𝑣𝑣,𝑟𝑟,𝑐𝑐
𝑖𝑖 ≠ 𝜙𝜙𝑠𝑠,𝑟𝑟,𝑐𝑐

𝑗𝑗 , ∀𝑖𝑖 = 𝑗𝑗 (1) 

 
As shown in (1), the behavior of a volunteer 𝑏𝑏𝑣𝑣,𝑟𝑟,𝑐𝑐

𝑖𝑖  at 𝑖𝑖 in 
𝑟𝑟 is assigned to zero when there is a mismatch in the observed 
state of channel 𝑐𝑐, between 𝑣𝑣 and 𝑠𝑠.This can be because a) 𝑣𝑣 
makes a false detection, b) 𝑣𝑣 lies about the true result, or c) 𝑠𝑠 
makes a false detection, d) 𝑠𝑠 lies about the true result. For this 
paper, we assume that 𝑠𝑠 is trustworthy and never makes a 
false detection or lies about a true result. An AUI when both 
𝑣𝑣 and 𝑠𝑠 monitor channel 𝑐𝑐 is called a matching interval. We 
aggregate 𝑏𝑏𝑣𝑣,𝑟𝑟,𝑐𝑐

𝑖𝑖  over all the matching intervals to find the trust 
𝑇𝑇𝑣𝑣,𝑟𝑟,𝑐𝑐 of 𝑣𝑣 to monitor channel 𝑐𝑐 in 𝑟𝑟, by calculating the 
arithmetic mean 𝑇𝑇𝑣𝑣,𝑟𝑟,𝑐𝑐, given by (2), 

 

 𝑇𝑇𝑣𝑣,𝑟𝑟,𝑐𝑐 =
1
𝑚𝑚
�𝑏𝑏𝑣𝑣,𝑟𝑟,𝑐𝑐

𝑝𝑝
𝑚𝑚

𝑝𝑝=1

 (2) 

 
where 𝑝𝑝 is a matching interval and 𝑚𝑚 is the total number of 
matching intervals over all the monitoring intervals observed 
so far. After every MI, a volunteer 𝑣𝑣 monitoring a channel 𝑐𝑐 
in region 𝑟𝑟 sends the detection results (over all the AUIs in 
the MI) to the corresponding 𝑉𝑉𝑉𝑉𝑟𝑟  in the DSA Enforcement 
Infrastructure. Similarly, a sentinel 𝑠𝑠 that monitors the 
spectrum in region 𝑟𝑟, sends its detection results and the 
random AUIs in which it monitored to 𝑉𝑉𝑉𝑉𝑟𝑟 . Based on the 
detection results of both the sentinel and the volunteers, the 
trust 𝑇𝑇𝑣𝑣,𝑟𝑟,𝑐𝑐 of volunteer 𝑣𝑣 is computed in the 𝑉𝑉𝑉𝑉𝑟𝑟 . We assume 
that volunteers can detect spectrum misuse by using any of 
the methods of misuse detection used in literature [29]-[31]. 
The impact of choosing any of these methods for misuse 
detection to the accuracy of detection is out of the scope of 
this paper. 

B. Location Likelihood 
In order to efficiently support detection of channel 

violation in a region 𝑟𝑟, volunteers who are most likely to 
reside a major proportion of time in 𝑟𝑟 after a visit to 𝑟𝑟, are 
given preference. The 𝑉𝑉𝑉𝑉𝑟𝑟  estimates the fraction of time that 
a volunteer 𝑣𝑣 stays in 𝑟𝑟 after its current visit to 𝑟𝑟. As shown 
in Figure 3, after the (𝑗𝑗)𝑡𝑡ℎ  visit of 𝑣𝑣 to 𝑟𝑟, we measure its 
(𝑗𝑗 − 1)𝑡𝑡ℎ  sojourn time, 𝑉𝑉𝑣𝑣

𝑗𝑗−1(𝑟𝑟), in 𝑟𝑟 as the difference 
between its (𝑗𝑗 − 1)𝑡𝑡ℎ  departure time, 𝑑𝑑𝑑𝑑𝑝𝑝𝑣𝑣

𝑗𝑗−1(𝑟𝑟) from 𝑟𝑟 and 
its (𝑗𝑗 − 1)𝑡𝑡ℎ  arrival time, 𝑎𝑎𝑟𝑟𝑟𝑟𝑣𝑣

𝑗𝑗−1(𝑟𝑟)  in 𝑟𝑟. Furthermore, we 
calculate the (𝑗𝑗 − 1)𝑡𝑡ℎ  return time  𝑟𝑟𝑣𝑣

𝑗𝑗−1(𝑟𝑟) of 𝑣𝑣 in 𝑟𝑟 as the 
difference between 𝑎𝑎𝑟𝑟𝑟𝑟𝑣𝑣

𝑗𝑗(𝑟𝑟) and 𝑎𝑎𝑟𝑟𝑟𝑟𝑣𝑣
𝑗𝑗−1(𝑟𝑟). As given by (4), 

this enables us to calculate the proportion of time, 𝐴𝐴𝑣𝑣
𝑗𝑗−1(𝑟𝑟),  

that 𝑣𝑣 resided in 𝑟𝑟 on its previous ((𝑗𝑗 − 1)𝑡𝑡ℎ ) visit to 𝑟𝑟, as the 
ratio of 𝑉𝑉𝑣𝑣

𝑗𝑗−1(𝑟𝑟) to 𝑟𝑟𝑣𝑣
𝑗𝑗−1(𝑟𝑟). Based on this information, the 

𝑉𝑉𝑉𝑉𝑟𝑟  estimates the proportion of time that 𝑣𝑣 is likely to stay in 
𝑟𝑟 before its 𝑗𝑗𝑡𝑡ℎ  departure from 𝑟𝑟, as an exponentially 
smoothed average, given by (4). 

 
 

Figure 2. Observations 𝜙𝜙𝑣𝑣,𝑟𝑟,𝑐𝑐
𝑖𝑖  by volunteer 𝑣𝑣 after every AUI and 𝜙𝜙𝑠𝑠,𝑟𝑟,𝑐𝑐

𝑗𝑗  by 
sentinel 𝑠𝑠 after random AUIs, for the 1st MI. 

MI

𝜙𝜙𝑣𝑣,𝑟𝑟,𝑐𝑐
4 𝜙𝜙𝑣𝑣,𝑟𝑟,𝑐𝑐

𝑖𝑖 𝜙𝜙𝑣𝑣,𝑟𝑟,𝑐𝑐
�−2 𝜙𝜙𝑣𝑣,𝑟𝑟,𝑐𝑐

�−1

𝜙𝜙𝑣𝑣,𝑟𝑟,𝑐𝑐
�

…… ……

𝜙𝜙𝑣𝑣,𝑟𝑟,𝑐𝑐
2

AUI

𝜙𝜙𝑣𝑣,𝑟𝑟,𝑐𝑐
1

𝜙𝜙𝑠𝑠,𝑟𝑟,𝑐𝑐
1 𝜙𝜙𝑠𝑠,𝑟𝑟,𝑐𝑐

2 𝜙𝜙𝑠𝑠,𝑟𝑟,𝑐𝑐
𝑗𝑗 𝜙𝜙𝑠𝑠,𝑟𝑟,𝑐𝑐

𝑚𝑚

Selection of 
new volunteers

……
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𝐴𝐴𝑣𝑣
𝑗𝑗−1(𝑟𝑟) =

𝑉𝑉𝑣𝑣
𝑗𝑗−1(𝑟𝑟)

𝑟𝑟𝑣𝑣
𝑗𝑗−1(𝑟𝑟)

(3) 

𝐴𝐴�𝑣𝑣
𝑗𝑗(𝑟𝑟) = 𝛼𝛼.𝐴𝐴𝑣𝑣

𝑗𝑗−1(𝑟𝑟) + (1 −  𝛼𝛼).𝐴𝐴�𝑣𝑣
𝑗𝑗−1(𝑟𝑟) (4) 

In order to estimate the smoothed average, 𝐴𝐴�𝑗𝑗,𝑣𝑣,𝑟𝑟 more 
accurately, smoothing factor 𝛼𝛼 is computed as: 

𝛼𝛼 = ℎ.
(𝐸𝐸𝑣𝑣

𝑗𝑗−1(𝑟𝑟))2

𝜎𝜎𝑣𝑣
𝑗𝑗(𝑟𝑟)

 (5) 

where 0 < ℎ < 1, 𝐸𝐸𝑣𝑣
𝑗𝑗−1(𝑟𝑟) =  𝐴𝐴𝑣𝑣

𝑗𝑗−1(𝑟𝑟) − 𝐴𝐴�𝑣𝑣
𝑗𝑗−1(𝑟𝑟) is the 

prediction error, and 𝜎𝜎𝑣𝑣
𝑗𝑗(𝑟𝑟) is the average of the past square 

prediction errors on visit 𝑗𝑗. 𝜎𝜎𝑣𝑣
𝑗𝑗(𝑟𝑟) can be expressed as 

follows: 

𝜎𝜎𝑣𝑣
𝑗𝑗(𝑟𝑟) = ℎ. (𝐸𝐸𝑣𝑣

𝑗𝑗−1(𝑟𝑟))2 + (1 −  ℎ).𝜎𝜎𝑣𝑣
𝑗𝑗−1(𝑟𝑟) (6) 

Moreover, at any given time 𝑡𝑡, the location 𝐿𝐿𝑣𝑣,𝑡𝑡 of 
volunteer 𝑣𝑣 enables us to estimate the likelihood of  𝑣𝑣 to stay 
in 𝑟𝑟 over the next monitoring interval, MI, based on the 
assumption that the likelihood of 𝑣𝑣 to stay in 𝑟𝑟 decreases as 
the displacement between 𝐿𝐿𝑣𝑣,𝑡𝑡  and the centroid 𝑂𝑂𝑟𝑟 of 𝑟𝑟 
increases. This is expressed by the separation factor, 𝛶𝛶𝑡𝑡,𝑣𝑣,𝑟𝑟, 
given by (7) as follows: 

𝛶𝛶𝑡𝑡,𝑣𝑣,𝑟𝑟 = 𝛾𝛾1𝑑𝑑−𝛾𝛾2𝑑𝑑(𝐿𝐿𝑣𝑣,𝑡𝑡,𝑂𝑂𝑟𝑟) (7) 

where 0 < 𝛾𝛾1, 𝛾𝛾2 < 1, are parameters defined by the system 
and 𝑑𝑑�𝐿𝐿𝑣𝑣,𝑡𝑡 ,𝑂𝑂𝑟𝑟� is the displacement between 𝐿𝐿𝑣𝑣,𝑡𝑡and 𝑂𝑂𝑟𝑟. Since 
𝛶𝛶𝑡𝑡,𝑣𝑣,𝑟𝑟 is exponential, so we empirically select values of 𝛾𝛾1 and 
 𝛾𝛾2 to avoid high variance in the values of 𝛶𝛶𝑡𝑡,𝑣𝑣,𝑟𝑟 across all the 
volunteers. 

Hence, the location likelihood, 𝐿𝐿𝑣𝑣,𝑟𝑟(𝑀𝑀𝑀𝑀) of 𝑣𝑣 in 𝑟𝑟 at time 
𝑡𝑡 over the next 𝑀𝑀𝑀𝑀, is given by a function 𝑓𝑓 of the parameters, 
𝐴𝐴�𝑗𝑗,𝑣𝑣,𝑟𝑟  of the latest (𝑗𝑗𝑡𝑡ℎ ) visit of 𝑣𝑣 in 𝑟𝑟 and 𝛶𝛶𝑡𝑡,𝑣𝑣,𝑟𝑟,. We observe 
that since 𝑟𝑟𝑗𝑗−1,𝑣𝑣,𝑟𝑟 > 𝑉𝑉𝑗𝑗−1,𝑣𝑣,𝑟𝑟 and 0 < 𝛼𝛼 < 1, so 0 < 𝐴𝐴�𝑗𝑗,𝑣𝑣,𝑟𝑟 <
1. Similarly, since 𝑑𝑑�𝐿𝐿𝑣𝑣,𝑡𝑡 ,𝑂𝑂𝑟𝑟� ≥ 0, so 0 < 𝛶𝛶𝑡𝑡,𝑣𝑣,𝑟𝑟 ≤ 1. As

weighting the parameters by linear regression requires large 
amount of data and preferential weighting is hard to establish 
because it usually requires an expert opinion on the 
importance of an individual parameter relative to the overall 
composite parameter [17], so we assign equal weights to the 
parameters 𝐴𝐴�𝑗𝑗,𝑣𝑣,𝑟𝑟 and 𝛶𝛶𝑡𝑡,𝑣𝑣,𝑟𝑟. Finally, we define function 𝑓𝑓 as 
the product of parameters 𝐴𝐴�𝑗𝑗,𝑣𝑣,𝑟𝑟  and 𝛶𝛶𝑡𝑡,𝑣𝑣,𝑟𝑟 as given by (8) 
below.  

𝐿𝐿𝑣𝑣,𝑟𝑟(𝑀𝑀𝑀𝑀) = 𝐴𝐴�𝑗𝑗,𝑣𝑣,𝑟𝑟  × 𝛶𝛶𝑡𝑡,𝑣𝑣,𝑟𝑟  (8) 

C. Selection of volunteers
From the set of volunteers, 𝑉𝑉, in area of enforcement, 𝑟𝑟, 

the Volunteer Selection Unit selects 𝑘𝑘𝑟𝑟 qualified volunteers 
to monitor region 𝑟𝑟 at the beginning of every MI. This is 
determined by the estimated Qualification 𝑄𝑄𝑣𝑣,𝑟𝑟,𝑐𝑐(𝑀𝑀𝑀𝑀) of a 
volunteer 𝑣𝑣 to monitor a channel 𝑐𝑐 in 𝑟𝑟 over the next MI, 
given by (9), defined below.  

(9) 

Since  𝑇𝑇𝑣𝑣,𝑟𝑟,𝑐𝑐 and 𝐿𝐿𝑣𝑣,𝑟𝑟(𝑀𝑀𝑀𝑀) represent the measurement of 
different parameters, we normalize them by using the min-
max normalization technique [17] such that 0 ≤
𝑇𝑇𝑣𝑣,𝑟𝑟,𝑐𝑐 ,  𝐿𝐿𝑣𝑣,𝑟𝑟(𝑀𝑀𝑀𝑀) ≤ 1. Clearly, both trust and location 
likelihood are crucial for successful detection of spectrum 
access violation by crowdsourced volunteers. Therefore, we 
explore ways to aggregate the two parameters in 𝑔𝑔 in order to 
assess their impact in measuring the qualification of a 
volunteer as shown in (10) – (13). 

𝑔𝑔1 =  
𝑤𝑤1

𝑤𝑤1 + 𝑤𝑤2
 𝑝𝑝1 +

𝑤𝑤1

𝑤𝑤1 + 𝑤𝑤2
 𝑝𝑝2 (10) 

𝑔𝑔2 =  𝑑𝑑𝛽𝛽1.𝑝𝑝2 .𝛽𝛽2. 𝑝𝑝1  (11) 

𝑔𝑔3 =  𝑑𝑑𝛽𝛽1.𝑝𝑝2 . log (1 + 𝛽𝛽2. 𝑝𝑝1) (12) 

𝑔𝑔4 = max (𝑝𝑝1, 𝑝𝑝2) (13) 

In the above equations, we assume that 𝑝𝑝1 =  𝑇𝑇𝑣𝑣,𝑟𝑟,𝑐𝑐 and 
𝑝𝑝2 = 𝐿𝐿𝑣𝑣,𝑟𝑟(𝑀𝑀𝑀𝑀). In (10), we aggregate 𝑝𝑝1 and 𝑝𝑝2 by using 
weighted addition. The variant 𝑔𝑔1 is further divided into 
𝑔𝑔1𝑎𝑎,𝑔𝑔1𝑏𝑏 and 𝑔𝑔1𝑐𝑐 such that 𝑤𝑤1 <  𝑤𝑤2, 𝑤𝑤1 =  𝑤𝑤2 and 𝑤𝑤1 >  𝑤𝑤2 
respectively. In (11), we make one parameter more dominant 
(by having it exponentially impact the value of qualification 
𝑄𝑄𝑣𝑣,𝑟𝑟,𝑐𝑐(𝑀𝑀𝑀𝑀)) than the other parameter which impacts the 
qualification value linearly. The variant 𝑔𝑔2 in (11) is further 
divided into 𝑔𝑔2𝑎𝑎 and 𝑔𝑔2𝑏𝑏 where we make parameter 𝑝𝑝2 and 
𝑝𝑝1 exponentially dominating respectively. Similarly, in (12), 
we make one parameter more dominant by having it 
exponentially affect the qualification value and by having the 
other parameter sub-linearly (logarithmically) impact the 
qualification value. Likewise, we divide 𝑔𝑔3 into 𝑔𝑔3𝑎𝑎 and 𝑔𝑔3𝑏𝑏 

Figure 3. Sojourn time 𝑉𝑉𝑗𝑗,𝑣𝑣,𝑟𝑟 and Return time 𝑟𝑟𝑗𝑗,𝑣𝑣,𝑟𝑟 of volunteer 𝑣𝑣 after 
its 𝑗𝑗𝑡𝑡ℎ  visit to region 𝑟𝑟. 

 

𝑟𝑟𝑣𝑣
𝑗𝑗−1(𝑟𝑟)

𝑉𝑉𝑣𝑣
𝑗𝑗−1(𝑟𝑟) 𝑉𝑉𝑣𝑣

𝑗𝑗(𝑟𝑟)

𝑎𝑎𝑟𝑟𝑟𝑟𝑣𝑣
𝑗𝑗−1(𝑟𝑟) 𝑑𝑑𝑑𝑑𝑝𝑝𝑣𝑣

𝑗𝑗−1(𝑟𝑟) 𝑎𝑎𝑟𝑟𝑟𝑟𝑣𝑣
𝑗𝑗(𝑟𝑟) 𝑑𝑑𝑑𝑑𝑝𝑝𝑣𝑣

𝑗𝑗(𝑟𝑟)

 𝑄𝑄𝑣𝑣,𝑟𝑟,𝑐𝑐(𝑀𝑀𝑀𝑀) = 𝑔𝑔(𝑇𝑇𝑣𝑣,𝑟𝑟,𝑐𝑐 , 𝐿𝐿𝑣𝑣,𝑟𝑟(𝑀𝑀𝑀𝑀)) 
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such that 𝑝𝑝2 and 𝑝𝑝1 are made exponentially dominant 
respectively. Finally, in (13), we try the variant 𝑔𝑔4 where the 
qualification 𝑄𝑄𝑣𝑣,𝑟𝑟,𝑐𝑐(𝑀𝑀𝑀𝑀) is set as the maximum of the two 
parameters 𝑝𝑝1 and 𝑝𝑝2. 

 
This work is an extension of our previous work [1] and 

focuses on spectrum enforcement over multiple channels in a 
region. We also assume that a volunteer 𝑣𝑣 can be hired to 
monitor more than one region over the next MI as 𝑣𝑣 is mobile 
and can potentially cover multiple regions over a given MI. 
The Volunteer Selection Unit of the DSA Enforcement 
Infrastructure builds a centralized �|𝑉𝑉|�-by-||𝑟𝑟|| matrix Ψ𝑉𝑉,𝑅𝑅, 
using the values of volunteer attributes from the 𝑉𝑉𝑉𝑉𝑟𝑟  
associated with every region 𝑟𝑟 ∈ 𝑟𝑟. The matrix Ψ𝑉𝑉,𝑅𝑅 is a 
volunteer-region qualification matrix that contains the 
qualification values  𝑄𝑄𝑣𝑣,𝑟𝑟,𝑐𝑐(𝑀𝑀𝑀𝑀) of all 𝑣𝑣 ∈ 𝑉𝑉 for every channel 
𝑐𝑐 ∈ 𝐶𝐶 in each region 𝑟𝑟 ∈ 𝑟𝑟. The Volunteer Selection Unit 
selects 𝑘𝑘𝑟𝑟 volunteers dynamically from 𝑉𝑉 based on the 
qualification values of all 𝑣𝑣 ∈ 𝑉𝑉 for every 𝑐𝑐 in 𝑟𝑟, using 
Algorithm 1 as shown in Figure 4. 

 
For the volunteer selection Algorithm 1, we use the 

volunteer-region qualification matrix Ψ𝑉𝑉,𝑅𝑅 to select qualified 
volunteers for every 𝑟𝑟 ∈ 𝑟𝑟 (line 1). At the end of a MI (line 
3), the Volunteer Selection Unit gains access to the 
qualification values of all 𝑣𝑣 ∈ 𝑉𝑉 for 𝑟𝑟 from Ψ𝑉𝑉,𝑅𝑅 and stores 

them in a list 𝑄𝑄𝑟𝑟  (line 4). If the number of volunteers to be 
selected in 𝑟𝑟, 𝑘𝑘𝑟𝑟 is 1, then we use the classic secretary 
algorithm [18] to select the most qualified volunteer 
dynamically, with constant probability. In a classic secretary 
algorithm, we observe the first ||𝑄𝑄𝑟𝑟||/𝑑𝑑 qualification values 
to determine a threshold and then select the first of the 
remaining volunteers, whose qualification value is above the 
threshold [19]. However, if 𝑘𝑘𝑟𝑟 > 1, we select volunteers 
dynamically by using a variant of the multiple-choice 
secretary algorithm, which proceeds as follows. We draw a 
random sample 𝑚𝑚𝑟𝑟 from a binomial distribution 
𝐵𝐵𝑖𝑖𝑛𝑛𝐵𝐵𝑚𝑚𝑖𝑖𝑎𝑎𝐵𝐵(||𝑄𝑄𝑟𝑟||, 1

2
), from which we select up to ⌊𝑘𝑘𝑟𝑟/2⌋ 

volunteers recursively (lines 8-13). We keep appending the 
selected volunteers in set 𝑉𝑉𝑆𝑆,𝑟𝑟. If 𝑚𝑚𝑟𝑟 is greater than ⌊𝑘𝑘𝑟𝑟/2⌋, 
then we set 𝐵𝐵𝑟𝑟  to ⌊𝑘𝑘𝑟𝑟/2⌋, otherwise we set 𝐵𝐵𝑟𝑟  to 𝑚𝑚𝑟𝑟. Next, we 
set a 𝑡𝑡ℎ𝑟𝑟𝑑𝑑𝑠𝑠ℎ𝐵𝐵𝐵𝐵𝑑𝑑, which is the 𝐵𝐵𝑟𝑟𝑡𝑡ℎ  largest qualification value 
that we observe in the sample of first 𝑚𝑚𝑟𝑟 qualification values. 
After this, we select every volunteer with qualification value 
greater than  𝑡𝑡ℎ𝑟𝑟𝑑𝑑𝑠𝑠ℎ𝐵𝐵𝐵𝐵𝑑𝑑, till we select a maximum of 𝑘𝑘𝑟𝑟 
volunteers (lines 16-20) [19]. We apply this algorithm for 
selection of volunteers in every 𝑟𝑟 ∈ 𝑟𝑟.  

 
However, this algorithm does not ensure that all the 

channels are covered efficiently. Thus, we develop an 
algorithm to efficiently assign channels to the selected 
volunteers as shown in Figure 5. A hash table 𝐻𝐻𝑐𝑐,𝑉𝑉𝑆𝑆,𝑟𝑟(𝑀𝑀𝑀𝑀) is 
maintained where a channel 𝑐𝑐 is mapped to the list Λ𝑐𝑐,𝑉𝑉𝑆𝑆,𝑟𝑟 of 
all 𝑣𝑣 ∈ 𝑉𝑉𝑆𝑆,𝑟𝑟 (where 𝑉𝑉𝑆𝑆,𝑟𝑟 is the set of selected volunteers in 
region 𝑟𝑟 in a MI), ordered in descending order by their 
qualification values to monitor channel 𝑐𝑐 (line 1). For every 
region 𝑟𝑟 ∈ 𝑟𝑟, a channel 𝑐𝑐 is then assigned in a round robin 
manner to the topmost 𝑣𝑣 in Λ𝑐𝑐,𝑉𝑉𝑆𝑆,𝑟𝑟 , i.e., 𝑐𝑐 is assigned to the 
volunteer most qualified to monitor 𝑐𝑐, after which 𝑣𝑣 is deleted 
from the list Λ𝑐𝑐 ,𝑉𝑉𝑆𝑆,𝑟𝑟 of every channel 𝑐𝑐 ∈ 𝐶𝐶 in 𝐻𝐻𝑐𝑐,𝑉𝑉𝑆𝑆,𝑟𝑟(𝑀𝑀𝑀𝑀) 
(lines 5-7). This is continued until all the volunteers are 
assigned a channel to monitor. This ensures that no volunteer  

 
Figure 4. Algorithm for selection of volunteers [19]. 

 
 

Figure 5. Algorithm for assignment of channels. 
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monitors more than one channel over a given MI and further 
helps to ensure effective coverage of all channels. 

V. EXPERIMENTS AND RESULTS 
In this section, we discuss about the experiments that we 

conducted and analyze the performance of the proposed 
spectrum enforcement framework. 

A. Simulation Environment 
We simulate the enforcement framework by using the C++ 

version of the CSIM19 simulation engine. For simplicity, we 
divide the entire area of enforcement 𝑟𝑟 (of total area 500,000 
sq. units) into two regions of equal area. This work can, 
however, be easily extended to deal with more regions. With 
the assumption that 1 sq. unit is equivalent to 1 sq. meter and 
by taking the average population density of Pittsburgh 
(2,140/sq. km) [21], we calculate the total population (1,070 
people) in the area of enforcement. A random fraction of 
people from the total population are chosen as volunteers 
(equals 183 volunteers). Volunteers are initially placed at 
random positions within 𝑟𝑟 and they move by following the 
Random Waypoint Mobility Model [24] with speed ranging 
from 1m/s to 70m/s. The maximum speed of a volunteer is 
chosen higher than the usual speed limit of a vehicle in a 
highway in order to compensate for the limited simulation 
time. We assume that each region has a set of five channels 
to monitor. Volunteers are classified as corrupt and honest. 
The corrupt volunteers detect accurately with probability 
ranging from 0 to 0 + 𝛿𝛿 (𝛿𝛿 = 0.5) and the honest volunteers 
detect accurately with a probability of 1. Additionally, we 
assume that every volunteer uses a sensing device with 
maximum battery capacity of 7 Wh and that the battery 
discharges at the rate of 1 J/s for a random time interval drawn 
from an exponential distribution of the mean active time 
interval of 100 s. After every active time interval, we assume 
that the sensing device remains idle for a random time 
interval drawn from an exponential distribution of the mean 

idle time interval of 10 s. The simulation runs till the battery 
of the sensing device used by every volunteer is exhausted, 
i.e., for 5610 AUIs. Each AUI is equivalent to 5 units of time 
and one MI is equivalent to 5 AUIs. We select 𝛾𝛾1 = 1 and 
𝛾𝛾2 = 0.01 for the separation factor Υ𝑡𝑡,𝑣𝑣,𝑟𝑟 of 𝑣𝑣 with respect to 
𝑟𝑟. Since  Υ𝑡𝑡,𝑣𝑣,𝑟𝑟  is exponential, so we empirically decide the 
value of the 𝛾𝛾2, which is the coefficient of d(𝐿𝐿𝑣𝑣,𝑡𝑡 ,𝑂𝑂𝑟𝑟) from 
(7), to avoid high variances in the qualification values of 
volunteers. Furthermore, we empirically determine the values 
of ℎ = 0.03, 𝛽𝛽1 = 10 and  𝛽𝛽2 = 10 in (5), (11) and (12) 
respectively. Finally, we assume that 𝑘𝑘𝑟𝑟 = 𝑘𝑘 for every 𝑟𝑟 ∈ 𝑟𝑟. 
The essential simulation parameters with their respective 
values are listed in Table I. 

B. Metrics 
We consider two primary metrics for evaluating the 

performance of our proposed method — the mean accuracy 
of detection and the mean hit ratio.  

In a monitoring interval MI, if a volunteer 𝑣𝑣 selected for 
monitoring region 𝑟𝑟 has its current location in 𝑟𝑟 at the 
beginning of an AUI, then it is a hit, otherwise it is a miss in 
the AUI of a MI. This is in accordance with the assumption 
that a selected volunteer 𝑣𝑣 can successfully monitor a channel 
𝑐𝑐 in 𝑟𝑟 over an AUI only if 𝑣𝑣 resides in 𝑟𝑟 over the AUI. The 
hit ratio of a region 𝑟𝑟 ∈ 𝑟𝑟 over a given MI measures the ratio 
of the number of hits of all the selected volunteers to the sum 
of the number of hits and the number of misses of all the 
selected volunteers in 𝑟𝑟. A volunteer with high location 
likelihood will give high hit ratio. The mean hit ratio is 
computed as the average of all the hit ratios over all the MIs 
in a region. The detection of an event conducted by a 
volunteer is considered accurate if the detection result 
matches that of a sentinel 𝑠𝑠 in region 𝑟𝑟 at an AUI. The mean 
accuracy of detection of a volunteer is computed as the 
average of the number of accurate detections in a MI by the 
selected volunteers over the entire duration of enforcement 
over all the channels in a region. A volunteer with high 
location likelihood will give high mean hit ratio and a 
volunteer with high trust value will give high mean accuracy 
of detection.  

C. Results 
In Figure 6, we compare the mean hit ratio and mean 

accuracy of volunteers selected by using different variations 
of the function 𝑔𝑔 that computes qualification 𝑄𝑄𝑣𝑣,𝑟𝑟,𝑐𝑐(𝑀𝑀𝑀𝑀) in 
(9), such that 𝑘𝑘 = 1% − 25% 𝐵𝐵𝑓𝑓 ||𝑉𝑉|| and probability of a 
volunteer to be corrupt is 0.5. In the variant 𝑔𝑔1𝑎𝑎, we observe 
that the mean hit ratio is higher than the mean accuracy. This 
is because 𝑤𝑤1 < 𝑤𝑤2 (i.e., the weight associated with location 
likelihood 𝐿𝐿𝑣𝑣,𝑟𝑟(𝑀𝑀𝑀𝑀) is greater than the weight associated with 
trust 𝑇𝑇𝑣𝑣,𝑟𝑟,𝑐𝑐). Similarly, in the variant 𝑔𝑔1𝑐𝑐, we observe that the 
behavior is opposite because 𝑤𝑤1 > 𝑤𝑤2 . Interestingly, in 
variant 𝑔𝑔1𝑏𝑏, we observe that the difference in mean accuracy 
and mean hit ratio (of values 0.776 and 0.822 respectively) is 

TABLE I.  SIMULATION PARAMETERS 

Parameter Value 

Area of Enforcement 500𝑚𝑚 × 1000𝑚𝑚 

Population 1070 

Number of Volunteers 183 
Number of channels per region 5 

Number of regions 2 
Maximum battery capacity of a volunteer 7 𝑊𝑊ℎ 

Number of AUIs  5610 
System parameter 𝛾𝛾1 1 
System parameter 𝛾𝛾2 0.01 
System parameter ℎ 0.03 
System parameter 𝛽𝛽1 10 
System Parameter 𝛽𝛽2 10 
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lower than what we observe in 𝑔𝑔1𝑎𝑎 and 𝑔𝑔1𝑐𝑐. This is because 
𝑤𝑤1 = 𝑤𝑤2 in 𝑔𝑔1𝑏𝑏. Thus, we conclude that assigning a higher 
weight to location likelihood results in higher mean hit ratio 
and assigning higher weight to trust results in higher 
accuracy. In the variants 𝑔𝑔2𝑎𝑎 and 𝑔𝑔2𝑏𝑏, we observe that mean 
hit ratio is higher than mean accuracy and that mean accuracy 
is higher than mean hit ratio, respectively. This is because the 
location likelihood and trust exponentially impact the 
qualification value  𝑄𝑄𝑣𝑣,𝑟𝑟,𝑐𝑐(𝑀𝑀𝑀𝑀) in 𝑔𝑔2𝑎𝑎 and 𝑔𝑔2𝑏𝑏 respectively. 
We observe the same behavior in the variants 𝑔𝑔3𝑎𝑎 and 𝑔𝑔3𝑏𝑏. 
However, we observe that the difference between mean hit 
ratio and mean accuracy is higher in 𝑔𝑔3𝑎𝑎 and 𝑔𝑔3𝑏𝑏 (of values 
0.268 and 0.181 respectively) than in 𝑔𝑔2𝑎𝑎 and 𝑔𝑔2𝑏𝑏 (of values 
0.25 and 0.119 respectively). This is because the non-
dominant factor in 𝑔𝑔2𝑎𝑎 and 𝑔𝑔2𝑏𝑏 is linear while it is sub-linear 
(logarithmic) in 𝑔𝑔3𝑎𝑎 and 𝑔𝑔3𝑏𝑏. Finally, for variant 𝑔𝑔4, we 
observe that the mean accuracy is higher than the mean hit 
ratio. This is because we assume that honest volunteers detect 
accurately and hence in such cases mean accuracy is most 
likely to have a higher value than mean hit ratio. We want to 
attain both high accuracy of detection and high hit ratio. 
Therefore, for all the remaining experiments, we use the 
variant 𝑔𝑔1𝑏𝑏 to calculate the qualification 𝑄𝑄𝑣𝑣,𝑟𝑟,𝑐𝑐(𝑀𝑀𝑀𝑀) as it has 
lowest difference (of value 0.046) between mean accuracy 
and mean hit ratio among all the variants of function 𝑔𝑔. 
 

Figure 7 compares the mean hit ratio of all the regions 
over the entire duration of simulation, by using the proposed 
algorithm and Algorithm R for different ranges of 𝑘𝑘. 
Algorithm R selects k volunteers randomly from the total set 
of volunteers 𝑉𝑉 for a region 𝑟𝑟, irrespective of their 
qualification. We observe that the proposed algorithm has a 
better mean hit ratio than Algorithm R for all the ranges of 𝑘𝑘. 
However, the mean hit ratio by applying the proposed 
algorithm decreases consistently (from 0.822 for 𝑘𝑘 =1-25% 
of ||𝑉𝑉|| to 0.554 for 𝑘𝑘 = 75-100% of ||𝑉𝑉||) with the increase 
in 𝑘𝑘 because the proportion of highly qualified selected 
volunteers reduces as the value of 𝑘𝑘 increases.  The error bars 

in Figure 7 represent the mean standard deviation of the mean 
hit ratio across all regions, which decreases from 0.148 for 𝑘𝑘 
=1-25% of ||𝑉𝑉|| to 0.091 for 𝑘𝑘 = 75-100% of ||𝑉𝑉||, using the 
proposed algorithm and decreases from 0.183 for 𝑘𝑘 =1-25% 
of ||𝑉𝑉|| to 0.085 for 𝑘𝑘 = 75-100% of ||𝑉𝑉||, using Algorithm 
R. This type of behavior is attributed to the fact that a balance 
is approached between the proportions of qualified and 
unqualified selected volunteers as the value of 𝑘𝑘 increases. 

 
Figure 8 compares the mean accuracy of detection of the 

selected volunteers over all the MIs between the proposed 
algorithm and the Algorithm R for varying ranges of 𝑘𝑘. We 
observe that the proposed algorithm performs better than the 
Algorithm R for all the ranges of 𝑘𝑘. The mean accuracy of 
detection decreases consistently (from 0.776 for 𝑘𝑘 = 1-25% 
of ||𝑉𝑉|| to 0.639 for 𝑘𝑘 = 75-100% of ||𝑉𝑉||) with the increase 
in 𝑘𝑘 because of the decrease in the fraction of qualified 
volunteers in 𝑟𝑟 as 𝑘𝑘 increases. The mean standard deviation 
in accuracy of detection across all regions decreases from 
0.124 for 𝑘𝑘 =1-25% of ||𝑉𝑉|| to 0.049 for 𝑘𝑘 = 75-100% of 
||𝑉𝑉||, using the proposed algorithm and decreases from 0.147 

 
 

Figure 6. Comparison of the performance of volunteers selected by 
using different variations of function 𝑔𝑔 in (9) 
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Figure 7. Comparison of the mean hit ratio of volunteers selected by 
using the Proposed Algorithm and Algorithm R for different values of 

𝑘𝑘. 
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Figure 8. Comparison of the mean accuracy of volunteers selected by 
using the Proposed Algorithm and Algorithm R for different values of 𝑘𝑘 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1-25% 25-50% 50-75% 75-100%

M
ea

n 
Ac

cu
ra

cy

Range of k 

Proposed Algorithm Algorithm R

65

International Journal on Advances in Networks and Services, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/networks_and_services/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



for 𝑘𝑘 =1-25% of ||𝑉𝑉|| to 0.062 for 𝑘𝑘 = 75-100% of ||𝑉𝑉||, 
using the Algorithm R. This is because as more volunteers 
are selected, a balance is approached between proportions of 
corrupt and honest volunteers. An interesting observation 
here is that the mean accuracy of selecting volunteers by 
using the proposed algorithm is not significantly higher than 
the mean accuracy attained by using Algorithm R. However, 
we can expect better mean accuracy by using the proposed 
algorithm if we use variations of 𝑔𝑔 that give higher accuracy 
(like 𝑔𝑔1𝑐𝑐, 𝑔𝑔2𝑏𝑏, 𝑔𝑔3𝑏𝑏 and 𝑔𝑔4).  

In Figure 9, we compare the mean accuracy of detection 
by using our proposed algorithm and Algorithm R for 
different probabilities of a volunteer to be corrupt. We 
observe that the accuracy in misuse detection decreases as the 
probability of a volunteer to be corrupt increases for 𝑘𝑘 = 1 to 
25% of �|𝑉𝑉|�. Using our proposed algorithm, the mean 
accuracy decreases from 0.902 to 0.275 and by using 
Algorithm R, the mean accuracy decreases from 0.866 to 
0.231 as the probability of a volunteer to be corrupt increases 
from 0.25 to 1. This is intuitive because more corrupt 
volunteers are selected with the increase in probability of 
corruption of a volunteer. Interestingly, for both the 
algorithms, the accuracy decreases at a faster rate than in 
Figure 8, proving that the probability of corruption of a 
volunteer has a greater impact in the overall accuracy of 
detection than 𝑘𝑘. Also, we observe that by using the proposed 
algorithm, the standard deviation increases with the increase 
in probability of corruption because of the increasing 
disparity of results between corrupt and honest volunteers. 
However, it decreases when the probability of a volunteer to 
be corrupt is 1 because of the decrease in disparity between 
their results (as all the volunteers are corrupt in this case). 

 
In Figure 10, we study the mean detection accuracy across 

the five channels in all the regions. We observe that for 𝑘𝑘 = 
1 to 25% of ||𝑉𝑉|| and the probability of corruption of a 
volunteer set to 0.5, the mean accuracy of detection of 
volunteers selected by our proposed algorithm across all 
channel is similar, with the highest mean accuracy of 0.833 

in channel 1 and the lowest mean accuracy of 0.723 in 
channel 5. The standard deviation in mean accuracy across 
all the channels is 0.037, which is impressive. This is 
attributed to the efficiency of Algorithm 2 (as shown in 
Figure 5) that is used for the assignment of channels. 
However, we notice that the mean accuracy of detection 
decreases from channel 1 to channel 5. This is because by 
using Algorithm 2, the channels are assigned to volunteers in 
a round robin manner and hence it is more likely that a 
channel 𝑐𝑐𝑖𝑖 will be assigned a more qualified volunteer than 
channel 𝑐𝑐𝑖𝑖+1. This discrepancy can be effectively mitigated 
by changing the order in which channels are assigned to 
volunteers after every MI. For example, if channel 𝑐𝑐𝑖𝑖 gets 
assigned first to a volunteer in a MI, then channel 𝑐𝑐𝑖𝑖+1 gets 
assigned first in the next MI. So, sequentially changing the 
priority of a channel to be assigned first would solve the 
problem. 

Finally, we explore the impact of mobility pattern in the 
performance of volunteers for crowdsourced spectrum 
enforcement. We classify volunteers into three types based 
on their type of mobility. Volunteers of type 1 move by 
following the Random Waypoint Mobility model [24]. Using 
this model, a volunteer chooses a random destination in the 
area of enforcement and a random speed below the maximum 
speed limit to travel to the chosen destination. After reaching 
the destination, the volunteer pauses for a random time 
interval before choosing the next destination and speed. 
These volunteers are destination-oriented and can have 
speeds ranging from the speed of walking to the speed of 
moving in a car. The maximum speed limit is chosen to be 
twice the maximum speed limit of cars in USA [25], i.e., 
approximately 76 m/s for this type of users. The pause time 
of a volunteer is chosen randomly between 1 and 21 seconds. 
The maximum speed of a volunteer is chosen higher than the 
usual speed limit of a car in order to compensate for the 
limited simulation time. Volunteers of type 2 move in a 
pattern which resembles roaming. Type 2 volunteers choose 
a random direction (between 0 and 360 degrees) and move in 
that direction at a random speed below the maximum speed 
limit for a fixed interval of time. Such volunteers are assumed 

 
 

Figure 9. Comparison of the mean accuracy of detection for different 
probabilities of corruption of volunteers. 
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Figure 10. Comparison of the mean accuracy of detection by using the 
proposed algorithm across the five channels in every region. 
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to be walking or moving in low speed vehicles, like a 
skateboard and not in high speed vehicles like cars. The 
maximum speed limit of such volunteers is chosen as twice 
the average speed of a skateboarder [26], and is 
approximately 7 m/s. Again, the maximum speed limit of 
type 2 users is chosen higher than the usual speed of 
skateboarding in order to compensate for the limited 
simulation time. Type 3 volunteers are the ones whose 
mobility pattern is a hybrid of the mobility patterns of type 1 
and type 2 volunteers. Such volunteers make a random 
decision to either move in a roaming pattern or by following 
the Random Waypoint Mobility model. After a volunteer 
completes its journey by using either of the mobility patterns, 
it will make a new random decision to again choose either of 
the mobility patterns for traversal.  

 
In Figure 11, we observe the variation of mean hit ratio 

and mean accuracy for different mobility patterns of users for 
𝑘𝑘 = 1 to 25% of ||𝑉𝑉|| such that the qualification 𝑄𝑄𝑣𝑣,𝑟𝑟,𝑐𝑐(𝑀𝑀𝑀𝑀) 
of volunteers is calculated by using the variant 𝑔𝑔1𝑏𝑏 (from (10) 
when 𝑤𝑤1=𝑤𝑤2). We study six cases that may arise for the three 
types of volunteers (based on their mobility patterns). The 
first case arises when all the volunteers are of type 1, i.e., they 
follow the Random Waypoint Mobility Model (RWP). 
Similarly, the second and third cases are the ones where all 
the volunteers are of type 2 (Roaming) and type 3 (Hybrid) 
respectively. We observe that among the three cases when all 
the volunteers are either of Type 1, Type 2 or Type 3, the 
second case gives the highest mean hit ratio (of value 0.85) 
when compared to the first and third cases (of values 0.82 and 
0.83 respectively). This is because the type 2 users roam at 
relatively lower speed ranges and hence tend to remain within 
the same region. Therefore, they have higher location 
likelihood when compared to type 1 and type 3 users. 
However, we observe that the mean accuracy of detection in 
case 2 is the lowest. This is because their location likelihood 
parameter dominates over their trust parameter for the 
calculation of their qualification values due to their high 

tendency to stay within the same region. Hence, even though 
they have high location likelihood, they are not guaranteed to 
give high accuracy of misuse detection. In comparison, the 
first and the third cases provide better accuracy of detection 
(of values 0.78 and 0.63 respectively). The first case provides 
the least difference (of value 0.043) between mean hit ratio 
and mean accuracy, which is desirable. Among the next three 
cases, the fourth case is where 50% of the volunteers follow 
Random Waypoint Mobility model (RWP) and the remaining 
volunteers are equally classified (25% each) as type 2 
(Roaming) and type 3 (Hybrid) respectively. Similarly, the 
fifth and sixth cases are where 50% of the volunteers are of 
type 2 (Roaming) and type 3 (Hybrid) respectively. As 
expected, among these three cases, the fifth case (50% 
Roaming volunteers) show the highest mean hit ratio but the 
lowest mean accuracy. Also, we see that the fourth case (50% 
RWP) provide higher accuracy when compared to the sixth 
case (50% Hybrid). This is because hybrid volunteers do 
move in roaming pattern in some instances (which has 
previously shown lower mean accuracy). Hence, we can 
conclude that volunteers who move using the Random 
Waypoint Mobility Model with speeds ranging from the 
speed of walking to maximum speed limit of cars, give better 
performance than the other two mobility patterns because it 
causes least deviation between mean hit ratio and mean 
accuracy. 

VI. CONCLUSION 
In this paper, we discussed about a spectrum enforcement 

framework over multiple channels based on a crowdsourced 
spectrum monitoring infrastructure, supported by sentinel-
based monitoring and a central DSA Enforcement 
Infrastructure. The objective was to maximize coverage of the 
area of enforcement, maximize coverage of channels and to 
ensure reliable detection of spectrum access violation by 
selecting highly qualified volunteers. We proposed to 
maximize the coverage of the region of enforcement by 
following a divide-and-conquer mechanism wherein we 
divide the area of enforcement into smaller regions, by 
applying the Lloyd’s algorithm, which is a relaxation to the 
Voronoi algorithm. Every small region in the enforcement 
area is responsible for its own spectrum enforcement, which 
in turn ensures enforcement of the entire area. The 
qualification of a volunteer for the upcoming time interval is 
decided by its likelihood to stay in the region over the next 
monitoring interval and by its trust. We explored different 
ways to aggregate the two parameters of location likelihood 
and trust to find the best combination for calculating the 
qualification of a volunteer. We used a variant of the multiple-
choice Secretary algorithm to select volunteers dynamically 
based on their qualifications to monitor a region. We also 
developed a mechanism to efficiently assign channels to the 
selected volunteers for monitoring. We observed the efficacy 
of the proposed algorithm for assignment of channels and 
proposed a methodology by which it can be further improved. 
Finally, we studied the variations in mean accuracy of 
detection and mean hit ratio as the probability of a volunteer 

 
 

Figure 11. Variation of the mean accuracy of detection and mean hit 
ratio for different mobility patterns of users.  

 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

RWP Roaming Hybrid 50% RWP 50%
Roaming

50%
Hybrid

Mean Hit Ratio Mean Accuracy

67

International Journal on Advances in Networks and Services, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/networks_and_services/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



to be corrupt changes and the mobility pattern of a volunteer 
changes.  

 
We plan to extend this work to explore different 

mechanisms to select volunteers for multi-channel spectrum 
enforcement. We further plan to explore machine learning 
based methodologies to determine the trust and location 
likelihood of volunteers in the enforcement area. 
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