
Multiscreen-based Gaming Services using
Multi-view Rendering with Different Resolutions

Sung-Soo Kim and Chunglae Cho
Electronics and Telecommunications Research Institute (ETRI)

Daejeon, South Korea
{sungsoo, clcho}@etri.re.kr

Abstract—We present a novel multiscreen-based gaming ser-
vice system which supports multiple-viewpoint rendering with
different resolutions for visualizing a 3D game scene dataset at the
same time. Our approach is based on multi-view rendering and
reduces the computation to generating video streams for cloud-
based gaming services. In addition, the performance speedup
of our rendering system is achieved by utilizing both multicore
CPUs and a GPU simultaneously without additional requirement
for any special hardware. The experimental results demonstrate
our multi-view rendering method can be successfully applied to
the multiscreen services for the multiplayer games.

Keywords-multiscreen services; gaming on demand; multi-view
rendering; video encoding; video streaming.

I. INTRODUCTION

Consumers desire to access rich multimedia and realistic
3D game content via smartphone, PCs, netbooks, tablets
anytime and anywhere. Multiscreen services have emerged
as a consequence of this user requirement. Users can watch
multimedia and game content from any source on any screen
through the the multiscreen services. Also, the growth in
connectivity and capacity of broadband networks have enabled
new forms of cloud computing, where data and processing on
a remote server is acted upon on a local computing device.
This computing model allows a performance focus at a single
location, the cloud server, and enables user mobility and
pervasive access for the users.

One of the latest advancements in gaming technology that
enables such a ubiquitous gaming is cloud-based gaming
services, also called Gaming on Demand (GoD) [1]. Cloud
gaming will liberate games from their limiting dependence
on consoles, without sacrificing realism, speed, or any other
aspect of the true gaming experience. This is a platform-as-
a-service approach, analogous to video on demand, where
players interact via streamed content generated on the game
operator’s server rather than players’ local systems. There are a
number of commercial GoD systems that have been presented
to the market such as OnLive [2] and Gaikai [3]. We have
idenified four key requirements of cloud-based service systems
to provide convincing multiscreen-based gaming services [4].
They are user responsiveness, high-quality video, quality of
services and operating costs.
Our contributions: We present a novel system architecture
for the multiscreen gaming services, which utilizes parallel
commodity processors, multi-core CPUs. We also present a

novel multi-view rendering algorithm to efficiently support
multi-user game on the server, which has a single GPU
with multi-core CPUs. In addition, our approach gives the
benefits in terms of arbitrary focal positions for viewpoints
and better rendering quality over prior parallel multi-view
rendering methods [5]. This is one of the important features
for the multiplayer games in cloud-based gaming services.

The rest of the paper is organized as follows. Section II
shows a brief overview of related work. Section III describes
the proposed system architecture for cloud-based gaming
services. Section IV shows the performance of the proposed
method. Finally, Section V ends the paper with some conclud-
ing remarks and perspectives for future work.

II. RELATED WORK

In this section, we give a brief overview of related work
on cloud-based gaming platforms and parallel rendering algo-
rithms.
Cloud-based gaming platforms: There is a number of com-
mercial cloud-based gaming platforms that have been pre-
sented to the market. The Games@Large framework enables
commercial video game streaming from a local server to
remote end devices in local area networks (LANs) [6]. This
system and streaming protocols are developed and adapted
for highly interactive video games. OnLive is a gaming-on-
demand entertainment platform, which their service is avail-
able in USA, UK and Belgium [2]. The hardware used is a
custom set up consisting of OnLive’s proprietary video com-
pression chip as well as standard CPU and GPU chips. Gaikai
is developing and delivering a cloud technology platform to
put games where they have never been before, including digital
TVs, tablets, smartphones, Facebook, and embedded directly
into websites. Recently, NVIDIA introduced the GeForce
GRID platform for gaming-as-a-service providers [7]. The key
technologies of this platform are NVIDIA GeForce GRID
GPUs with dedicated ultra-low-latency streaming technology
and cloud graphics software.
Parallel rendering: Recent work in this area has been focused
on video encoding and streaming techniques to reduce the
latency in games [8]. Most of the earlier systems were serial
in nature and designed for a single core or processor in
terms of 3D rendering. However, the recent trend in computer
architecture has been toward developing parallel commodity
processors, including multi-core CPUs and many-core GPUs.

34Copyright (c) IARIA, 2012. ISBN: 978-1-61208-229-5

MOBILITY 2012 : The Second International Conference on Mobile Services, Resources, and Users

It is expected that the number of cores would increase at the
rate corresponding to Moore’s Law. Based on these trends,
many parallel game engines and parallel rendering algorithms
have been proposed for commodity parallel processors [9].
Dual-core and quad-core CPU chips are currently available,
with some motherboards supporting multiple such chips.
Parallel computing is quickly becoming mainstream in the
development of computation-intensive applications related to
the realistic 3D rendering [10].

OTOY [11] provides technologies that move processor
intensive experiences into the cloud; computer applications,
operating system, video games, high-definition media content,
film/video special effects graphics - fully interactive, in real
time, through the power of server side rendering. They can
deliver the high-quality media content via an interactive stream
to any internet enabled device for multiscreen-based gaming
services, including PC, iPhone, iPad or TV set top box.

A parallel multi-view rendering architecture in a cluster of
GPUs has been proposed in [5]. This system have shown a
theoretical analysis of speedup and scalability of the proposed
multi-view rendering. However, the critical limitation of this
method is that all the cameras are always looking to the center
of arbitrary tile. Therefore, this method is not suitable for
common mutli-user game applications. Moreover, it is difficult
to apply this method to a high visual quality games since they
used a simple phong shader for lighting and shading.

III. SYSTEM ARCHITECTURE

In this section, we describe the proposed system architecture
for cloud-based gaming services. Our system consists of three
major systems such as distributed service platform (DSP),
distributed rendering system (DRS) and encoding, QoS and
streaming system (EQS), as shown in Figure 1. The DSP is
responsible for launching the game processes on the game
execution nodes or rendering job on the DRS after client-
side invocation, monitoring its performance, allocating com-
puting resources and managing user information. And, the
DSP handles user’s game input via UDP from the client-
side devices. In client-side, the user’s game input is captured
and transmitted via UDP by the user input capturing and
transmission software on the client devices. Also, the DSP
performs execution management of multiple games. In order
to perform streaming the game A/V streams to the clients,
the DSP requests capturing rendered frame buffer for video
encoding and streaming to the EQS.

To improve 3D rendering performance of the DRS, we
utilize the multi-threaded game engine [9] that is designed to
scale to as many processors as are available within a platform.
In order to provide the cloud-based gaming service, the DRS
has common system interfaces to the DSP and the EQS. The
EQS is responsible for audio/video encoding and streaming the
interactive game content to the clients. We use the DirectShow
SDK to implement the visual capturing of the games rendered
from the DRS. We utilize the H.264 video coding standard
for low-delay video encoding of the captured game content.
Before the EQS performs the H.264 encoding, we perform a

DRSDSP EQS

3D scene data Rendered images

Audio data

Scene update information

Clients

Game input

Encoding

Streaming1600x1440 640x480

Fig. 1. Our system processing flow: DSP-Distributed Service Platform, DRS-
Distributed Rendering System, EQS-Encoding, QoS and Streaming System

color space conversion from RGB to YUV on the captured
frames. Finally, we exploit the Real Time Protocol (RTP)
packetization to transmit the encoded video stream in real-
time [12].

A. Multi-view Rendering with Different Resolutions

The DRS consists of four major block components such
as rendering scheduler, multi-view manager, rendering task
manager and renderer library. The rendering scheduler is
responsible for rendering process monitoring, performance
timer control, rendering statistics management and commu-
nicating other modules for external rendering requests in the
DRS blocks. The key performance improvement for the game
applications is the use of per-thread task queues. This elim-
inates the synchronization checkpoint when one shared task
queue is used. Advanced task schedulers may use heuristics
to determine which thread to steal from and which task to steal
and this may help cache performance. In order to implement
the rendering scheduler, we use the Intel Threading Building
Blocks (TBB) [9], which is highly optimized scheduler. The
multi-view manager is responsible for performing the manage-
ment of user’s viewpoints (such as insertion, deletion, update
and search operations) for the shared spaces in the multi-
user games. The rendering task manager module performs
the rendering task decomposition and parallelization in order
to improve the rendering performance. In our work, we use
the Object-oriented Graphics Rendering Engine (OGRE) [9],
which performs a 3D scene graph management and rendering.
In the case of multiscreen-based gaming services, multiple
viewpoints for different resolutions are needed if we want
to support several users visualizing a given 3D scene at the
same time. However, rendering multiple views with different
resolutions using the standard graphics pipeline is a challeng-
ing problem. In order to provide the interactive multi-view
rendering results for the multiscreen-based gaming service,
we utilized the shared resources for the rendering such as
scene graph, textures and shaders in a GPU as much as
possible and keeping the quality of the rendering results. We
exploit a video streaming approach to provide the game’s
encoded video with different resolutions at the same time

35Copyright (c) IARIA, 2012. ISBN: 978-1-61208-229-5

MOBILITY 2012 : The Second International Conference on Mobile Services, Resources, and Users

Fig. 2. The result of multi-view rendering with different resolutions (1:
1600x1440, 2,3,4: 640x480)

according to the requests of client devices such as PCs, laptops
(e.g., 1600x1440 resolution) and smartphones (e.g., 640x480
resolution) as shown in Figure 2.

If Ri denotes a i-th rendered image in framebuffer of the
DRS, then Sk, which has i image sequences is defined as:

Sk = {R1, R2, ..., Ri}

The CPi denotes the i-th viewpoint parameters, which con-
tains internal parameters such as focal length fl(fx, fy), center
c(cx, cy), aspect ratio a and external parameters such as
position p(cx, cy, cz) and orientation r(rx, ry, rz). The DSP
generates this CPi and the resolution of the client screen,
(xr, yr), according to the requests of the clients.

Algorithm 1 Viewpoint addition algorithm.
1: procedure ADDVIEW(Ui, CPi, xr, yr)
2: RenderWindow W ;
3: Camera Ci;
4: Viewport Vi;
5: RenderedFrameBuffer Ri;
6: Ci ← createCamera(Ui, CPi);
7: Vi ← addViewport(Ci, xr, yr);
8: Ri ← renderOneFrame(W,Vi, Ci);
9: return Ri

10: end procedure

The DRS provides the function for adding the multiple
viewpoints to support the multi-view rendering. First, the DSP
receive the service requests from the clients. These requests
include several user information, Ui, such as user identifica-
tion, selected game, which they want to play and initial or
previous viewpoints in the 3D game space. Then, the DSP
sends these information to the DRS to request for multi-view
rendering. According to this request, the DRS provides the
function for adding viewpoints, CPi. To perform this function
on the DRS, we create the cameara Ci and viewport Vi objects
to attach the viewport to the render window Wi. After the
viewport was successfully added to the render window, the
DRS performs the rendering procedure to generate an image

on the framebuffer in a GPU. The pipeline of our algorithm
for multi-view rendering with different resolutions is shown
in Algorithm 1.

If EAi and EVi denote a i-th encoded audio and video in
interactive game content respectively, then ESk, which has i
encoded audio/visual gaming sequences is defined as:

ESk = {(EA1, EV1), (EA2, EV2), ..., (EAi, EVi)}

Therefore, the EQS performs the streaming ESk to the clients
for the cloud-based gaming services. In order to address
the game’s audio/visual output capturing, we develop the
capturing module on the EQS in C++ and DirectShow SDK.
We also develop the H.264 encoder for achieving low-delay
video coding. On the other hand, the client side devices for
our system support the H.264 decoding functionality. Also, the
client is responsible for capturing the commands of the input
controller such as keyboard and mouse, and sending them to
the DSP via UDP.

IV. EXPERIMENTAL RESULTS

This section presents the performance results of multi-view
rendering with different resolutions and video encoding per-
formed using our method. We have evaluated the performance
of multiview rendering on a PC running Windows 7 operating
system with Intel Core i7 2.93GHz CPU, 8GB memory and
a ATI Radeon HD 5770. We used OGRE library based on
DirectX as a graphics API and Microsoft HLSL for a shading
language. The frames per second (FPS) is the number of
frames per second that have been rendered by the DRS. High
FPS results with smooth movements in the 3D scene.

0

20

40

60

80

100

120

140

1 21 41 61 81 101 121

1600x1440

1600x1440, 640x480

1600x1440, 2 views*640x480

1600x1440, 3 views*640x480

F
P
S
(f
ra
m
e
s
p
e
r
se
co
n
d
)

Frame time (sec)

Fig. 3. The performance of multi-view rendering with different resolutions.

Our system rendered the single view (1600x1440) at 74.7
fps on average with one GPU. We measured the FPS at the
DRS for multi-view rendering with 1600x1440 and 640x480
resolutions. In the case of multi-view rendering with a
1600x1440 view and two 640x480 views at the same time, we
can get 27.8 fps on average with one GPU. Figure 3 shows
the performance result of multi-view rendering according to
the resolutions. In addition, in terms of scaling performance
according to the number of CPU cores, our rendering perfor-
mance using multi-core CPUs (8-core) achieves 4.2x speedup

36Copyright (c) IARIA, 2012. ISBN: 978-1-61208-229-5

MOBILITY 2012 : The Second International Conference on Mobile Services, Resources, and Users

over execution using single-core CPU. In order to analyze
our video coding performance for the use of streaming game
output to client devices, we have performed the experiments
using H.264 codec. Our encoding system can encode in
25.6ms on average for eight views (interactive gaming videos)
with 640x480 resolutions at 15 fps in parallel. Also, our
encoding processing time is 23.1ms on average time per frame
(1600x1440) as shown in Figure 4. The output of the first-
person shooter game using the Unreal Development Kit (UDK)
was captured and encoded.

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000 2500 3000 3500 4000

Frame

P
ro
ce
ss
in
g
ti
m
e
(m

se
c)

Fig. 4. The performance of video encoding for 1600x1440 at 30 fps.

Analysis: Our rendering system provides good performance
scaling of multi-core CPUs for multi-view rendering with
different resolutions and video encoding. And the multi-view
rendering algorithm maps well to the current GPUs and we
have evaluated its performance with different rendering reso-
lutions. Compared to the prior parallel multi-view rendering
method [5], our approach offers the advantage for multi-
user games by supporting various viewpoints with arbitrary
focal positions. Our algorithm can easily handle insertion and
removal of viewpoints with different resolutions and can also
take advantage of scalable and parallel processing using multi-
core CPUs. Furthermore, it is relatively simple to combine
the video encoding methods and optimizations in the cloud-
based gaming platform. This makes it possible to develop a
more flexible GPU-based framework for the video encoding
methods like H.264/AVC.

Our approach has some limitations. First, we support the
multi-view rendering for one multi-user game, since it is
difficult to share the rendering resources in a GPU among
different games. We believe that this can be resolved by using
multi-GPUs. Secondly, our system performs directly rendering
to the framebuffers on the server-side machines. However,
in terms of efficient services in the cloud-based gaming, we
should exploit the off-screen rendering approaches and GPU
virtualization techniques [7].

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented the system architecture for
the multiscreen-based gaming services and multi-view render-
ing with different resolutions. The performance speedup of our

rendering system is achieved by utilizing both multicore CPUs
and a GPU simultaneously without additional requirement for
any special hardware. We found that the proposed system
provide the multi-view rendering for different focal positions
for each viewpoint with high visual quality. In addition, we
demonstrate that the proposed rendering system could prove
to be scalable in terms of parallel rendering. So, we believe
that our rendering system will provide high-quality with good
performance for the multiscreen-based gaming services.

There are many avenues for future work. It is possible to use
new capabilities and optimizations to improve the performance
of the video encoding especially H.264/AVC through the GPU-
based implementation. Furthermore, we would like to develop
algorithms for integrating the multi-view rendering with the
video encoding in a GPU.

ACKNOWLEDGMENTS

The game technology demo (Intel’s smoke demo) in Figure
2 is courtesy of the Intel Corporation. This work was supported
in part by the IT convergence R&D program of the Ministry
of Knowledge Economy (MKE)/KEIT [10039202], Develop-
ment of SmartTV Device Collaborated Open Middleware and
Remote User Interface Technology for N-Screen Service.

REFERENCES

[1] T. Karachristos, D. Apostolatos, and D. Metafas, “A real-time streaming
games-on-demand system,” in Proceedings of the 3rd international
conference on Digital Interactive Media in Entertainment and Arts, ser.
DIMEA ’08. New York, NY, USA: ACM, 2008, pp. 51–56. [Online].
Available: http://doi.acm.org/10.1145/1413634.1413648

[2] S. Perlman. (July 2012) Onlive launches in belgium. [Online]. Available:
http://blog.onlive.com/2012/07/30/onlive-launches-in-belgium/

[3] G. website. (2012) What is gaikai? [Online]. Available:
http://www.gaikai.com/

[4] S.-S. Kim, K.-I. Kim, and J.-H. Won, “Multi-view rendering approach
for cloud-based gaming services,” in The Third International Conference
on Advances in Future Internet, ser. AFIN 2011, 2011, pp. 102–107.

[5] W. Lages, C. Cordeiro, and D. Guedes, “A parallel multi-view rendering
architecture,” in Proceedings of the 2008 XXI Brazilian Symposium
on Computer Graphics and Image Processing. Washington, DC,
USA: IEEE Computer Society, 2008, pp. 270–277. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1440461.1440894

[6] Y. T. A. S. F. Bellotti and A. Jurgelionis., “Games@large - a new
platform for ubiquitous gaming and multimedia,” in Proceedings of the
Broadband Europe Conference, ser. BBEurope ’06, 2006, pp. 11–14.

[7] P. Eisler. (2012, June) What to expect from geforce grid for cloud-based
gaming. [Online]. Available: http://blogs.nvidia.com/2012/06/what-you-
can-expect-from-geforce-grid/

[8] A. Jurgelionis, P. Fechteler, P. Eisert, F. Bellotti, H. David, J. P.
Laulajainen, R. Carmichael, V. Poulopoulos, A. Laikari, P. Perälä,
A. De Gloria, and C. Bouras, “Platform for distributed 3d gaming,”
Int. J. Comput. Games Technol., vol. 2009, pp. 1:1–1:15, January 2009.
[Online]. Available: http://dx.doi.org/10.1155/2009/231863

[9] J. Andrews. (June 2009) Designing the framework of a
parallel game engine. [Online]. Available: http://software.intel.com/en-
us/articles/designing-the-framework-of-a-parallel-game-engine/

[10] S. Eilemann, M. Makhinya, and R. Pajarola, “Equalizer: A scalable
parallel rendering framework,” IEEE Transactions on Visualization
and Computer Graphics, vol. 15, pp. 436–452, May 2009. [Online].
Available: http://portal.acm.org/citation.cfm?id=1515609.1515684

[11] OTOY. (August 2012) Otoy website. [Online]. Available:
http://www.otoy.com/

[12] R. 3550, RTP: A Transport Protocol for Real-Time Applications.

37Copyright (c) IARIA, 2012. ISBN: 978-1-61208-229-5

MOBILITY 2012 : The Second International Conference on Mobile Services, Resources, and Users

