
Ontological Representation of Public Web Services

Maricela Bravo
Systems Department
UAM-Azcapotzalco

DF, Mexico
mcbc@correo.azc.uam.mx

Mónica Silva-López
Systems Department
UAM-Azcapotzalco

DF, Mexico
misl@correo.azc.uam.mx

Blanca Silva-López
Systems Department
UAM-Azcapotzalco

DF, Mexico
rbsl@correo.azc.uam.mx

Abstract—Among the main benefits of service-oriented
architectures is the reutilization of software components that
may solve specific tasks for complex problems, requiring the
composition of multiple Web services. Currently Internet is
largely populated with Web services offered by different
providers and published in various Web repositories. However,
public available Web services still suffer from problems that
have been widely discussed, such as the lack of functional
semantics. This lack of semantics makes very difficult the
automatic discovery and invocation of public Web services,
even when the system integrator can obtain a copy of the
WSDL file. This paper describes an ontological approach for
discovering similarity relations between public Web services.
The objective of this work is to extract relevant data that is
coded into service operations descriptions, calculate similarity
measures between them, represent the discovered similarities
in an ontological form, and execute inference. Experimental
results show that the overall process towards the automation of
public Web services discovery based on ontology population
and structural similarity measures is feasible and can be
completely automated.

Keywords-Web services; Structural Similarity Measures;
Similarity Relations Discovery; Automated Ontology Population;
and Inference.

I. INTRODUCTION

In the last decade, many software vendors have
developed, deployed and offered software as services using
interface description languages, such as the Web Service
Description Language (WSDL) [1]. In order to make their
services available online, providers publish their service
descriptions in public Web service repositories, which may
or may not be conformant to a specific standard such as
UDDI [2] or ebXML [3]. When software integrators search
for Web services that meet certain criteria in public
repositories, and try to select and invoke existing Web
services, they may face some of the following problems:

Lack of well-documented Web service descriptions. This
is a common problem that many public Web service clients
or requestors face. A study and report of this problem was
presented by Rodríguez et al. [4]. In this work, authors
identify common mistakes in WSDL documents:
inappropriate or lacking comments, use of ambiguous names
for the main elements, redundant port-types, low cohesive
operations in the same port-type, enclosed data model,
redundant data models, etc. According to [4], less than 50%

of the studied WSDL files have some documentation.
Additionally, the naming of services, operations, messages
and parameters does not follow any convention, and there is
no obligation to provide additional semantic information.
These reasons cause enormous difficulties during search,
selection and invocation of services.

Lack of semantically enhanced Web services
repositories. There are many public Web service repositories,
but they do not offer sufficient semantic information about
the service functionality, making very difficult the automated
exploitation of deployed Web services. Majority of public
repositories offer key-based search mechanisms, and some
sort of classifications, but none of them offer correlations
discovery between existing services considering provided
interface (template) information.

Different solutions have been proposed to solve these
limitations. The semantic Web has influenced many works
by providing logic-based mechanisms to describe, annotate
and discover Web services. Within this context, McIlarith et
al. [5] proposed one of the first initiatives to markup Web
services based on DAML (ontology language), which started
the important research area of “Semantic Web Services”.
The term Semantic Web Services is related to the set of
technologies and models based on the implementation and
exploitation of ontologies as a mechanism to semantically
enhance service descriptions, for instance: OWL-S [6],
WSMO [7], and SAWSDL [8]. However, these methods
require human experts intervention to construct ontologies
and annotate Web service descriptions before their
deployment.

From the perspective of Web services providers, if they
want to take advantage of these semantic-based technologies,
they will have to re-design their solutions with the following
considerations: in case of annotating semantically their Web
services using SAWSDL, they need to construct or select an
ontological representation relative to the domain of the
services offered; in the case of using OWL-S, service
providers need to learn this model and use the tools available
to create the corresponding ontological descriptions of their
services; and in case of using WSMO, the learning curve is
steep because it requires more effort to understand and use
the complex framework of WSMO with a new ontology
language. Considering that service providers are familiar
with software development, but not necessarily with
ontologies or semantic Web technologies.

13Copyright (c) IARIA, 2013. ISBN: 978-1-61208-266-0

MOPAS 2013 : The Fourth International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

From the point of view of a service requestor, the first
problem that he will face is to find Web services repositories
containing semantic Web service descriptions using these
technologies. Furthermore, he will not find a universal
repository containing all types of semantic service
descriptions. Until now there is no reported approach or tool
that automatically translates or connects (without human
intervention) any pre-existing Web service description to any
of the aforementioned solutions.

Despite the increasing popularity of semantic-based
technologies, the numerous researchers devoted to them, the
great advances and achievements; there is still an important
gap between these semantic-based Web service technologies
and the pre-existing Web services, which were deployed
using only WSDL (including the common mistakes pointed
by Crasso). There is no doubt that the semantic Web trend
will continue and will consolidate in the following years, and
if service providers want to stay competitive, they need to
adapt and re-deploy their services using these technologies.
Meanwhile, from the perspective of computer science, many
solutions can be designed and constructed to overcome these
difficulties.

The solution reported in this paper relies on the following
basis, considering that Web services can be described using
different languages, there are essential common elements
that all Web services description languages must provide: a
general communication interface that the client uses to create
a proxy object to invoke the service remotely. This
communication interface must describe information about
the functions that the service offers (operation in WSDL,
profile in OWL-S or capability in WSMO) as well as the
correct description of input and output parameters. Taking
into account these common elements between services
described in any of these languages and that ontologies
represent the cutting edge technological movement, this
article describes an ontological representation for public
Web services. With this motivation in mind, this paper
describes two contributions:

A service mining process which extracts relevant service
elements coded into service descriptions, calculates
similarity measures, and discovers semantic relationships
between them. In this work, the discovery of similarity
relations is based on a set of structural and syntactical
similarity measures.

An ontology-based representation of public Web
services, which serves as a service repository which allows
the dynamic acquisition of more service instances and
discovery of similarities among them. This service ontology
allows the definition of query rules to support complex
service tasks such as search, discovery, selection,
substitution and composition. An additional benefit of using
an ontology-based representation of discovered similarities
between Web services is the possibility of inter-connection
and inter-operation with existing semantic models.

The rest of the paper is organized as follows: in Section
2, the Web service mining approach is described; in Section
3, experimentation is presented; in Section 4, useful
application scenarios are described to show the applicability
of this work; finally, in Section 5, conclusions are presented.

II. RELATED WORK

Web service automatic mining is the task of searching
(by means of crawlers), retrieving and parsing public Web
services. Research topics related with Web service mining
are data mining and knowledge discovery. Hamel et al. [9]
describe Web service mining as the process of applying data
mining techniques on Web service logs, with the objective of
discovering actionable Web service intelligence. In particular
authors analyze the requirements to deal with four mining
levels: the interface level, the abstract process level, the
choreography level and the orchestration model of a
composite Web service level. However, this work reports
this analysis result with no experimentation or real
implementations of the four mining levels. Among the main
difficulties that they faced is “the lack of existing public Web
service execution logs” to work with.

The work reported in Chen et al. [10] is closely related
with this one, they use a bottom up discovery approach for
mining Web services, use an ontology to represent
discovered relations and a set of rules to obtain more
definitions between Web services. However, they do not
provide any experimental evidence of "real world" Web
services.

A service mining framework is reported by Zheng and
Bougettaya in [11]. In this work, authors describe a bottom
up approach framework for mining Web services. Their main
focus is on discovering any interesting and useful service
composition that may came up during the mining process,
with no goal containing specific search criteria. In contrast,
the work reported in current paper has a similar intention
mining process, in the sense that no objective criteria is
provided, but the semantic relations discovered are not
tailored only for composition purposes.

Zhang et al. [12] report a composite Web services
discovery technique based on community mining. In this
work, authors address the problem of finding services that
are more suitable for a common goal to complete a task. In
particular, they propose a method of mining the service
community by exploiting service execution logs. The main
difference between Zhang work and the approach described
in current paper is the information source of the mining
process.

Young-Ju et al. [13] argue that there exist a vast number
of public available services that cannot be utilized by tools
that enable service users to create mashups without
programming knowledge. They propose a solution based on
the combination of existing description languages and
learning ontology mechanisms in order to enable the
development of semantic web services compliant with
architectural style of RESTful web services. Their ontology
learning mechanism is used to extract and cluster service
parameters, producing a parameter-based domain ontology
which is evaluated against a traditional keyword-based
service search mechanism.

Yousefipour et al. [14] propose an ontology-based
framework for the discovery of semantic Web services
(SWS) using a QoS approach. Their framework describes an
ontology manager component which handles the provider

14Copyright (c) IARIA, 2013. ISBN: 978-1-61208-266-0

MOPAS 2013 : The Fourth International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

and the requester domain or general ontologies. This
component merges these ontologies with general ontologies
and creates a new generalized ontology, which is used for
ranking the resulting list of SWS. Even though authors
address automatic discovery of SWS by means of ontologies,
their ontologies are domain-oriented. In contrast, in this
paper ontologies are used for modeling service programmatic
interfaces aiming at supporting automatic search and
discovery of public available Web services.

Yoo Jung et al. [15] address the problem of annotating
Web services from the Deep Web. Deep Web refers to Web
pages that are not accessible to search engines. In particular,
authors consider Web forms interface pages as Deep Web
services that reflect the real content types of the Deep Web.
Their proposed solution consists of the automatic generation
of a domain ontology for semantic annotation of Web
services. Such domain ontology is built based on Web page
attributes (any items of descriptive information about the
site). Their research main goal is improving the automatic
search and discovery of public Web services. However, their
service description sources are different as they are using
Web form interface pages instead of a formal service
description language.

Sabou and Pan [16] presented a study of the major
problems with Web service repositories (some of them are
no longer available, however the result of the study is still
relevant). They concluded that Web service repositories use
simple techniques of accessing the content of Web services,
browsing across services listings relies on few and low
quality metadata, and metadata is not fully exploited for
presentation. Authors also proposed various semantic-based
solutions to enhance semantically service repositories.
Retaking the early ideas of these authors, the solution that is
reported in this article is to lay the foundations for the
automatic construction of public Web services repositories
based on ontologies.

Comparison with related work. The idea of retrieving ,
clustering and mining Web services using a semantic
approach is no new. However, none of reported works have
fully achieved the level of automation with real existing Web
services. Some works do not offer experimentation with real
world service implementations [9], [10]. Service mining-
related works were not designed with a global vision
(considering programmatic interfaces and application
domains) to support all service tasks; for instance [11]
describes an approach tailored only for composition, [13]
presents the construction of ontologies with a specific
parameter-domain approach, or application-domain
ontologies [14]. The rest of work use different service
information sources: service execution logs [12], and Web
form interface pages instead of a formal service description
language [15]. The approach reported in this paper aims at
automating mining real world Web services to support all
service tasks based on programmatic interface ontologies and
domain ontologies using as a source public Web service
descriptions.

III. MINING PUBLIC WEB SERVICES

In this paper, Mining Web Services is defined as the task
of unveiling similarities that hold across multiple Web
services descriptions; in order to support complex tasks, such
as: discovery, selection, matchmaking, substitution and
composition of Web services. Data and text mining have the
main purpose of discovering patterns from data and produce
new information or knowledge. In this context, the objective
of mining public Web services descriptions is to find certain
patterns or relationships (patterns and relationships are used
interchangeable as synonyms) based on a set of similarity
measures.

The process of mining Web services is depicted in Figure
1. This process involves the following phases:

Retrieving public Web services. This phase consists of

searching and copying service descriptions files from the
Web. The objective is to gather information about services
available on the Web and maintain a local repository of
retrieved public Web services. To achieve this objective, a
common strategy is to program several softbots that seek for
services on the entire Web; or visit specific service
repositories that manage lists of services. One of the most
representative public Web service repositories is Seekda [17]
search engine, which currently catalogs more than 28,000
service descriptions.

Parsing Web services descriptions. This phase consist of
reading description files, identify the relevant elements,
retrieve and process them. With this regard, two important
requirements have to be addressed: heterogeneity of service
description languages (SDL) and selection of the relevant
data to be retrieved from service files. The former
requirement is derived from the existence of various SDLs:
WSDL, OWL-S, WSML, and SAWSDL. Both requirements
are addressed by identifying the essential common elements
that all SDLs must provide: a communication interface that
the client uses to create a proxy object to invoke the service
remotely. This communication interface must describe
information about the functions that the service offers
(operation in WSDL, profile in OWL-S or capability in
WSML) as well as the descriptions (name and data types) of
input and output parameters.

Similarities discovery, during this phase a set of
similarity measures are calculated to enable the generation of
new relationships between services and entail new
knowledge about these relations. During this phase the
mining process can be configured through the combination
of various similarity measures in order to find more
interesting results depending on the user needs and
application objective.

Inference and maintainability. This phase consist of the
execution of a set of inference rules which generate and
maintain similarity relations into the ontology whenever new
service instances are added. This phase also allows the
definition of more rules to construct interesting relations
based on the basic similarity relations. For instance, if there
are two service functions which hold input and output
parameter similarities, and also hold a semantic similarity on

15Copyright (c) IARIA, 2013. ISBN: 978-1-61208-266-0

MOPAS 2013 : The Fourth International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

their function names, then a combined similarity can be
defined to establish a structural similarity (covering
parameter and function names). Another possibility is to
offer mechanisms of dependency checking if a correlated
service instance is deleted.

Figure 1. The process of mining public Web services.

An important element of this mining process is the

ontological representation, which consists of an ontology
management interface and the resulting ontology. The
Ontology management is a programming interface through
which the mining phases read, write and update concepts and
semantic relations into the ontology.

The Web service Ontology is a formal and logical
representation of the mined services together with all
semantic relationships.

IV. ONTOLOGY TO REPRESENT WEB SERVICES

In 1993, Gruber defined Ontology as “an explicit
specification of a conceptualization” [18]. The Web service
ontology described in this paper, aims at providing
fundamental inter-relations representation of Web service
core concepts (functions, input parameters and output
parameters). The main entities (classes) are Service,
Function and Parameter. Figure 2 shows a general view of
this ontology and its interrelationships. The Parameter class
is sub-classified into InputParameter and OutputParameter
classes.

Figure 2. Ontology for the representation of Web services and their

related application domains.

Data type properties were defined as follows. For class
Service hasServiceName and hasURL data type properties
were defined to take only xsd:string data values. For class
Function, the hasFunctionName data type property was
established, allowing only xsd:string data values. For class
Parameter, the hasParameterDataType and
hasParameterName data type properties were defined to take
xsd:string data values. Identification of semantic
relationships between individuals of different classes in the
ontology is implemented as object properties. Service class
relates with Function class through hasFunction object
property. Restrictions to this property are that a service has at
least one function, and can have many functions. Function
class is related with class Parameter through the
hasInputParameter and hasOutputParameter object
properties. Object property hasInputParameter is restricted
to take values only from the class InputParameters; likewise,
hasOutputParameters object property takes values only from
the OutputParameters class.

V. SIMILARITY MEASURES

Based on the work reported in Bravo and Alvarado [19],
in this section various structural and syntactic similarity
measures are described.

A. Function name similarity

Let Oname1 and Oname2 be two compound function
names from two different Web services. Oname1 consisting
of a set of lexical tokens identified by OnameTokens1.
Oname2 consisting of a set of lexical tokens identified by
OnameTokens2.

The lexical similarity between names is calculated using
the Jaccard Similarity Coefficient:

FunctionNameSim(Oname1 , Oname2) = (1)
 OnameTokens1  OnameTokens2 /
 OnameTokens1  OnameTokens2

The FunctionNameSim similarity measure will return a

value in the range [0, 1], where a returned value of 1
represents a total similarity between both function names,
and a returned value of 0 represents a total difference
between names.

B. Input parameter similarity

Let O1 = (Oname1, Ip1), O2 = (Oname2, Ip2) be two
functions from different Web services, with Onamei
representing the function name and Ipi the set of n input
parameters described as follows:

Ip1 = { (nameP1, typeP1), (nameP2, typeP2), … , (namePn,
typePn)},

Ip2 = { (nameP1, typeP1), (nameP2, typeP2), … , (namePn,
typePn)}.

Each parameter is defined by a pair of name and data
type (nameP, typeP). The input parameter similarity is
calculated as follows:

InputParSim(O1 , O2) = Ip1  Ip2 / Ip1  Ip2 (2)

Parsing Web
Services Descriptions

Similarities Discovery
between Web Services

Inference and
Maintainability

Retrieving Public
Web Services

O
nt

ol
og

y
R

ep
re

se
nt

at
io

n
of

W

eb
 S

er
vi

ce
s

16Copyright (c) IARIA, 2013. ISBN: 978-1-61208-266-0

MOPAS 2013 : The Fourth International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

The InputParamSim measure will return a value in the
range [0, 1], where a returned value of 1 represents a total
similarity, and a value of 0 represents a total difference.

C. Output parameter similarity

Similarly to (1), a measure to evaluate the lexical
similarity between output parameter names is defined. Let
OPname1, OPname2, be two output parameter names from
different Web service functions, each consisting of a set of
lexical tokens identified by OPnameTokens1 and
OPnameTokens2, respectively. The output parameter name
lexical similarity is calculated by:

OPnameSim(OPname1 , OPname2) = (3)
 OPnameTokens1  OPnameTokens2 /
 OPnameTokens1  OPnameTokens2

The OPnameSim measure will return a value in the

range [0, 1], where a returned value of 1 represents a total
similarity, and a value of 0 represents a total difference.

Let OPtype1, OPtype2, be two output parameter data

types from different Web service functions. The output
parameter data type similarity between them is calculated as
follows:

OPtypeSim(OPtype1 , OPtype2) = (4)
 1, if OPtype1 = OPtype2
 0, otherwise

The OPtypeSim measure will return a value of 1 if both

types are equal, and a value of 0 if they are different.

D. Average output similarity

Let O1 = (Oname1, Op1), and O2, = (Oname2, Op2), be
two functions from different Web services, with name
Onamei and the output parameter object Opi of function i.
Each output parameter object Opi consists of a pair of name
and data type, Op1 = (OPname1, OPtype1), and Op2 =
(OPname2, OPtype2). Particularly, O1 and O2 are output
equivalent if ((OPname1 = OPname2) and (OPtype1 =
OPtype2)).

The output parameter similarity is calculated as the
average of output parameter name similarity and output
parameter data type similarity as follows:

OutputParSim(O1 , O2) = (5)
 [OPnameSim(OPname1 , OPname2) +
 OPtypeSim(OPtype1 , OPtype2)] / 2

The OutputParSim measure will return a value in the

range [0, 1], where a returned value of 1 represents a total
similarity, and a value of 0 represents a total difference.

E. Structural similarity

Structural similarity represents the average of parameter
name similarity (1), input parameter similarity (2) and output
parameter similarity (5). Let O1 = (Oname1, Ip1, Op1), and O2
= (Oname2, Ip2, Op2), be two Web service functions with
their respective sets of input and output parameters; the level
of structural similarity between them is calculated as follows:

StructuralSim(O1 , O2) = (6)
 [FunctionNameSim (Oname1 , Oname2) +
 InputParSim(O1 , O2) +
 OutputParSim(O1 , O2)] / 3

The StructuralSim measure will return a value in the

range [0, 1], where a returned value of 1 represents a total
similarity, and a value of 0 represents a total difference.

Further similarity measures can be defined and combined
to obtain more interesting similarity results between services.

VI. EXPERIMENTATION

For experimentation 37 public Web service descriptions
(WSDL) files were retrieved from Seekda [17]. The
architecture depicted in Figure 1 was implemented as
follows: a Web service data extraction module, which
browses any set of public available WSDL files and extracts
the service name, the set of function names, the names and
data types of input and output parameters; an ontology
population module, which registers into the ontology new
function instances after data is extracted from WDSL files,
and a similarity relations discovery module, which calculates
structural similarities between function pairs and registers
new semantic relations between compared individuals, if the
level of similarity resulted higher than a threshold.

The parser module extracted the function names, input
and output parameter names and types from the initial 37
Web service description files. As a result, the ontology was
populated with a total of 537 new Functions, and 6317
Parameters: 3155 InputParameters and 3162
OutputParameters.

The discovery of structural similarity relations was
calculated between all individuals from the Function class.
Resulting relations were named isFunctionNameSimilarTo,
isOutputParamSimilarTo, isInputParamSimilarTo, and
isStructuralSimilarTo. If the resulting level of similarity is
higher than an established threshold, then a similarity
relationship is generated between both functions in the
ontology. For the set of 537 functions, similarity results are
shown in Table 1. Thereafter, the ontology continues
growing in similarity relationships as new services are
registered. In this case, the resulting ontology is considered
dynamic and evolving over time.

TABLE I. NUMBER OF DISCOVERED RELATIONS

Similarity relationship Total
Function name similarity 213
Input parameter similarity 470
Output parameter similarity 1440
Structural similarity 184

The set of structural similar relationships is a combined

result of the function name, input parameter and output
parameter similarities for each function pair, which is the
main reason of the reduced number of relations in
comparison with the three previous.

17Copyright (c) IARIA, 2013. ISBN: 978-1-61208-266-0

MOPAS 2013 : The Fourth International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

VII. APPLICATION CASES

Searching and discovery of specific service
functionalities are among the most important service-related
tasks, because it allows software developers and integrators
to find specific services functionalities which satisfy their
needs. Majority of Web service repositories offer basic
search mechanisms, mostly based on key-word and service
category matching. The service ontology reported in this
paper supports the same search mechanism, but the set of
similarity relations discovered and established between
services functions; allow seeking and finding more services
functions that are structurally related, returning more and
significant functions. The following rules are specified to
query the ontology and obtain answers about the set of
functions being treated. The query rule showed in (7)
displays pairs of Functions instances for which a relation of
Input Parameter similarity was discovered and established.

Function(?x)  Function(?y)  (7)
 isInputParamSimilarTo(?x, ?y)
  sqwrl:select(?x, ?y)

Similarly, the query rule shown in (8) displays pairs of

Functions instances for which a relation of Output
Parameter similarity was discovered and established.

Function(?x)  Function(?y)  (8)
 isOutputParamSimilarTo(?x, ?y)
  sqwrl:select(?x, ?y)

The query rule showed in (9) displays pairs of Functions

individuals for which a relation of Function Name similarity
was discovered and established.

Function(?x)  Function(?y)  (9)
 isFunctionNameSimilarTo(?x, ?y)
  sqwrl:select(?x, ?y)

Finally, the query rule presented in (10) is very useful

because it allows inferring what functions may be
substitutable each other, provided they meet three
conditions: Input Parameter similarity, Output Parameter
similarity and Function Name similarity.

Function(?x) ∧ Function(?y) ∧ (10)
 isInputParamSimilarTo(?x, ?y) ∧
 isOutputParamSimilarTo(?x, ?y) ∧
 isFunctionNameSimilarTo(?x, ?y)
  sqwrl:select(?x, ?y)

Rule (11) searches flight service functions which return

flying routes. Results of this query-rule are shown in Table 2.
FlightServices(?x) ∧ (11)

 hasOperation(?x, ?y) ∧
 hasOperationName(?y, ?str) ∧
 swrlb:contains(?str, "Route")
  sqwrl:select(?x, ?y)

TABLE II. SERVICES THAT OFFER FLYING ROUTES FUNCTIONS

Service Function
Volagratis Volagratis-getRoutes
Arc Arc-GetRoutes

Using the service ontology it is possible to extend the

search of flight functions using the input parameter similarity
relation. Rule (12) searches flight service functions which
return flying routes and similar functions which hold an
Input Similarity relationship. Result is shown in Table 3.

Function(?x) ∧ (12)
 hasOperationName(?x, ?str) ∧
 swrlb:contains(?str, "Route") ∧
 Functions(?y) ∧
 isInputParamSimilarTo(?x, ?y)
  sqwrl:select(?x, ?y)

TABLE III. SERVICES THAT OFFER FLYING ROUTES FUNCTIONS

Function Function
Arc-GetRoutes Arc-GetAvailability

Another example of searching “booking” functions using

the function name similarity relation is executed with the
query rule (13). Results of this query are shown in Table 4.

Function(?x) ∧ (13)
 hasOperationName(?x, ?str) ∧
 swrlb:containsIgnoreCase(?str, "booking") ∧
 Function(?y) ∧
 isOperationNameSimilarTo(?x, ?y)
  sqwrl:select(?x, ?y)

TABLE IV. SERVICES THAT OFFER FLYING ROUTES FUNCTIONS

Function Function
Hotelmercado_WS-
SetConfirmBooking

Hotelmercado_WS-
ConfirmBooking

Hotelmercado_WS-GetBookingInfo Hotelmercado_WS-
GetProcBookingInfo

TourConexWebService-
doMainServiceHotelBooking

TourConexWebService-
doMainServiceCarBooking

TourConexWebService-
doBookingStatistic

TourConexWebService-
doBooking

pegas-cancelBooking MORSWebService-
CancelTransferBooking

pegas-cancelBooking MORSWebService-
CancelHotelBooking

TourConexWebService-
doCarBooking

TourConexWebService-
doMainServiceCarBooking

TourConexWebService-
doCarBooking

TourConexWebService-
doBooking

pegas-confirmBooking Hotelmercado_WS-
SetConfirmBooking

pegas-confirmBooking Hotelmercado_WS-
ConfirmBooking

TourConexWebService-doBooking TourConexWebService-
doErvBooking

TourConexWebService-doBooking TourConexWebService-
doTicketsafeBooking

TourConexWebService-doBooking TourConexWebService-
doMultiBooking

Substitution is another important task for the Web service

community; it allows searching and selecting a similar
service function that matches input and output parameters.
The query-rule (14) applied to the service ontology helps the
developer to search and find “substitutable” services, based
on syntactic and structural similarity measures. Results of

18Copyright (c) IARIA, 2013. ISBN: 978-1-61208-266-0

MOPAS 2013 : The Fourth International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

this query are shown in Table 5. A normal and common
service repository does not support such kind of searches.
The developer should do so manually, requiring more effort
and time.

Function(?x) ∧ (14)
 Function(?y) ∧
 isInputParamSimilarTo(?x, ?y) ∧
 isOutputParamSimilarTo(?x, ?y) ∧
 isOperationNameSimilarTo(?x, ?y) ∧
 hasOperationName(?x, ?str1) ∧
 hasOperationName(?y, ?str2) ∧
 swrlb:notEqual(?str1, ?str2)
  sqwrl:select(?x, ?y)

TABLE V. SUBSTITUTABLE SERVICE FUNCTIONS

Function Function
BookingLand-CountryProvinceList BookingLand-

CountryProvinceCityList
CHotelsWebService5-
startTransaction

CHotelsWebService5-
startTransactionMulti

WSNewHotelSrv-
GetSimpleAvailability

WSNewHotelSrv-
GetSimpleAvailabilityTeste

MORSWebService-Ping CreditCardServiceV1-ping
WSNewHotelSrv-
MakeSimpleReservationTeste

WSNewHotelSrv-
MakeSimpleReservation

pegas-getSpecifiedFlightList pegas-getFlightList
WSNewHotelSrv-DeleteUserHotel WSNewHotelSrv-DeleteHotel
WSNewHotelSrv-DeleteUserHotel WSNewHotelSrv-DeleteUser
BookingLand-
ProviderAvailabilityEx

BookingLand-ProviderAvailability

BookingLand-ProviderSearchQuick BookingLand-
ProviderSearchQuickEx

VIII. PERFORMANCE ANALYSIS

Performance analysis of service-related tasks is an
important issue whenever these tasks are based on
ontological representation. In particular, in this paper the
following service tasks are of performance concern:

Ontology population. This is the most time consuming
task because for each service instance treated requires the
execution of two operations: service parsing and service
ontology recording. Which means that for each service, the
parser extracts its operation names and respective input and
output parameters, and then records all instances into their
ontology classes. In particular, for the set of 37 initial
Services used for experimentation, a total of 537 Functions,
and 6317 Parameters were registered into the ontology file.
Therefore, this task required a total of 37 service parsing
operations and the sum of 37 + 537 + 6317 = 6891 ontology-
write operations. Obviously, the more service instances are
treated the more time is needed. However, this particular
time-consuming task is not considered as critical, because it
is executed only once per service set. Even more, when new
service instances are to be recorded into the same ontology,
they are first validated for non redundancy, therefore only
new different services are allocated. Ontology population is a
time-consuming task, but is not a frequent task.

Search, discovery and substitution. In a traditional
implementation approach these tasks would require
traversing the entire ontology T-Box and A-Box to find
particular class instances, relation instances or individuals.

However, in this paper the use of a rule language enhanced
with querying constructs (SWRL) allows the definition and
execution of rule-based search, discovery and substitution. A
rule-based querying mechanism offers improved
performance, as it filters only the necessary class, relations,
axioms and individuals needed for the execution of each rule.
For instance, when the inference engine executes the query
rule (7) it requires to load a total of 537 Function instances
and 470 InputParameterSimilarity relations, resulting in a
space-reduced selection operation.

IX. CONCLUSIONS AND FUTURE WORK

Results show advances on automatic similarity relations
discovery from public available Web service descriptions.
The automatic population of the ontology with existing
WSDL files is a relevant advance towards the automated
reutilization and construction of service-based solutions
using pre-existing resources. Resulting similarities between
service functions show that the set of measures calculations
can be combined to obtain more complex and significant
information concerning functions inter-relations. This
combination of measures can be conducted by implementing
more similarity methods or by defining additional rules of
inference. This process can be defined as Web services
mining in the sense that helps to discover unknown
relationships between functions. Inference is a key issue for
maintainability and evolution of the ontology; inference rules
generate new inter-relationships between functions and help
to answer constrained queries regarding asserted inter-
relationships in the ontology. Experimental results show that
the overall process towards the automation of public Web
services mining based on ontology population and structural
similarity measures is feasible and can be completely
automated.

The next steps of this research are the implementation
and combination of more sophisticated similarity measures
to facilitate automatic discovery and composition of Web
services. In particular, behavior similarity measures, data
type comparison measures, and linguistic patterns will be
designed and applied to discover deeper semantic relations
between public available Web services.

ACKNOWLEDGEMENTS

Authors thank the ICYTDF and UAM for their financial
support granted for the presentation of this research.

REFERENCES
[1] http://www.w3.org/TR/wsdl, last visited 15.03.2013.
[2] http://uddi.org/pubs/uddi_v3.htm, last visited 15.03.2013.
[3] http://www.ebxml.org, last visited 15.03.2013.
[4] M. Rodríguez, M. Crasso, A. Zunino, and M. Campo,

"Improving Web Service descriptions for effective service
discovery," Science of Computer Programming, vol. 75, no.
11, Elsevier Science, 2010, pp. 1001-1021, doi:
10.1016/j.scico.2010.01.002.

[5] S. McIlarith, T. Cao Son, and H. Zeng, "Semantic Web
Services," IEEE Intelligent Systems, vol. 16, no. 2, IEEE,
2001, pp. 46-53.

[6] http://www.w3.org/Submission/OWL-S, last visited
15.03.2013.

19Copyright (c) IARIA, 2013. ISBN: 978-1-61208-266-0

MOPAS 2013 : The Fourth International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

[7] http://www.wsmo.org, last visited 15.03.2013.
[8] http://www.w3.org/TR/sawsdl, last visited 15.03.2013.
[9] L. Hamel, M. Graiet, M. Kmimech, M. Bhiri, and W. Gaaloul,

"Verifying Composite Service Transactional Behavior with
EVENT-B," Proc. of the 5th European Conference on
Software Architecture (ECSA 2011), Springer LNCS,
September 2011, pp. 67-74, doi: 10.1007/978-3-642-23798-0.

[10] S. Chen, Z. Feng, H. Wang, and T. Wan, "Building the
Semantic Relations-Based Web Services Registry through
Services Mining," Proc. of the Eigth IEEE/ACIS International
Conference on Computer and Information Science (ICIS
2009), IEEE, June 2009, pp. 736-743, doi:
10.1109/ICIS.2009.20.

[11] G. Zheng and A. Bouguettaya, "A. Service Mining on the
Web," IEEE Transactions on Services Computing, vol. 2 no.
1, IEEE, January-March 2009, pp. 65-78, doi:
10.1109/TSC.2009.2.

[12] X. Zhang, Y. Ying, M. Zhang, and B. Zhang, "A Composite
Web Services Discovery Technique Based on Community
Mining," Proc. of the IEEE Asia-Pacific Services Computing
Conference (IEEE APSCC), IEEE, December 2009, pp. 445-
450, doi: 10.1109/APSCC.2009.5394087.

[13] L. Young-Ju and K. Chang-Su, "A Learning Ontology
Method for RESTful Semantic Web Services," Proc. of the
International Conference on Web Services (ICWS 2011),
IEEE, July 2011, pp. 251-258, doi: 10.1109/ICWS.2011.59.

[14] A. Yousefipour, M. Mohsenzadeh, A. Ghari, and M.

Sadegzadeh, "An Ontology-based Approach for Ranking
Suggested Semantic Web Services," Proc. of the 6th
International Conference on Advanced Information
Management and Service (IMS 2010), IEEE, December 2010,
pp. 17-22.

[15] Y. An, J. Geller, Y. Wu, and S. Ae Chun, "Automatic
Generation of Ontology from the Deep Web," Proc. of the
18th International Workshop on Database and Expert Systems
Applications (DEXA 2007), IEEE, September 2007, pp. 470-
474, doi: 10.1109/DEXA.2007.43.

[16] M. Sabou and J. Pan, "Towards semantically enhanced Web
service repositories," Journal of Web Semantics: Science,
Services and Agents on the World Wide Web, vol. 5, no. 2,
June 2007, pp. 142-150, doi: 10.1016/j.websem.2006.11.004.

[17] http://www.seekda.com, last visited 15.03.2013.
[18] T. Gruber, "A Transaltion approach to portable ontologies,"

Knowledge Acquisition, vol. 5, no. 2, June 1993, pp. 199-220,
doi: 10.1006/knac.1993.1008.

[19] M. Bravo and M. Alvarado, "Similarity Measures for
Substituting Web Services," International Journal of Web
Services Research, vol. 7, no. 3, July 2010, pp. 1-29, doi:
10.4018/jwsr.2010070101.

20Copyright (c) IARIA, 2013. ISBN: 978-1-61208-266-0

MOPAS 2013 : The Fourth International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

