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Abstract—A number of studies extended access control policies
with constraints, aiming at the restriction of mobile users’ access
to appropriate authorized areas. Recent research proposed to
rely on usage control instead, in order to allow for continuous
checks of the user’s location. A drawback of those approaches is
that they rely on crisp trajectory estimates, i.e., spatio-temporal
paths, not considering occurring uncertainty. This makes those
approaches impractical for indoor applications, where occurring
measurement errors are typically large compared to authorized
areas. Thus, in this study, we propose extensions for usage control
policies to constrain users to an authorized area for the duration
of access. We adhere probabilistic trajectories derived from
backtracking particle filters combined with WiFi fingerprinting.
However, the main contribution is a risk-based model for deriving
usage decisions based on risk factors instead of conventional
thresholds. Our results show, that particle filters are crucial due
to inaccuracy in WiFi positioning. We achieve a true- and false-
positive rate of 80% and 6.7%. Finally, this allows to effectively
constrain access to appropriate areas in indoor scenarios.

Keywords—Mobile Usage Control; Indoor Positioning; Back-
tracking Particle Filter; Location-based Access Control

I. INTRODUCTION

The significantly increasing popularity of mobile devices
offers mobile access to resources from everywhere. However,
this arises the inherent risk of access requests to critical
resources from inappropriate areas, e.g., from outside a com-
pany’s site or neighboring offices of foreign companies. To
solve this problem, much study in recent years focused on
location-based extensions of existing access control models,
i.e., role-based access control (RBAC), mandatory access con-
trol (MAC) or discretionary access control (DAC) [1]. These
extensions allow to refine access rights of mobile users with
location predicates. This way, the location of users, accessed
resources or both, can be constrained to certain areas or to
predefined mutual relations. A drawback of those approaches
is that after an access request was granted, the according
rights won’t be revoked when users move on to possibly
inappropriate locations. As a remedy, the change to usage
control mechanisms was recently discussed, which focus on
the concept of controlling the usage of a resource continu-
ously based on iterative checks [2], [3]. Location predicates
applied to this model focus on constraining trajectories, i.e,
the covered path of a user in the spatio-temporal space.
Typically, trajectories are defined as ploy-lines and created
using interpolation on crisp location measurements, for ex-
ample measured with GPS. Trajectory constraints are used to
constrain usage rights to users with trajectories that satisfy
predefined boundary conditions. One example is to restrict the

path to be contained within a single authorized area (AA), e.g.,
an office or room. This kind of trajectory constraint is called
a containment constraint (CC) for the rest of this paper. The
mentioned existing approaches for constraints on trajectories
do not account for measurement uncertainty when assuming
a crisp poly-line as the user’s trajectory. Independently, in the
research area of indoor positioning, and tracking in particular,
WiFi fingerprinting in combination with backtracking particle
filters (BPF), a special Bayesian filter, were shown to yield
very promising results for estimating user trajectories [4].
Their performance stems from reducing the negative impact
of single location measurement outliers. Additionally, BPFs
allow for a probabilistic representation of trajectory estimates
over probability density functions (PDF) that are sampled by
a set of particles. Every particle represents a hypothesis of the
user’s past trajectory.

So far, techniques for coping with the probabilistic repre-
sentation of trajectories in constraints for usage control policies
have not been studied. This drawback even makes existing
approaches impractical in indoor scenarios, where typically
WiFi fingerprinting is used for positioning: Here, when cre-
ating a crisp trajectory like required by existing approaches,
simply stringing together single location measurements is not
sufficient, as occurring errors can easily cause the estimated
trajectory to indicate a leaving of the AA erroneously. This
causes unacceptable high false decision rates and impracti-
cal high risk. Furthermore, existing approaches even prevent
trajectory-based usage control to benefit from the promising
accuracy achieved with existing BPF and their probabilistic
trajectories. Until now, in indoor environments, there exists
no means to reliably constrain mobile usage of resources to
predefined AAs. This might even make it impossible to obey
according legal security and safety constraints in companies.

In order to facilitate CCs on probabilistic trajectories re-
turned by BPFs, our contribution is threefold: At first, Section
II presents an architecture for the continuous evaluation of CCs
assigned to usage control policies. Here, also the underlying
attacker model is defined. Subsequently, Section III first gives
a theoretical overview on BPFs and describes how trajectory
estimates are derived in our approach. Based on these results,
Section IV gives a formal definition of CCs based on the
probabilistic representation of trajectories in our BPF. In order
to minimize CCs computational overhead, an incremental
adaptation is proposed. The main contribution of this section
is our risk-based approach for deriving usage decisions, which
picks the decision with the lowest risk. Here, risk factors
are derived based on time dependent cost functions of false-
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Fig. 1. The new architecture components (gray) continuously collaborate to
derive and report usage decisions for the registered trajectory constraints.

negative and false-positive decisions and estimates of a CC’s
confidence. To the best of our knowledge, only approaches
with predefined and static thresholds have been defined up
to now [5], [6]. The proposed BPF and evaluation strategies
for CCs are evaluated in Section V with 60 trajectories and
a database consisting of 206 fingerprints covering 1400 m2.
Finally, Section VI concludes the paper.

II. ARCHITECTURE AND ATTACKER MODEL

Typical usage control policies incorporate attribute-based
access control policies for continuous usage, e.g., UCON
ABC [2]. Here, a set of usage rules states which subject is
allowed to use a specific object. Decisions about revoking
ongoing usage are continuously repeated. However, to the
best of our knowledge, there exists only one approach up to
now, that explicitly describes the extension of usage control
policies with trajectory constraints [3]. Instead of probabilistic
representations, only a definition on crisp trajectories is given
without a possible underlying architecture. However, we define
an architecture that includes components for deriving trajectory
estimates and evaluating CCs: Its basic component is the
trajectory constraint evaluator (TCE), which is able to provide
trajectory-aware usage control policies and their reference
monitors with Boolean decisions about the satisfaction of
applied CCs. Figure 1 depicts the introduced components
(gray) along with the necessary message flow. Each time an
usage request arrives at the policy’s reference monitor, the
associated CCs for the responsible usage control rule are
looked up and registered at the TCE. In the following steps,
the TCE informs the mobile user’s WiFi fingerprint collector
(WFC) to start continuously providing WiFi fingerprints. The
WFC is executed directly on the accessing user’s mobile device
and needs to be under control of a trusted computing base in
order to allow for unmanipulated measurements. From now on,
the WFC collects fingerprints of the received signal strength
(RSS) of surrounding WiFi access points (APs) and sends the
measured values along with the time-stamp of their recording
digitally signed to the TCE. This needs to be continued until
the mobile usage is revoked by the reference monitor or quit
by the user. In order to prevent users from appointing WFCs
on a foreign mobile device as their own, making trajectory
evaluation useless, usage requests need to be constructed by
the trusted computing base and additionally have to transmit

1: function BAYESIAN FILTER( bel(xt−1), zt )
2: for all xt do
3: bel(xt−1) =

∫
p(xt|xt−1) bel(xt−1) dxt−1

4: bel(xt) = η−1 p(zt|xt) bel(xt−1)
5: end for
6: return bel(xt)
7: end function

Fig. 2. General concept of Bayesian Filters [7].

the service access point of the user’s own WFC to the
reference monitor. For the rest of this paper, we concentrate on
estimating users’ trajectories within the TCE and the evaluation
of the described CC based on these estimates.

The presented architecture is conform to our attacker
model: An attacker is defined as a mobile user that manipulates
estimates about his trajectory in order to obtain usage rights
for a given resource by the reference monitor. In our case,
we assume attackers that are able to 1) manipulate sensor
data of their mobile device, 2) delay the provisioning of WiFi
measurements to the TCE and, 3) move freely within and
around the AAs referenced in any CC. In contrary, he is
not able to 1) manipulate clock data or the received signal
strength (RSS) in WiFi measurements, 2) replay old WiFi
measurements and, 3) manipulate the WiFi infrastructure.

III. ESTIMATING TRAJECTORIES WITH BACKTRACKING
PARTICLE FILTERS

In this section, our BPF specialized for the evaluation of
CCs and its theoretical foundations are presented.

A. Basic Concepts of Backtracking Particle Filters

Particle filters (PF) represent a recursive, non-parametric
Bayesian filter with a discrete representation of the posterior
by a set of particles of size m. In general, Bayesian filters
like the particle filter allow to recursively calculate a belief
bel(xt) = p(xt|z1:t) of the system’s state for a time-stamp
t from already observed measurements z1:t = 〈z1, z2, . . . , zt〉
[7]. Internally, the algorithm consists of two parts: The predic-
tion step first computes a prior bel(xt) = p(xt|z1:t−1), called
the prediction, before incorporating the latest measurement.
This computes as the integral sum of the prediction model,
describing the probability of getting to state xt from a state
xt−1 and the previous posterior bel(xt−1). In the update
step, the current belief is computed from the prediction by
incorporating the measurement probability p(zt|xt) along with
a normalizing constant η = p(zt|z1:t−1). The algorithm is
depicted in Figure 2. For the field of localization and track-
ing, PFs implement this algorithm by sampling the posterior
probability density function bel(xt) with a set of m particles
Xt =

〈
x
[1]
t , x

[2]
t , . . . , x

[m]
t

〉
, each one representing a concrete

instantiation of the state with information about the position,
the velocity and the orientation. The prediction step is im-
plemented by applying a mobility model to each particle that
predicts its new position, orientation, and velocity. This leads
to a updated particle set X t that approximates bel. The update
step is implemented by importance re-sampling: Each particle
x
[i]
t is assigned a weight w[i]

t , called its importance factor,
according to the measurement zt. In order to get a updated set
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of particles Xt that is approximately distributed to bel(xt), m
particles are drawn with replacement from the set X t. Here, the
probability of drawing a particle is proportional to its weight.

B. Deriving Measurements and Measurement Probabilities

In our system, single location measurements zt are com-
puted by WiFi fingerprinting: When the user’s mobile device
measures a RSS for a set of APs, the most likely position is
determined from a previously recorded fingerprint database.
It computes as the weighted center of mass of fingerprints
selected by the k-nearest-neighbors algorithm [8]. Given a
location measurement zt, we derive the measurement prob-
ability p(zt|x[i]t ) from a bi-variate Gaussian pdf that describes
the error distribution, based on our previous work [8]. When
recording the fingerprint database, not only the area of modeled
AAs should be covered. Otherwise, as the range of APs must
be assumed to be larger than the modeled AAs, a potential
attacker could simply stand outside the AA and the positioning
algorithm will have no choice but choosing fingerprints as
k-nearest-neighbors that were recorded within the AA. This
allows an attacker to obtain a position fix that indicates a
position within the AA, possibly leading the usage control
policy to a false-positive. To solve this problem, we propose
to determine the set of those APs that are receivable within the
authorized region in at least one point. Next, the union of the
coverage areas of this set of APs needs to be covered when
recording the fingerprint database. In general, this increases
the effort of recording the fingerprint database. For unbiased
positioning, the spatial density of the fingerprint database
should be uniform throughout the covered site.

In order to annul any of an attackers sensor manipulations,
the underlying WiFi fingerprinting and PF algorithm must
not employ sensor data. In particular, compass data has been
shown to have a positive effect on positioning accuracy to
reduce influence of blocking effects of the human body on RSS
values [8]. Hence, it is not possible to apply the corresponding
technique of recording each fingerprint once for each cardinal
direction and choose only those as kNN that have been
recorded with the user’s current orientation. Therefore, in order
to prevent the possibility of an intentional attack, our system
needs to accept a possibly lower positioning accuracy.

C. The Application of Backtracking for Refining Estimates

During the update step via re-sampling, typically some
particles from X t are not contained in Xt due to their low
weight and are said to die whereas others might be drawn
a multiple times. In such cases, with each particle, also its
assigned hypothesis about a possible user trajectory dies. This
allows to refine the knowledge about possible user trajectories
up to time t by discarding trajectories associated to dead
particles via backtracking, which represents a BPF [4]. In
BPFs, the knowledge about the past is only refined by future
update steps as single particles with their assigned estimated
trajectory can only be discarded and not newly created. In
traditional tracking or positioning systems, for each point in
time a single position is computed as the mean value of
all particles, leading to one estimated trajectory. This way,
information about single existing hypotheses is lost and the
single trajectory computed from the means might completely
satisfy a CC though none of the estimated trajectories does so.

Therefore, trajectory constraints should consult the whole set
of trajectories in order to exploit all available information to
finally derive confidence values.

D. The Prediction Step: Deriving Trajectory Estimates

To allow for a detailed representation of possible trajecto-
ries, we realize the prediction step by partitioning the time-
span between two update steps in sub-intervals of maximally
800 ms, which corresponds to the typical time human users
need to take a step. After each passed sub-interval, each
particle’s trajectory is expanded with a segment. The segments
represent a possible movement of the user in this sub-interval.
Here, a single segment is constructed as a line by assuming a
linear movement from its last position l with a velocity v in
a direction α for the duration of the current sub-interval. Let
Loc be an arbitrary polygon representing the AA of a CC, we
write τ(x[i]t ) within Loc iff the segments assigned with τ(x[i]t )
are completely contained within Loc. Let t = 0 denote the
point of time when the usage right was granted and the BPF
initialized. Appending the trajectory estimates from all past
state estimates a particle x[i]t was generated from, an estimate
for the user’s trajectory since t = 0 is derived and denoted as
τ(x

[i]
0 )◦τ(x[i]1 )◦ . . .◦τ(x[i]t ). This will serve as a key deciding

factor for our trajectory-based usage control mechanism.

When constructing a particle’s τ(x
[i]
t ), single segments

should be created by a mobility model that is appropriate
for the application to usage control in terms of the security
implications of our attacker model: Similar to plain WiFi
fingerprinting, BPF algorithms were shown to achieve higher
accuracy by the application of inertial sensor data, too, and
especially benefit from step detection algorithms [9]. This
data can be used to perform the prediction step based on
dead reckoning with the measured sensor values. However, all
existing approaches assume benevolent users that do not fake
steps by shaking a smart-phone or pretend other movements.
If directly applied to our scenario, an attacker could fool the
system to assume trajectories that do not leave a prescribed
AA though the attacker has left it. Again, it is crucial to
accept possibly lower positioning accuracy in order to hamper
attacks. Therefore, particles are modeled to follow a random
waypoint mobility model, which appends segments to τ(x[i]t )

of each particle x[i]t . One possibility is the model presented by
Widyawan et al. [4]. This allows to model linear movement
according to the boundary conditions of humans, based on
the angle and velocity of the preceding segment. However,
basically, any mobility model that is independent of a mobile
device’s inertial sensor data and based on map matching can
be applied. This way, each particle is assigned a hypothesis
of the trajectory the user could have walked since the update
step at time t until the subsequent update step is performed.

In order to obtain realistic estimates for trajectories, we
also apply the technique of map matching [4], [9]. As for
each particle the plausible choices for its next segment are
limited by the characteristics of the underlying building plan,
we require that particles must not cross walls. During the
construction of τ(x[i]t ), this is realized by retrying to infer
a valid succeeding segment that is a realistic extension of the
trajectory and does not cross walls, until a predefined threshold
of maximum tries is exceeded. In such cases, the weight w[i]

t
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of the particle is 0, despite the probability that might arise
from the latest measurement zt. Hence, the particles’ weights
are influenced by the prediction step and are set to 0 if only
wall-crossing segments could be derived within a maximum
amount of retries:

w
[i]
t =

{
0, no valid τ(x[i]t ) found

p(zt|x[i]t ), otherwise
(1)

Trajectories constructed this way are robust against sensor
manipulations of attackers and can finally be supplied for the
evaluation of a CC in order to derive usage decisions.

IV. CONTAINMENT CONSTRAINTS FOR BACKTRACKING
PARTICLE FILTERS

The trajectories computed by the adapted BPF are ap-
plied to evaluating CCs. In this section, we first discuss the
differences to existing approaches and define the concept of
CCs formally. Based on this result, an incremental algorithm
for their evaluation is presented. Finally, we present a risk-
based model for deriving usage decisions based on the current
confidence of an evaluated CC.

A. Applicability of Traditional Trajectory Constraints

When using classical location providers like GPS for
sampling a user’s trajectory, a sample consists of a crisp
location and a time-stamp. In the field of moving object
databases (MOD), this has been used to define beads, i.e.,
ellipsoid geometries that contain all points that could be visited
during the collection of two samples under the assumption
of a maximum velocity [10]. Trajectories are hence affected
with uncertainty and described as a sequence of beads. The
real trajectory is completely contained within the given beads.
With each new sample arriving at a MOD server, the current
sequence of beads is extended by a new element. This allows
a clear distinction of past and future trajectories. In such cases,
trajectory-based usage control can be realized using traditional
spatio-temporal queries, assessing to what degree the given
beads satisfy the containment within a room. However, as
mentioned above, BPFs showed much higher accuracy in
indoor scenarios and consequently our trajectory estimates are
derived using this method. Those don’t form beads and thus
classical spatio-temporal queries can’t be used directly as an
implementation of CCs. Furthermore, re-sampling prevents the
clear distinction between past and future trajectories. Even
the known representation of beads is not possible without an
additional density estimation based on particles’ trajectories.
These differences of trajectory estimates of BPFs compared to
sequentially constructed ones in traditional MODs need to be
respected here. Hence, in the following paragraph, we present
the formal definition of CCs for usage control policies.

B. Containment Constraints for Backtracking Particle Filters

A containment constraint cc is defined as a function
mapping from an authorized area Loc and the current set of
particles Xt to a confidence value denoting the percentage of
trajectory estimates that are completely contained within Loc
since the usage right was granted at t = 0:

Definition 1 (Containment Constraint)
The containment constraint (cc) on a set of particles and an
authorized area is defined as:

cc (Xt,Loc) = |Xt|−1 ·
∣∣∣{x[i]t ∈ Xt|

∀k ∈ {0, . . . , t} : τ(x[i]k ) within Loc
}∣∣∣ (2)

with Xt being the current set of particles since the last update
step at time t and Loc being a polygon in R2 representing the
authorized area.

Basically, this constraint needs to be evaluated after every
expansion of particles’ trajectories during the prediction and
after each update step, as both can influence the percentage of
trajectories that satisfy the constraint. Note, that Definition 1 is
an adaptation of the well studied possibly always spatial query
[10]. However, when evaluating CCs, the most computationally
demanding step is to check τ(x[i]k ) within Loc for each particle
x
[i]
k , for each time-span in history. Employing the discussed

properties of our BPF, we define a more efficient, incremental
evaluation of CCs: By assigning and incrementally updating a
Boolean is valid to each particle in X it is possible to highly
reduce the required number of these checks. This Boolean
describes if the trajectory assigned to a particle x[i]t satisfies
or violates the CC that is currently under evaluation. As each
single expansion might cause a trajectory to violate the cc,
in each of its re-evaluations also the property is valid needs
to be updated. As single trajectories can’t recover from a
violation already detected in prior evaluations, the is valid
property only needs to be updated for particles with is valid =
True. The confidence can then easily be computed by counting
the percentage of particles that still satisfy the constraint, as
depicted in Figure 3. Obviously, this implements Definition 1,

1: function INCREMENTAL CC( Xt, Loc )
2: for all xt ∈ Xt do
3: if xt.is valid ∧ ¬ τ(xt) within Loc then
4: xt.is valid ← False
5: end if
6: end for
7: return |Xt|−1 · |{xt ∈ X |xt.is valid}|
8: end function

Fig. 3. The algorithm for incrementally computing confidence values.

as x[i]0 .is valid = τ(x
[i]
0 ) within Loc and,

x
[i]
t+1.is valid = x

[i]
t .is valid ∧ τ(x[i]t+1) within Loc (3)

Thus, in contrast to Definition 1, incremental cc only needs
to evaluate τ(x

[i]
t+1) within Loc for the current τ and only

for particles with x[i]t .is valid = True, i.e., those that did not
already violate the constraint in any prior evaluation.

C. Deriving Risk-Based Usage Control Decisions

Based on the confidence values returned by the policy’s
underlying CC, usage control decisions need to be derived after
each update step and continuously during each prediction step.
In detail, the two usage decisions comprise either to revoke the
usage right or keep on granting it. We choose that decision with

55Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-313-1

MOBILITY 2013 : The Third International Conference on Mobile Services, Resources, and Users



the lowest risk if it was wrong w.r.t. the ground truth. Here,
we model risk as the product of probability and costs. Each
of these decisions brings costs [11]. The costs for a correct
decision, i.e., a true-positive or a true-negative are assumed
to be 0. The modeling of costs for false decisions needs to
respect that an attacker might retain new WiFi measurements
in order to elongate the prediction step by an arbitrary time to
possibly prevent a revocation of his usage right. Hence, costs
of a false-positive are assumed to increase with ongoing time
of a prediction step, as the occurring damage might increase,
i.e., by dumping protected data. Its costs are modeled by a
monotonically increasing function cfp(t) = f(t). This also
allows to express the intuitive notion of revoking the usage
right after a predefined time-off. However, the costs of a false-
negative are modeled as cfn(t) = const as we assume the costs
that occur from refused usage to be constant with time.

To derive a usage decision directly after the update step,
first the confidence (c) of the CC is computed. As the pre-
diction step has not yet started, here t = 0 and the usage
right is revoked if the risk of a false-positive exceeds the
risk of a false-negative, i.e., cfp(0) · (1 − c) ≥ cfn(0) · c.
However, to derive usage decisions during the prediction step,
we estimate the maximum risk for both decisions for any point
of time t during the prediction step: The maximum risk of
keep granting is directly influenced by the lowest possible
confidence about the CC at time t. Note, that the observed
confidence of the randomly moved particles typically will be
higher than this lower bound. Contrary, the maximum risk of
revoking the usage at time t is proportional to the highest
probability that the user could still be within the AA and
thus to its initial confidence. In line with existing risk-based
approaches to access or usage control [11], [12], again we
revoke usage as soon as the maximum risk of a revoke is lower
than the maximum risk of a grant. The confidence values used
for computing the maximum risk factors are derived from the
CC’s initial confidence directly at the begin of the prediction
step: The lowest possible confidence pmax out(t) of the CC at
any point t in the prediction step can be computed by assuming
all particles that satisfied the CC at begin of the prediction
step to leave the AA on the shortest path. The highest possible
confidence pmax in(t) occurs when all particles that satisfied the
CC at begin of the prediction step stay within the AA and thus
still satisfy the CC throughout the prediction step. This value
is a constant. Consequently, the corresponding maximum risk
values for false-positive and false-negative decisions compute
as cfp(t) ·pmax out(t) and cfn(t) ·pmax in(t) respectively. Directly
when a prediction step starts, this allows to precompute a time-
stamp trevoke, representing the point in time when the risks of
a false-positive are too high and thus when the revoke should
be issued. The advantage of this approach is that our system
doesn’t need to evaluate the CC during the prediction step and
is independent from the number of randomly moved particles
that represent an attacker with their movement. Furthermore,
this way the maximum time until the next update depends on
the confidence of the CC at the beginning of a prediction step
and revocations can be derived based on occurring risk factors.

V. EVALUATION

In this section, the advantages of the proposed approach
are evaluated in a comprehensive test set.
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A. Test Environment and Hardware

For evaluating the approach, we recorded a fingerprint
database consisting of 206 WiFi fingerprints, each computed
as the mean value of single 20 measurements with 4 for
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every cardinal direction. We installed 5 APs and employed
their RSS values for positioning. The single WiFi fingerprints
were collected using a HTC Desire smart-phone. The covered
site comprehends about 1400 m2 and is depicted in Figure 4.
Additionally, we defined the following 5 AAs on the rooms
contained in the hatched area of Figure 4, here referenced by
their depicted identifiers: (01), (06; 08), (05; 07), (07; 09) and
(01–06) along with the part of the floor in-between. For each
of these areas, 12 possible user trajectories were recorded,
each approximately 60 s long and consisting of a sequence
of observed RSS values recorded at least every 1.5 s. Each
trajectory’s ground truth was supplied manually. For each
modeled AA, the recorded trajectories can be classified as
follows: Three trajectories that run completely within their
AA, one with a user standing still inside. Three trajectories
that run outside but near to the AA and inside the building,
one with a user standing still. Two trajectories that leave and
re-enter the AA, and three trajectories that run near the AA
outside the building. The recorded trajectories represent three
categories w.r.t. their ground truth: satisfying the AA all time
(c1), violating it from begin on (c2), and satisfying the AA at
begin but violating it later on (c3).

B. Evaluation Results

In order to detect trajectories that satisfy or violate a CC,
the minimum observed confidence for a given trajectory should
correspond to the trajectory’s category. Hence, for each of
the three categories c1-c3, the minimally observed confidence
of assigned trajectories was computed and is depicted as a
cumulative distribution function (cdf) in Figure 5. Clearly, in
over 80% of all cases, the minimum observed confidence for
trajectories of category c1 was greater than 20%. In contrast,
the trajectories of c2 and c3 showed a minimum confidence of
0% in over 90% of all cases. We considered these proportions
in the definition of cost functions according to Section IV-C by
choosing the ratio cfp(0)/cfn(0) = (100%−20%)/20% = 4/1.
cfp rises compliant with the sampling rate of measurements.
The classification results based on our cost functions are
compared to those of a single crisp trajectory derived from
stringing together observed location measurements, conform to
existing approaches to trajectory-based usage control [3]. Table
I depicts the results. As the results indicate, the crisp trajectory

TABLE I. CLASSIFICATION RESULTS.

Used Approach TP FP TN FN
Our BPF 80% 6.7% 93.3% 20%

Stringed location measurements 13.3% 0.0% 100% 86.7%

has a true-positive (TP) rate of 13.3%, which makes its
application nearly impractical. However, our approach yielded
a TP rate of 80%. The crisp trajectory showed a true-negative
rate (TN) of 100% in contrast to our approach, which showed
a slightly lower TN rate of 93.3%. Consequently, our approach
shows higher false-positive (FP) classifications and slightly
higher chances of a misuse but outperforms the crisp trajectory
with its TP rate by far, which results in a far higher availability
of the usage right if really justified. To assess the benefits of the
proposed incremental cc evaluation, we determined the mean
count of pruned particles for trajectories of each category.
For trajectories in c1, incremental cc could prune 22% of all
particles in the mean in contrast to 94% for category c2 and

72% for category c3. The outcomes show the strong correlation
to the number of violating particles and indicate that the
incremental evaluation is expected to prune at least 22% of all
particles by mean. Finally, we compare the impact of deriving
risks in the prediction step from the lowest possible confidence
for any point in time instead of adhering the iteratively updated
confidence deduced from the particles’ random movement. The
results are depicted in Figure 6. Clearly, the proposed model of
assuming the lowest possible confidence yields more realistic
revocation times, as in the other approach, particles often get
stuck within certain rooms when following a mobility model
with random movement.

VI. CONCLUSION

In order to enable usage control policies to benefit from
trajectory constraints in indoor scenarios, we proposed back-
tracking particle filters (BPF) to derive probabilistic trajectory
estimates and discussed requirements to complicate attacks.
Subsequently, we proposed the concept of containment con-
straints (CC), which require a user to stay within a certain
authorized area (AA) for the duration of his usage of a
protected resource. An improved evaluation strategy based on
the discrete and probabilistic representation of potential trajec-
tories was presented. In order to allow for a comprehensible
revocation of usage rights we proposed to compute risk factors
for a false-positive and a false-negative, choosing that decision
with the lowest risk. In contrast to existing research, our
approach respects occurring uncertainty of trajectory estimates
and works on according probabilistic representations. This
allows to exploit all available information when deriving usage
decisions. Furthermore, to the best of our knowledge, no
approach for deriving appropriate revocation times has been
proposed before. Thus, the main contribution of this work
is a mechanism for enforcing CCs in usage control policies
based on probabilistic trajectories represented by particles,
constructed by a BPF. In the evaluated indoor scenario, this
concept shows a very encouraging true-positive rate of 80%
at the price of a false-positive rate of 6.7%. However, for
crisp trajectories created by stringing together single location
measurements, like required by all existing approaches, only
an impractical true-positive rate of 13.3% could be observed.
Finally, our approach allows for a robust enforcement of CCs
in indoor scenarios and to constrain mobile usage of resources
to suitable areas and rooms without high extra expenses for
additional positioning infrastructure. Future work should focus
on integrating CCs in policies, hampering location spoofing
with WiFi fingerprinting and using appropriate implicit au-
thentication methods to couple user and device locations.
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