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Abstract—On a daily basis, Internet services experience growing
amount of traffic that needs to be ingested first, and processed
subsequently. Technologies to streamline data target horizontal
distribution as design tenet, giving off maintainability and oper-
ational friendliness. The advent of the Internet of Things (IoT)
and the progressive adoption of IPv6 require a new generation
of scalable data streamline platforms, bearing in mind easy dis-
tribution, maintainability and deployment. Chimera is an ultra-
fast and scalable Extract Transform and Load (ETL) platform,
designed for distribution on commodity hardware, and to serve
ultra-high volumes of inbound data, processing in real-time while
offering a simplistic fault model. It strives at putting together
top performance technologies to solve the problem of ingesting
huge amount of data delivered by geographically distributed
agents. It has been conceived to propose a novel paradigm of
distribution, leveraging a shared nothing architecture, easy to
elastically scale and to maintain. It reliably ingests and processes
huge volumes of data: operating at the line rate, it is able
to distribute the processing among stateless processors, which
can dynamically join and leave the infrastructure at any time.
Experimental tests show relevant outcomes intended as the ability
to systematically saturate the I/O (network and disk), preserving
reliable computations (at-least-once delivery policy).

Keywords–distributed computing; high performance computing;
data systems.

I. INTRODUCTION

This paper is an extended version of the paper ”Chimera, A
Distributed High-throughput Low-latency Data Processing and
Streaming System” presented at SOFTENG 2017, The Third
International Conference of Advances and Trends in Software
Engineering, held in Venice, Italy, during April 2017 [1].

With the gigantic growth of information-sensing devices
(Internet of Things) [2] such as mobile phones and smart
devices, the predicted quantity of data produced far exceeds the
capability of traditional information management techniques.
To accommodate the left-shift in the scale [3], [4], new
paradigms and architectures must be considered. The big data
branch of computer science defines these big volumes of data
and is concerned in applying new techniques to bring insights
to the data and turn it into valuable business assets.

Modern data ingestion platforms distribute their compu-
tations horizontally [5] to scale the overall processing ca-
pability. The problem with this approach is in the way the
distribution is accomplished: through distributed processors,
prior to vertically move the data in the pipeline (i.e., between
stages), they need coordination, generating horizontal traffic.
This coordination is primarily used to accomplish reliability
and delivery guarantees. Considering this, and taking into

account the expected growth in compound volumes of data,
it is clear that the horizontal exchanges represent a source
of high pressure both for the network and infrastructure: the
volumes of data supposed to flow vertically are amplified by
a given factor due to the coordination supporting the com-
putations, prior to any movement. Distributing computations
and reducing the number of horizontal exchanges are complex
challenges. If one was to state the problem, it would sound like:
to reduce the multiplicative factor in volumes of data to fulfill
coherent computations, a new paradigm is necessary and such
paradigm should be able to i. provide lightweight and stateful
distributed processing, ii. preserve reliable delivery and, at the
same time, iii. reduce the overall computation overhead, which
is inherently introduced by the distributed nature.

An instance of the said problem can be identified in pre-
dictive analytics [6], [7] for monitoring purposes. Monitoring
is all about: i. actively producing synthetic data, ii. passively
observing and correlating, and iii. reactively or pro actively
spotting anomalies with high accuracy. Clearly, achieving
correctness in anomaly detection needs the data to be ingested
at line rate, processed on-the-fly and streamlined to polyglot
storages [8], [9], with the minimum possible delay.

From an architectural perspective, an infrastructure en-
abling analytics must have a pipelined upstream tier able
to i. ingest data from various sources, ii. apply correlation,
aggregation and enrichment kinds of processing on the data,
and eventually iii. streamline such data to databases. The
attentive reader would argue about the ETL-like nature of
such a platform, where similarities in the conception and
organization are undeniable; ETL-like kind of processing is
what is needed to reliably streamline data from sources to
sinks. The way this is accomplished has to be revolutionary
given the context and technical challenges to alleviate the
consequences of exploding costs and maintenance complexity.

All discussed so far settled a working context for our team
to come up with a novel approach to distribute the workload
on processors, while preserving determinism and reducing
the coordination traffic to a minimum. Chimera (the name
Chimera has been used in [10]; the work presented in this
paper addresses different aspects of the data ingestion) was
born as an ultra-high-throughput processing and streamlining
system able to ingest and process time series data [11] at line
rate, preserving a delivery guarantee of at least once with an
out of the box configuration, and exactly once with a specific
and tuned setup. The key design tenets for Chimera were:
i. low-latency operations, ii. deterministic workload sharding,
iii. backpropagated snapshotting acknowledgements, and iv.
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traffic persistence with on-demand replay. Experimental tests
proved the effectiveness of those tenets, showing promising
performance in the order of millions of samples processed per
second with an easy to deploy and maintain infrastructure.

The remainder of this paper is organized as follows. Section
II focuses on the state-of-the-art and related works, with an
emphasis on the current technologies and solutions meanwhile
arguing why those are not enough to satisfy the forecasts
relative to the advent of the IoT and the incremental adoption
of IPv6. Section III presents Chimera and its architectural
internals, tier by tier, with a strong focus on design, enabling
algorithms and the most relevant communication protocols.
Section IV presents the simple fault model Chimera achieves.
Section V presents the results from the experimental campaign
conducted to validate Chimera and its design tenets. Section
VI concludes this work and opens to future developments on
the same track, while sharing a few lessons learned from the
field.

II. RELATED WORK

When it comes to assessing the state of the art of streamline
platforms, a twofold classification can be approached: 1. ETL
platforms originally designed to solve the problem of ingestion
(used in the industry for many years, to support data loading
into data warehouses [12]), and 2. Analytics platforms designed
to distribute the computations serving complex queries on big
data, then readapted to perform the typical tasks of ingestion
too. On top of those, there are hybrid platforms that try to
bring into play features from both categories.

The ETL paradigm [13] has been around for decades and
is simple: data from multiple sources, distributed or not, is
transformed into an internal format, usually more convenient
to work with, then processed with the intent to correlate,
aggregate and enrich with other sources; the data is eventually
moved into one or multiple storages. Apart of commercial
solutions, plenty of open-source frameworks have been widely
adopted in the industry; it is the case of Mozilla Heka [14],
Apache Flume and Apache Nifi [15], [16], [17]. Heka has been
used as a primary ETL for a considerable amount of time,
prior to being dismissed for its inherent design pitfalls: the
single process, multi-threaded design based on green threads
(Goroutines [18] are runtime threads multiplexed to a small
number of system threads) had scalability bottlenecks that were
impossible to fix without a complete redesign. In terms of
capabilities, Heka provided valid supports: a set of customiz-
able processors for correlation, augmentation and enrichment.
Apache Flume and Apache Nifi are very similar in terms of
conception, but different in the implementation: Nifi was de-
signed with security and auditing in mind, along with enhanced
control capabilities. Both Flume and Nifi can be distributed;
they implement a multi-staged architecture common to Heka
too. The design principles adopted by both solutions are based
on data serialization and stateful processors. This require a
large amount of computational resources as well as network
round trips. The poor overall throughput makes them unsuited
solutions for the stated problem.

On the other hand, analytics platforms adapted to ETL-
like tasks are Apache Storm, Apache Spark and Apache Flink
[19], [20]; all of them have a common design tenet: a task
and a resource scheduler distribute computations on custom
processors. The frameworks provide smart scheduling policies

that invoke, at runtime, the processing logic wrapped into the
custom processors. Such a design brings a few drawbacks: the
most important resides in the need of heavyweight acknowl-
edgement mechanisms or complex distributed snapshotting to
ensure reliable and stateful computations. This is achieved at
the cost of performance and throughput [21]. From [22], a sig-
nificant measure of the message rate can be extrapolated from
the first benchmark. Storm (best in class) is able to process
approximately 250K messages/s with a level of parallelism of
eight, meaning 31K messages/s per node with a 22% message
loss in case of failure.

The hybrid category consists of platforms that try to bring
the best of the two previous categories into sophisticated stacks
of technologies; exemplar of this category is Kafka Streams
[23], [24], a library for stream processing built on top of Kafka
[25], which is unfortunately complex to setup and maintain.
In distributed, Kafka heavily relies on ZooKeeper [26] to
maintain the topology of brokers. Topic offset management
and parallel consumers balancing depends on ZooKeeper too;
clearly, a Kafka cluster needs at least a ZooKeeper cluster.
However, Kafka Stream provides on average interesting levels
of throughput.

As shown, three categories of platforms exist, and several
authoritative implementations are provided to the community
by as many open-source projects. Unfortunately, none of them
is suitable to the given context and inherent needs.

III. ANATOMY OF CHIMERA

Clearly, a novel approach able to tackle and solve the
weaknesses highlighted by each of the categories described
in Section II is needed. Chimera is an attempt to remedy
those weaknesses by providing a shared nothing processing
architecture, moving the data vertically with the minimum
amount of horizontal coordination and targeting at-least-once
delivery guarantee. Chimera also offers a minimum of fault
tolerance by being able to replay data in case of failures.
However, as of time of writing, it is not resilient to byzantine
failures.

Chimera is purely written in Java. The main reason behind
this choice is because the project started as a proof of concept
in the context of the first author master thesis. As such,
given tight time constraints, Java has been picked as primary
programming language for its higher productivity over higher
performance languages. Productivity includes in particular
facets such as the large amount of open-source libraries as
opposed to the very proprietary aspect inherent to languages
such as C and C++. The remainder of this section presents
Chimera and its anatomy, intended as the specification of its
key internals.

A. High Level Overview
Figure 1 presents Chimera by its component tiers. Chimera

isolates three layers: i. queuing, ii. processing and iii. per-
sistence. A coordinator, or cluster manager, also needs to be
present for coordination purposes. To have Chimera working,
it would therefore require at least three nodes, each of which
assigned to one of the three layers, in addition to the cluster
manager, which can by itself be a whole cluster if needed (one
node is the bare minimum). Each node is focused on a specific
task and only excels at that task. Multiple reasons drive such a
decision. First, the separation of concerns simplifies the overall
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Figure 1. Chimera 10K feet view. Architectural sketch capturing the main tiers, their interactions, as well as relationships.

system, especially from an operational and maintainability per-
spective. Indeed, given the shared nothing architecture, joining
an existing Chimera cluster only requires a handshake with the
cluster manager. Secondly, in order to easily scale horizontally,
organizing Chimera in a micro-service-like fashion was highly
preferable. By distributing the tasks into independent nodes,
scaling out only requires the addition of new nodes into the
cluster, with performance expected to scale linearly with the
number of nodes. Finally, this design enforces reliability by
avoiding a single point of failure. Indeed, Chimera strives at
providing a bare minimum in terms of fault tolerance. The
whole system goes down only if there is no longer a node
assigned to a particular tier, or if the coordinator goes down.

B. Internal Data Model
Data ingested by Chimera is first transformed into an

internal data model. Designed for time series, the model used
follows a scheme based on tags and fields, where the latter are
actual metrics that provide the telemetric view for monitoring
and alerting. Tags, on the other hand, can be seen as metadata.
This schema is convenient for persistency, as it is a popular
model used by time series databases, allowing such data to
be smoothly persisted to such storages. In Chimera, tags and
fields are simple key-value pairs, internally stored as ordered
maps.

An important aspect of this data model is how a key is
built from a data point (note that the term key here does not

refer to the key from a key-value pair perspective). The key
is an important component used to compute a hash, which
is subsequently used for sharding. The key is obtained by
concatenation of the tags, justifying the usage of ordered maps:
two data points containing the same tags and values must give
the same key.

C. Fundamental Queuing Tier
The fundamental queuing layer plays the central role of

consistently sharding the inbound traffic to the processors
(a processor refers to a node belonging to the processing
tier). Consistency is achieved through a cycle-based algorithm,
allowing dynamic join(s) and leave(s) of both queue nodes
(a queue node refers to a node belonging to the fundamental
queuing tier) and processors. To maintain statelessness of each
component, the cluster manager ensures coordination between
queue nodes and processors. Figure 2 gives a high-level view
of a queue node.

Let X = {X1, X2, . . . , XN} be the inbound traffic,
where N is the current total number of queue nodes. Xn

denotes the traffic queue node n is responsible to shard.
Let Y = {y11, y12, . . . , y1M , y21, . . . y2M , . . . , yNM} where
M is the current total number of processors. It follows that
Xn = {yn1, yn2, . . . , ynM}, ynm, n ∈ [1, N ] and m ∈ [1,M ],
is the traffic directed at processor m from queue node n.
Note that Ym is all the traffic directed at processor m, i.e.,
Ym = {y1m, y2m, . . . , yNm}.
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As suggested above, the sharding operates at two levels.
The first one happens at the queue nodes. Each node n only
accounts for a subset Xn of the inbound data, reducing the
traffic over the network by avoiding sending duplicate data
(note that each queue node still receives the totality of the
traffic). Xn is determined by using a hash function on the
key of the data d, i.e., d ∈ Xn ⇐⇒ hash(key(d))
mod N = n, where the function key() gives the key of a
data point, as described in Section III-B. The second level
of sharding operates at the processor level, where ∀d ∈ Xn,
d ∈ Ym ⇐⇒ hash(key(d)) mod M = m. See Algorithm 1
for a synthetic view.

N and M are variables maintained by the coordinator, and
each queue node keeps a local copy of these variables (to adapt
the range of the hash functions). The coordinator updates N
and M whenever a queue node joins/leaves, respectively a
processor joins/leaves. This event also triggers a watch, which
causes the coordinator to send a notification to all the queue
nodes with the new value of N or/and M . However, the local
values in each queue node are not immediately updated, rather
it waits for the end of the current cycle. More details will
follow in Section III-F.

A cycle can be defined as a batch of messages. This means
that each ynm belongs to a cycle c. Let us denote ynmc the
traffic directed to processor m by queue node n during cycle c.
Under normal circumstances (no failure), all the traffic directed
at processor m (i.e., Ym) will be received. Queue node n
will advertise the coordinator that it has completed cycle c.
Upon receiving all the data and successfully flushing it to the
persistent storage, processor m will also advertise that cycle c
has been properly processed and stored (see Algorithm 2 for a
synthetic view of the tasks accomplished by a processor). As
soon as all the processors advertised that they have successfully
processed cycle c, the queue nodes move to cycle c + 1 and
start over.

Let us now consider a scenario with a failure. First, the
failure is detected by the coordinator, which keeps track of
live nodes by the mean of heartbeats. Let us assume the case
of a processor m failing. By detecting it, the cluster manager
adapts M = M − 1, and advertises this new value to all the
queue nodes. The latter do not react immediately, but wait for
the end of the current cycle c. At cycle c+1, the data that has
been lost (∀d ∈ Ym) is resharded and sent over again to the
new set of live processors. This is possible because all the data
has been persisted by the journaler (see Section III-C3). This
generalizes easily to more processors failing. See Algorithm
3.

Secondly, let us consider the case where a queue node fails
during cycle c. A similar process occurs: the cluster manager
notices that a queue node is not responsive anymore, and
therefore adapts N = N−1, before advertising this new value
to the remaining queue nodes. At cycle c = c + 1, ∀d ∈ Xn

are resharded among the set of live queue nodes, and the data
sent over again. Similarly, this generalizes to multiple queue
nodes failing.

The case of queue node(s) / processor(s) joining is trivial.
The node announces itself to the coordinator (handshake),
which adapts the value of N or M to N = N+1 or M = M+1.
This value is then advertised to all the queue nodes, which wait
for the next cycle before taking it into consideration. The new

Figure 2. Fundamental queuing internals. A ring buffer disciplines the
low-latency interactions between producers and consumers, respectively the

sourcers that pull data from the sources, and the channels and journalers that
perform the I/O for fundamental persistence and forwarding for processing.

Algorithm 1: Cyclic ingestion and continuous forward-
ing in the fundamental queuing tier.

Data: queueNodeId, N, M
Result: continuous ingestion and sharding.
initialization;
while alive do

data = ringBuffer.next();
n = hash(key(data)) mod N;
if n == queueNodeId then

m = hash(key(data)) mod M;
push(data, m); // push in queue m

end
if endOfCycle then

c = c+1;
advertise(queueNodeId, c);

end
end

queue node or processor is therefore idle until the start of a
new cycle.

Note that the approach described above guarantees that the
data is delivered at least once. It however does not ensure
exactly-once delivery. Section III-F3 complements the above
explanations. Finally, recall that byzantine failures are out of
scope and will therefore not be treated. It is worth emphasizing
that introducing resiliency to such failures would most likely
require a stateful protocol, which is exactly what Chimera
avoids. The remainder of this section gives more details about
all the components residing within the queuing layer.
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1) Parser: A parser is a simple plugin component, which
acts as the entry point to the pipeline. It handles the logic of
transforming the input traffic into a unified internal format that
is more convenient to work with. Recall from Section III-B.

2) Ring Buffer: The ring buffer is based on a multi-
producers and multi-consumers scheme. As such, its design
resolves around coping with high concurrency. It is an imple-
mentation of a lock-free circular buffer [27], which is able to
guarantee sub-microsecond operations and, on average, ultra-
high-throughput. In particular, the buffer avoids contended
writes on the head of the buffer by separating producers and
consumers by means of sequence numbers, where ordering
is ensured by using memory barriers. Locking is avoided by
using atomic operations. Furthermore, the ring buffer is backed
by a constant sized pre-allocated array. The consequences
of the pre-allocation is that the buffer becomes completely
garbage free and mechanical sympathique. Indeed, allocating
everything at once highly increases the probability of havings
all the objects allocated within the same memory area, thus
allowing cache striding, which highly increases cache hits.
As discussed in [27], being cache friendly gives a substantial
increase in performance.

3) Journaler: The journaler is a component dealing with
disk I/O for durable persistence and is the first consumer from
the ring buffer. Its task consists in persisting to disk the entire
traffic, by consuming the data from the ring buffer. In general,
I/O is a known bottleneck in high performance applications.
To mitigate performance hit, the journaler, written in Java,
uses memory-mapped file (MMFs) [28] and keeps garbage
collection to a minimum by working off-heap.

A memory-mapped file is a segment of virtual memory that
is mapped to a resouce (most of the time a file) presents on
disk. In contrary to typical I/O where reading/writing from/to a
file requires a system call, reading/writing from/to a memory-
mapped file operates directly in main memory, by-passing
the costly operations incurred by system calls (specifically
context switches). Because memory-mapped files are accessed
through the operating systems memory manager, the files are
automatically partitioned into pages and accessed as needed:
memory management is left to the operating system. From a
system call perspective, creating a mapping is achieved via
mmap(). The mmap() system call tells the kernel to map a
parameterized amount of bytes of an object represented by a
file descriptor into memory. Once a mapping is completed,
the application can write into the file by the mean of the
memory, rather than going through the write() system call.
Using a memory-mapped file therefore avoids the extraneous
copies that occurs when using the read() or write() system call,
where data must be moved to and from a user-space buffer.
These operations now directly operate in memory, which, from
the application perspective, simply implies moving pointers,
possibly avoiding fseek() calls at the same time.

On the other hand, off-heap programming particularly ap-
plies to programming languages where memory management
is not handled by the programmer. Java is the most typical
example, with its garbage collector. Programming off-heap
simply means that objects are no longer allocated on the heap,
but directly in the shared memory space. This concretely means
that garbage collection will not clear these objects, leaving this
task to the programmer himself (a simple analogy would be
to code like in C++, but in Java: there is a need to manage

memory manually). This greatly alleviates performance hits
caused by garbage collection, especially during a full swipe.
See [29] for detailed explanations on Java’s garbage collector.

4) Channel Manager: Communications between queue
nodes and processors are handled by the channel manager
module, which is the second consumer from the ring buffer.
This module handles the channels that are established between
queue nodes and processors. It is moreover the component
directly talking to the cluster manager, effectively handling
the sharding of the inbound traffic. A channel is a custom
implementation of a push-based client/server raw bytes asyn-
chronous channel, able to work at line rate. It is a point to
point application link and serves as an unidirectional pipe
(from queue node to one instance of processor). Despite the
efforts in designing the serialization and deserialization from
scratch, the multi-threaded extraction module in the processor
will prove to be the major bottleneck of the whole pipeline
(refer to Section V).

In more details, the channel manager is a singleton intel-
ligent unit that maintains a set of channels, each of which is
connected to a processor. The unicity of the channel manager
is paramount for simplicity and to keep coordination within the
process to a minimum. Consumers constantly poll data from
the ring buffer, and forward them to the channel manager. The
latter proceeds to extract the hash from the data point, which
is obtained by combining the tag from this data point (recall
from Section III-B). The hash is then modded with N (number
of queuing nodes) and the result compared to the current
queue node ID. If the value obtained does not correspond
to the one from the current queue node, the data point is
simply dropped. Otherwise, the channel manager proceeds
to compute the destination of this data point, consisting in
modding the same hash to M , the current number of live
processors. The data point is then properly forwarded to a
queue, where a dispatcher will further asynchronously send it
to the appropriate processor. This is extremely important for
the sake of processing: data coming from a same source and
that need to be aggregated together must always be sent over
to the same processor. This is ensured by the determinism
of the hash function. The queues are indexed and mapped
directly to their respective processor ID, making it easy and
fast to find the appropriate queue given the processor ID.
Finally, the usage of queues here can further be justified as an
application of the Half-Sync/Half-Async pattern [30], which
promotes the integration of synchronous and asynchronous
I/O for maximum efficiency in concurrent programming. The
whole flow is synthetically summarized in Algorithm 1.

D. Shared-nothing Processing Tier
A processor is a shared-nothing process, able to perform

a set of diversified lossless computations, in particular stateful
aggregations. Recall that this is possible because a same
processor is guaranteed to receive all the traffic matching
a same key. Aggregation is an important step as one of
nowadays big problems is that most databases are unable to
cope with the traffic generated by modern distributed systems
or infrastructures. The same applies for the querying aspect.
Indeed, assuming there is somehow a way for a database to
persist ten million data points per second, querying one hour
worth of data would actually query 3.6 ∗ 1010 data points, a
query that would take a while time to return: unaffordable in
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Figure 3. Processor internals. A ring buffer disciplines the interactions
between producers and consumers, respectively the inbound channels

receiving the data samples to process, and the staging and flushing sub-stages
that store the data either for further processing or for durable persistence.

Algorithm 2: Cyclic reception, processing and flushing.
Data: processorId
Result: continuous processing and cyclic flushing.
initialization;
while alive do

bytes = channel.receive();
data = extract(bytes);
processed = process(data);
if to be staged then

stage(processed);
else

flush();
c = c+1;
advertise(processorId, c);

end
end

the context of monitoring where almost real-time responses
are expected.

Internally, a processor is composed of three major com-
ponents, which are the extractor, the stager and the flusher,
as depicted on Figure 3. When joining an existing Chimera
cluster, a processor only needs to advertise itself to the
coordinator in order to start receiving traffic at the next useful
cycle. Being stateless, it allows indefinite horizontal scaling.
Details about the three main components of the processing tier
are given below. The whole flow followed by a processor is
synthetiacally summarized in Algorithm 2.

1) Extractor: The extractor module is a multi-threaded
component that detaches asynchronous threads to rebuild the
data received from the queue nodes into Chimera’s internal
model. It is the downstream of the channels (as per Section
III-C4), which works with raw bytes for maximum efficiency.

In essence, the extractor is nothing but a big array of pre-
allocated buffers. The size of the array is a static constant
and is estimated by using Little’s Law [31], rounded to
the closest power of two for memory friendliness. The pre-
allocation again favours byte continuity in memory and reduces
garbage whereas the static size prevents unexpected memory
exhaustion. Bytes received from the channel are sequentially
allocated in the first empty buffer until completely filled, in
which case the next buffer is used. If all the buffers are filled
up, the extractor can effectively become a bottleneck. As soon
as a buffer is completely filled up, a thread is detached and
will asynchronously rebuild the data object(s) into Chimera’s
internal format. Upon completion of the reconstruction, the
thread releases the buffer and returns it to the buffer pool,
where it is made available for further bytes allocation.

2) Staging: The warehouse is the implementation of the
staging area in Figure 3. It is an abstraction of an associative
data structure in which the data is staged for the duration
of a cycle; it is pluggable and has an on-heap and off-
heap implementation. It supports various kinds of stateful
processing, i.e., computations for which the output is function
of a previously stored computation. In fact, as for most of the
components in Chimera, the warehouse also has a pluggable
side, providing flexibility, meaning any implementation fitting
the needs can be used. As an example, the processor used for
benchmarking Chimera has the inbound data aggregated on-
the-fly for maximum efficiency; at the end of the cycle, all
the data currently sitting in the warehouse get flushed to the
database. However, partial data is not committed, meaning that
unless all the data from a cycle c is received (i.e., Ymc ), the
warehouse will not flush.

In more details, the length of a cycle greatly impacts the
warehouse. Indeed, the aggregation period is solely based
on the length of a cycle, which can be defined by time or
batch size. This is an important trade-off to make, as a longer
cycle will likely means coarser data granularity, as more data
will be aggregated before persisted to storage. This parameter
requires fine tuning depending on the context. In the case
of monitoring, a cycle will typically be fairly small, to keep
maximum granularity and almost real-time data. Indeed, the
longer the cycle, the later the data will be flushed to storage,
which consequently means later query-able data.

3) Flusher: The flusher is an asynchronous component
flushing the processed data into a storage of choice. It asyn-
chronously consumes the data from the staging area, i.e. the
warehouse, at the end of each cycle. The data is batched into a
query that is submitted to the selected storage, and signals the
end of a cycle to the cluster manager by acknowledging the
data has been properly persisted. The flusher is a pluggable
client that handle communications with the persistence layer,
as queries differ depending on which database is used.

E. Persistence Tier
The persistence tier is a node of the ingestion pipeline

that runs a database. This is the sole task of such kind of
nodes. For the benchmarking, Chimera makes use of a time
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series database called KairosDB [32], which is built on top of
Apache Cassandra [33]. At design time, the choice was made
considering the expected throughput and the possibility to
horizontally scale this tier too. Chimera offers a flexible plugin
based model where selecting a different database is possible by
simply providing a client talking the selected storage language
(the flusher).

F. Core Protocols
The focus of this section is on the core protocols, synthet-

ically and briefly formalized as the main algorithms imple-
mented at the fundamental queuing and processor tiers. Their
design targeted the distributed and shared nothing paradigm:
coordination traffic is backpropagated and produced individ-
ually by every processor. The backpropagation of acknowl-
edgements refers to the commit of the traffic shard emitted by
the target processor upon completion of a flush operation (see
Section III-D3). This commit is addressed to the coordinator
only, avoiding horizontal coordination. To make sense of these
protocols, the key concepts to be taken into consideration are
ingestion cycle and ingestion group, as per their definitions.

1) Cyclic Operations: The ingestion pipeline works on
ingestion cycles, which are configurable batching units; the
overall functioning of the algorithm is independent of the cycle
length, which may be an adaptive time window or any batching
policy, ranging from a single unit to any number of units
fitting the needs, context and type of data. Algorithm 1 presents
the pseudo-code for the cyclic operations of Chimera on the
fundamental queuing tier, which is mostly performed by the
channel manager (Section III-C4), and Algorithm 2 presents
the pseudo-code for the processing tier (Section III-D).

2) On-demand Replay: On-demand replay needs to be
implemented in case of any disruptive events occurring in the
ingestion group, e.g., a failed processor or queue node. In order
to reinforce reliable processing, the shard of data originally
processed by the faulty member needs to be replayed, and this
has to happen on the next ingestion cycle. The design of the
cyclic ingestion with replay mechanism allows to mitigate the
effect of dynamic join and leave: the online readaptation only
happens in the next cycle, without any impact on the current
one. Recall from Section III-C3 that the traffic is persisted by
the journaler.

Algorithm 3 presents the main flow of operations needed
to make sure that any non committed shard of traffic is first
re-processed consistently, and then properly flushed onto the
storage. Note that this process of replaying can be nested in
case of successive failures. It provides eventual consistency
in the sense that the data will eventually be processed and
persisted.

3) Dynamic Join/Leave: Any dynamic join(s) and leave(s)
are automatically managed with the group membership and
the distribution protocol. Join means any event related to a
processor/queue node advertising itself to the cluster manager
(or coordinator); instead, leave means any event related to
a processor leaving the ingestion group and stop advertising
itself to the cluster manager (e.g., a failure). Upon the arrival
of a new processor, nothing happens immediately. Instead at
the beginning of the next cycle, it is targeted with its shard
of traffic; whenever a processor leaves the cluster, a missing
commit for the cycle is detected and the on-demand replay

Algorithm 3: Data samples on-demand replay, upon
failures (processor(s) not able to commit the cycle).

Data: cycleOfFailure, queueNodeId, prevM, M,
failedProcessorId

Result: replay traffic according to the missing
processor(s) commit(s).

initialization;
while alive do

data = retrieve(cycleOfFailure);
while data.hasNext() do

curr = data.next();
if hash(curr) mod N == queueNodeId then

if (hash(curr) mod prevM) ==
failedProcessorId then

m = hash(curr) mod M;
insert(curr, m);

end
end

end
end

is triggered to have the shard of traffic re-processed and
eventually persisted by one of the live processors.

IV. FAULT MODEL

This section presents a basic fault model for Chimera.
The model stays shallow as the focus of this work is not
security and fault resiliency, but rather scalability, performance
and operational simplicity. Given a system deployed into a
distributed environment, the system can be defined as a set
of processes communicating between them by mean of the
network. Thus, the two entities involved are the network and
the processes. No distinction between the various processes is
made, to stay as general as possible.

Considering three types of failures, which is reasonable
given the nature of the system, the following presents whether
Chimera tolerates them or not, and if yes, how. Getting inspira-
tion from the taxonomy proposed in [34], Table I summarizes
the failures (column) tolerated by Chimera, with respect to
its components (row). Given the coordinator and the database
are two full fledged external components, the focus will be
on the queue nodes and the processors. Worth is to note that
multiple failures could occur at the same time, clearly they are
not mutually exclusive. Also, despite going as exhaustively as
possible through all the possible failures, Chimera does not
implement solutions to sustain them all. Only a small subset
is addressed, as building a complete fault tolerant system was
far beyond the scope of this work. Tolerance can be divided
into three categories, each of which characterizes a particular
dimension:

• Prevention: This dimension is concerned about ways
of preventing a failure to occur. This encompasses,
for example, good programming techniques and robust
design.

• Detection: This deals with ways of detecting a failure
occurred. It is particularly difficult in an asynchronous
environment, where no assumption about time can be
made.
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• Mitigation: This is concerned about mitigating the
damages and losses in case of failure. For example,
right before failing, a process could attempt to persist
its state on disk to ease the recovery.

Chimera will refer to these three dimensions to assess
tolerance to given faults.

A. Process - Crash

From a process perspective, a crash could be considered
the most drastic failures. Preventing a crash always start with
clean coding and testing, reducing the chance of finding the
process in an unexpected state. Crashes can also be induced by
external events such as hardware failure, but this is irrevelant
from a process perspective. Detecting that a process crashed in
Chimera relies on the coordinator. Indeed, the coordinator will
detect any unresponsive node(s) and act accordingly. Given
the coordinator can be by itself a cluster, detecting that a
coordinator node crashed is left to the coordinator itself, as
ZooKeeper does it for example. In terms of mitigation, the
queue nodes always persist the entirety of the traffic on disk via
the journaler. In case of crash, the data is therefore recoverable
with no loss. In case of the processors, they are totally stateless:
there is no need to mitigate as nothing would be lost.

B. Process - Corrupted Output

A corrupted output failure can be divided into two causes:
hardware or software. In the software case, preventing such
a failure again starts with thorough testing to ensure the
algorithms are behaving as expected. Test coverage and test
generation are the difficulties here, some techniques are dis-
cussed in [35]. Input checking also plays a central role in
prevention. A mean to detect a corrupted output is through data
auditing. In the basic form, if an output is simply unexpected,
exceptions handling should be put in place to avoid any crash.

In the case of corrupted output caused by hardware, such
errors (bit flips for example) are simply assumed impossible
to deal with from the application level. For example, it is
discussed in [36] that CRCs are not enough to ensure error
free packets.

C. Network - Crash

Network crash is completely unpredictable and very few
people have control over the network (excluding malicious
users). Replication and deploying Chimera in multiple in-
dependent regions would prevent a complete shut down of
the system. Detecting a network crash is straightforward (no
communication is possible within a certain region). Mitigating
such an event consists in saving the state of each process until
the network is available again. For Chimera, the queue nodes
already do that, and as the processors are stateless, there is no
state to save.

D. Network - Corrupted Output

A corrupted output caused by the network is in principle
assumed to be prevented by TCP. This should therefore not
affect the system at the application level.

Figure 4. Graphical representation of the experimental methodology used to
assess the performance of Chimera, tier by tier.

V. EXPERIMENTAL CAMPAIGN

In order to assess Chimera’s performance with a focus
to validate its design, a test campaign has been carried out.
In this section, the performance figures are presented, notes
are systematically added to give context to the figures and to
share with the reader the observations from the implemented
campaign.

A. Testbench
Performance testing has been conducted on a small cluster

of three bare metal machines, each of which running with
CentOS v7. Machines were equipped with two CPUs of
six cores each, 48 GB of DDR3 and a HDD; they were
connected by the mean of a 1 Gbit switched network. These
are fairly small machines, which is perfectly aligned with one
of the goals of Chimera, i.e., run on commodity hardware.
Naturally, given this small cluster, one node was dedicated
to the queuing tier, one node acted as a processor while the
last one maintained the storage and played the role of cluster
manager.

B. Experiments
The synthetic workloads were randomly generated, follow-

ing a pre-defined schema reflecting the expected traffic from
a production environment. The randomness might introduce
slight unpredictabilities in the size of each data point, which
are negligible given the load at which Chimera will operate,
i.e. the unpredictabilies will be very small compared to the
whole traffic. For each test scenario, a warm-up phase getting
the JVM started is ran prior to running twenty iterations were
results are being collected. A small idle period during each
iteration is in place to clear any remaining garbage from a
previous iteraiton. The results for each iteration were then
averaged and summarized.

Figure 4 presents the testbench organization: probes were
put in points A, B and C to capture relevant performance
figures. As evident, the experiments were carried out with a
strong focus on assessing the performance of each one of the
composing tiers, in terms of inbound and outbound aggregated
traffic.

The processor used for the tests performs a statistical
aggregation of the received data points on per cycle basis; this
was to alleviate the load on the database, which was not able
to keep up with Chimera’s average throughput. The statistical
aggregation extracts typical measures such as max, min, mean
and variance. The measures are extracted and aggregated on-
the-fly as data points arrive [37], then flushed to storage at the
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TABLE I. Summary of the faults tolerated by Chimera. The columns indicate the type of fault, the rows refer to the component involved in Chimera. Process
indicate any process in Chimera, i.e. processor or queue node.

Crash Corrupted Output

Process Yes Yes
Network Yes Yes

end of a cycle, i.e. batch of datapoints. The remainder of this
section presents the results with reference to this methodology.

C. Results
1) Fundamental Queuing Inbound Throughput:

a) Parsing: At the very entrance of any pipeline sits the
parsing submodule, which is currently implemented following
a basic scheme. This is mostly because the parsing logic highly
relates to the kind of data that would be ingested by the system.
As such, parsing optimizations can only be carried out when
actual data is pumped into Chimera. Nevertheless, stress testing
has been conducted to assess the performance of a general
purpose parser. The test flow is as follow: synthetic workloads
is created and loaded up in memory, before being pumped
into the parsing module, which in turn pushes its output to
the ring buffer. The results summarized in Table II are fairly
good: a single threaded parsing submodule was able to parse
712K messages per second, on average. Clearly, as soon as the
submodule makes use of multiple threads, the parser was able
to saturate the ring buffer capacity.

b) Ring Buffer: The synthetic workload generator sim-
ulated many different sources pushing messages of 500 bytes
(with a slight variance due to randomness) on a multi-threaded
parsing module. In order to push the limits of the actual
implementation, the traffic was entirely loaded in memory and
offloaded to the ring buffer. The results were fair, the ring
buffer was always able to go over 4M data samples ingested
per second; a summary of the results as a function of the input
bulks is provided in Figure 5(a);

c) Journaler: As specified in Section V, the testbench
machines were equipped with HDDs, clearly the disk was
a bottleneck, which systematically induced backpressure to
the ring buffer. Preliminary tests using the HDD confirmed
the hypothesis: the maximum I/O throughput possible was
about 115 MByte/s. That was far too slow considering the
performance Chimera strives to achieve. As no machine with
a Solid State Drive (SSD) was available, the testing was carried
out on the temporary file system (tmpfs, which is backed by
the memory) to emulate the performance of an SSD. Running
the same stress tests, a write throughput of around 1.6 GByte/s
has been registered. By the time of writing, the latter is a
number achieved by a good SSD [38], and which is perfectly
in line with the ring buffer experienced throughput (approx. 2
GByte/s of brokered traffic data). Figure 5(b) gives a graphical
representation of the results.

2) Fundamental Queuing Outbound Throughput:
a) Channel: Results from channel stress testing are

shown in Figure 6(a). The testbench works on bare metal
machines on a 1 Gbit switched network, which is, as for the
case of the HDD, a considerable bottleneck for Chimera. Over
the network, 220K data points per second were transferred
(approx. 0.9 Gbit/s), maxing out the network bandwidth. Stress

tests were repeated with a local setup, approaching the same
reasoning as per the case of journaler. The results are reported
in Figure 6(b), which demonstrates the ultra high-level of
throughput achievable by the outbound submodule of the
fundamental queuing tier: the channel keeps up with the ring
buffer, being able to push up to 4M data points per second.

3) Processor Inbound Throughput:
a) Channel: The channel is a common component,

which acts as sender on the queuing side, and as receiver
on the processor side. The performance to expect has already
been assessed, so for the inbound throughput of the processor
the focus would be on the warehouse, which is a fundamental
component for stateful processing. Note that processors operate
in a stateless way, meaning that they can join and leave dy-
namically, but, of course, they can perform stateful processing
by staging the data as needed and as by design of the custom
processing logic.

b) Staging Area: Assessing the performance of this
component was critical to shape the expected performance
curve for a typical processor. The configuration under test
made use of an on-heap warehouse (see Section III-D2), which
guarantees a throughput of 3.5M operations per second, as
shown on Figure 7(a). Figure 7(b) shows the result obtained
from a similar test, but under concurrent writes; going off-
heap was proven to be overkilling as further serialization
and deserialization were needed, clearly slowing down the
entire inbound stage of the processor to 440K operations per
second. Note that with a decent serialization framework and
an optimized writing strategy, the expected throughput of an
off-heap data structure should easily outperform that of an on-
heap approach.

c) Extractor: This module was proven to be the biggest
bottleneck of Chimera. It has to deserialize the byte stream
and unmarshal it into Chimera’s domain object, using the
default Java serializer. The multi-threaded implementation was
able to go up to 0.9M data points rebuilt per second: a high
backpressure was experienced on the channels pushing data at
the line rate, producing high GC overhead on long runs. The
adoption of a decent serialization framework would definitely
improve the performance of the extractor by at least an order
of magnitude.

4) Processor Outbound Throughput:
a) Flusher: It was very related to the specific aggregat-

ing processor and it was assessed to be approx. 85 MByte/s,
which is reasonable considered the aggregation performed on
the data falling into a batching on the cycle. The characteristic
of this tier may variate with the support used for the storage.

D. Discussion
The test campaign was aimed at pushing the limits of each

single module of the staged architecture. The setup put in
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TABLE II. Summary of the experienced throughputs in millions per second. This table provides a quantitative characterization of Chimera as composed by its
two main stages and inherent submodules. Parsing and extraction were multi-threaded, using a variable pool of cached workers (up to the limit of (N ∗ 2 + 1)
where N was the number of CPUs available). Tests were repeated with a local processor to overcome the 1 Gbit network link saturation problem. The results

involving the network are shown in the light gray shaded rows.

Queuing [M/s] Processing [M/s]

Direction Parsing Ring Buffer Journaler Channel Extraction Staging

Inbound 6 4.3 4.3 0.2 0.2 0.2
Outbound 4.3 4.3 3.7 0.2 0.2 0.2

Inbound 6 4.3 4.3 4.3 0.9 0.9
Outbound 4.3 4.3 3.7 4.2 0.9 0.9

(a) Ring buffer stress test results. Synthetic traffic was generated as
messages of average size 500 bytes.

(b) Journaler stress test results. Synthetic traffic was as per ring buffer.

Figure 5. Performance of the ring buffer and journaler.

place was a single process both for the fundamental queuing
and processor tiers, so the performance figures showed in the
previous sections were referring to such setup.

The experimental campaign has confirmed the ideas around
the design of Chimera. As per Table II, Chimera is a platform
able to handle millions of data samples flowing vertically in
the pipeline, with a basic setup consisting of single queuing
and processing tiers. No test have been performed with scaled
setups (i.e., several queuing components and many processors),
but considered the almost shared nothing architecture targeted
for the processing tier (slowest stage in the pipe having the
bottleneck in the extraction module), a linear scalability is
expected, as well as a linear increase of the overall throughput
as the number of processors grows up.

During the test campaign, resource thrashing phenomenon
was observed [39]. The journaler pushed the write limits of the
HDD, inducing the exhaustion of the kernel direct memory
pages. The HDD was only able to write at a rate of 115
MByte/s, and therefore, during normal runs, the memory gets
filled up within a few seconds, inducing the operating system
into a continuous swapping loop, bringing in and out virtual
memory pages.

Figure 8 presents a plot of specific measurements to
confirm the resource thrashing hypothesis. The tests consisted
in writing over several ingestion cycles a given amount of
Chimera data points to disk, namely one and three millions
per cycle. The case of one million data points per batch shows
resource thrashing after seven cycles: write times to HDD
bump up considerably, the virtual memory stats confirmed

pages being continuously swapped in and out; the case of three
millions data points per batch shows resource thrashing after
only two cycles, which is expected. High response times were
caused by the cost of flushing the data currently in memory to
the slow disk, meanwhile the virtual direct memory was filled
up and swapped in and out by the kernel to create room for
new data, as confirmed in [40].

VI. CONCLUSION

Chimera is a prototype solution implementing the proposed
ingestion paradigm, which is able to distribute the queuing
(intended as traffic persistence and replay) and processing
tiers into a vertical pipeline, horizontally scaled, and shar-
ing nothing among the processors (control flow is vertical,
from queuing to processors, and from processors to queuing).
The innovative distribution protocols allow to implement the
backpropagated incremental acknowledgement, which is a key
aspect for the delivery guarantee of the overall infrastructure:
in case of failure, a targeted replay can redistribute the data
on the live processors and any newly joining one(s). This
same mechanism allows to redistribute the load, in case of
backpressure, on newly joining members with a structured
approach: the redistribution is implemented on a cyclic basis,
meaning that a newly joined processor, once bootstrapped,
starts receiving traffic only during the next useful ingestion cy-
cle. This innovative approach solves the problems highlighted
with the solutions currently adopted in the industry, keeping
the level of complexity of the overall infrastructure very low:
the decoupled nature of the queuing and processing tiers, as
well as the backpropagation mechanism are as many design
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(a) Channel stress test results. Synthetic traffic was pulled from the
ring buffer and pushed on the network, targeting the designated
processor.

(b) Channel stress test results. Synthetic traffic was pulled from the ring
buffer and pushed on the network, targeting the designated localhost
processor.

Figure 6. Performance of the channel.

(a) Warehouse (i.e., staging area) stress test results. Scenario with
non-concurrent writes.

(b) Warehouse (i.e., staging area) stress test results. Scenario with
concurrent writes.

Figure 7. Performance of the staging area.

Figure 8. Experimented HDD-induced thrashing phenomenon. The I/O
bottleneck put backpressure on the kernel, inducing high thrashing, which

was impacting the overall functioning of the machine.

tenets that enable easy distribution and guarantee reliability
despite the very high level of overall throughput.

From a performance standpoint, experimental evidences
demonstrate that Chimera is able to work at line rate, maxing
out the bandwidth. The queuing tier outperforms the process-
ing tier: on average a far less number of CPU cycles is needed

to first transform and second persist the inbound traffic, and
this is clear if compared to the kind of processing described
as example from the experimental campaign.

Finally, Chimera provides a few mechanisms to deal with
failures. As explained, the queue nodes persist at maximum
throughput the inboud traffic on disk for replay. The state-
lessness feature of the processors grant failure resiliency to
Chimera out-of-the-box at this level, as the replay mechanism
is all that is needed to overcome a failing processor. All in all,
besides byzantine failures, Chimera yields good tolerance to
failures simply by design.

A. Lessons Learned
The journey to design, implement and validate experimen-

tally the platform was long and arduous. A few lessons have
been learned by engineering for low-latency (to strive for the
best from the single process on the single node) and distribut-
ing by sharing almost nothing (coordinate the computations on
distributed nodes, by clearly separating the tasks and trusting
deterministic load sharding). First lesson might be summarized
as: serialization is a key aspect in I/O (disk and network), a
slow serialization framework can compromise the throughput
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of an entire infrastructure. Second lesson might summarized
as:memory allocation and deallocation are the evil in managed
languages, when operating at line rate, the backpressure from
the automated garbage collector can jeopardize the perfor-
mances, or worse, kill nodes (in the worst case, a process
crash can be induced). Third lesson might be summarized
as: achieving shared nothing architecture is a chimera (i.e.,
something unique) by itself, meaning that it looks almost
impossible to let machines collaborate/cooperate without any
sort of synchronization/snapshotting. Forth and last lesson
might be summarized as: tiering vertically allows to scale but
it inevitably introduces some coupling, this was experienced
with the backpropagation and the replay mechanism in the
attempt to ensure stateless and reliable processors.

B. Future Work
The first step into improving Chimera would be to work on

a better serialization framework. Indeed, as shown in the test
campaign, bottlenecks were found whenever data serialization
comes into play. Existing open-source frameworks are avail-
able, such as Kryo [41] for Java. Secondly, in order to further
assess the performance of Chimera, it would be necessary to
run a testbench where multiple queue nodes and processors
are live. Indeed, the test campaign has only been focused
on one queue node, one processor, one storage node and a
single node coordinator. This would also allow to further assess
Chimera’s resiliency to failures, and recovery mechanisms.
Indeed, Byzantine failures have been excluded from the scope
of this work, but resiliency with respect to such failures are
necessary to enforce robustness and security. In particular,
using Netflix Simian Army would be most interesting to assess
the recovery mechanisms.
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