MMEDIA 2019 : The Eleventh International Conference on Advances in Multimedia

Deep Reinforcement Learning in VizDoom
First-Person Shooter for Health Gathering Scenario

Dmitry Akimov and Ilya Makarov
National Research University Higher School of Economics
Moscow, Russia
deakimov @edu.hse.ru, iamakarov@hse.ru

Abstract—In this work, we study the effect of combining existent
improvements for Deep Q-Networks (DQN) in Markov Decision
Processes (MDP) and Partially Observable MDP (POMDP) set-
tings. Combinations of several heuristics, such as Distributional
Learning and Dueling architectures improvements, for MDP are
well-studied. We propose a new combination method of simple
DQN extensions and develop a new model-free reinforcement
learning agent, which works with POMDP and uses well-studied
improvements from fully observable MDP. To test our agent
we choose the VizDoom environment, which is old first person
shooter, and the Health Gathering scenario. We prove that im-
provements used in MDP setting may be used in POMDP setting
as well and our combined agents can converge to better policies.
We develop an agent with combination of several improvements
showing superior game performance in practice. We compare
our agent with Recurrent DQN using Prioritized Experience
Replay and Snaphot Ensembling agent and get approximately
triple increase in per episode reward.

Keywords—-Deep Reinforcement Learning; VizDoom; POMDP;
First-Person Shooter.

I. INTRODUCTION

The 3D shooter is a video game genre where a player
controls the virtual combatant and tries to achieve some pre-
defined goal, such as make their way trough the maze or
capture the flag or fight other players with a ranged weapon.
There are several game modes in which players can compete
or cooperate with each other. Usually, such games are very
demanding on player skill, reaction and cleverness.

3D shooters are challenging task for Reinforcement Learn-
ing (RL) algorithms. In terms of reinforcement learning con-
cept, we can describe a 3D shooter as sophisticated environ-
ment with one general goal, for example, to maximize kill-
death ratio during one game session or episode, and with many
simpler tasks, such as map navigation or enemy detection.
Learning behaviour policy in 3D shooters is difficult: rewards
are extremely sparse and usually highly delayed. It means that
an agent may receive reward signal for action it performed
hundreds frames ago. Also, information received by the agent
from the environment is incomplete: enemies positions are
unknown and angle of view is limited by 90-110 degrees. Maps
can be complex mazes, and the navigation inside is challenging
for the agent as well. The only information that Deep RL agent
can use for action choice is a game screenshot (image captured
from rendered scene).

We decided to focus on First-Person Shooter (FPS) video-
game, which we have previously simulated and studied related
to intelligent path planning [1] [2] and building RL agent for
weapon choice [3].

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-697-2

In this work, we choose VizDoom [4] as simulation envi-
ronment. There are many maps (scenarios) in VizDoom, each
with different goals and gameplay features. We choose the
Health Gathering scenario to teach an agent to detect health
packs and navigate inside a room with acid on the floor.

We combine several existing improvements for RL agents
to propose a new model-free approach for general RL prob-
lems. We conduct experiments proving effectiveness of the
proposed agent. We show that our agent outperforms well
studied baseline methods, as well as their modifications.

The paper is organized as follows. Related work for deep
reinforcement learning is overviewed in Section 2. We intro-
duce basic concepts in Section 3 and describe chosen scenario
for VizDoom in Section 4. Then, in Section 5-7, we describe
proposed approach, experiments and analyze obtained results.
Finally, in Section 8, we make a conclusion and describe future
work.

II. RELATED WORK
A. Rainbow

In the Rainbow paper [5] authors combined several of
the DQN extensions. Particularly, authors propose to use
Double Learning, Dueling Architecture, Multi-step learning,
Prioritized Replay, C51 and Noisy Networks for exploration all
together. Their combined agent learn up to 8 times faster than
simple DQN. Also authors investigate effects of combining all
the five out of these methods.

However, they tested combined agent on the Atari games,
which were implemented in The Arcade Learning Environment
[6], in MDP manner, and, thus, effects of this combination in
environments with incomplete information is unknown.

B. Arnold paper

In ‘Arnold’ paper [7], authors develop an agent to play a
deathmatch scenario in VizDoom environment. Authors used
several useful learning tricks. They implemented augmentation
of the agent with in-game features, which are accessible during
training, and enemy-detection layer, which greatly speeds up
training and helps agent to converge to a good policy. Also,
authors did reward shaping presented as small reward signals
for good actions, which do not directly correspond to the main
objective, separate networks for action and navigation for faster
leanring, and added dropout layer after convolutions, prevent-
ing neural network from overfitting and making agent’s policy
more robust to previously unseen in-game situations. Their
final agent substantially outperforms build-in Al agent of the
game and, surprisingly, humans. However, the ‘Arnold’ agent is

59

MMEDIA 2019 : The Eleventh International Conference on Advances in Multimedia

relatively simple: authors did not exploit Q-learning extensions
that could significantly improve agent’s performance.

C. DRQON with Prioritized Experience Replay, Double Q-
learning and Snapshot Ensembling

Prioritized Experience Replay (PER) [8] is a smart way to
speed-up training. In this method, the examples for Experience
Replay are sampled with non-uniform probabilities, assigned
to each tuple (s,a,r,s’) or {(0,a,r,0') in case of POMDP
setting, according to loss value on this example. Examples with
higher error values carry more information than ones with low
error value, so we prefer to sample them more often. This
approach has shown its potential and superior performance
compared to DQN in Atari games. Authors of [9] combined
PER with Double Q-learning and Snapshot Ensembling and
tested their agent in VizDoom Defend The Center scenario, in
which the agent stand at certain point and rotate in order to
shoot the enemies closing to the agent. Also, authors integrated
an enemy detector and trained it jointly with Q-function. We
compare our results with [9] below.

Deep Reinforcement Learning improvements for MDP
achieved super-human performance in many games. However,
this improvements had not been considered in POMDP setting
before. We think that it is essential to combine such simple
heuristics from MDP with POMDP to push up state-of-the art
methods considering several scenarios for first-person shooter
(FPS) according to VisDoom Deep RL competition.

III. DEEP REINFORCEMENT LEARNING OVERVIEW

General reinforcement learning goal is to learn optimal pol-
icy for an agent, which maximizes scalar reward by interacting
with the environment.

At each time step ¢ an agent observes the state s; of
the environment, makes a decision about the best action a;
according to its policy 7 and gets the reward r;. This process
well known as Markov Decision Process (MDP) denoted as a
tuple (S, A, R,T), where S indicates a finite state space, A
indicates a finite action space, R is a reward function, which
maps pair (s,a) € (S, A) into stochastic reward r, and last
but not least T" is a transition kernel: T'(s,a, s’) = P(S¢41 =
s'|St = s, Ay = a).

Discounted return from state s; is expressed by the follow-

ing formula:
oo
G, = 7
t = Z’Y Tt+is
i=0

where v € (0,1) is a discount factor reducing the impact of
reward on previous steps. Typically, the choice of v depends
on the length of the game. An agent with the greater values
of gamma concentrates on dilated rewards, which is important
in the long game sessions, and an agent with small gamma
concentrates on short-term rewards.

In order to choose the actions, an agent uses a policy
m = P(als). We will call a policy 7 optimal if it maximizes
expected discounted reward and mark it with a star:
7 = argmin E (Gy)
T

There may be several optimal policies as well.

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-697-2

In this work, we consider Q-learning, a value-based
method, because of its popularity and effectiveness. All re-
quired information about the methods is presented below.

A. Q-learning

To measure the quality of a given policy 7 one can use
action-value function Q™ defined as:

Q" (s,a) =E; [Glso = s,a0 = d] (H

@ is expected over all possible action and states reward
that can be obtained by the agent with the policy 7 started
from state s and performed action a and then following its
policy. If the true Q-function (Q*) is given for us, we can
derive optimal policy by taking action a that maximizes Q for
each state s: a = argmax/, Q(s,a’)

To learn () for the optimal policy we use Bellman equation
(:
Q" (s,a) = r(s,a) + ymax Q" (s, a’) @)

It is proven in [10] that this sequential assignment will
converge from any given () to desired Q* eventually if action
and state spaces are finite and each pair of state and action are
presented repeatedly. If we start learning procedure from some
Q-function approximation we will learn nothing because of
the max operator: agent has no will to explore environment, it
will simply perform ‘best’ action according to its policy. So we
must add exploration to the agent: we may sample actions with
probabilities p(a;) = % = softmaz(a;) (Boltz-
mann approach) or we can apply epsilon-greedy sampling: take
random action with probability € and take the best action with
probability 1 —e. It is recommended to start with epsilon close
to 1 and gradually reduce it during training.

To tackle with infinite state spaces we can approximate
Q-function with deep neural networks.

1) Deep Q-Network (DQON): The first attempt to use Deep
Neural Networks to our knowledge was made in [11]. The
authors presented an agent achieving super-human perfor-
mance in several games. This work marks a milestone in deep
reinforcement learning. To make it works, the authors propose
to use 2-layer convolutional neural network (CNN) as feature
extractor and stack two more fully-connected layers on top
to approximate Q-values. This network takes a raw image as
input of state and produces Q-values, one output per action.

Because of using a neural network as Q-function estimator,
the authors of [11] can not directly apply the rule (2) and
instead compute Temporal Difference error (TD):

TD = Q(si, a;) — (rs + ymax Q(s;, a')) 3)

and then minimize square of it. Authors used an online network
to estimate (Q)(s;,a;) term and a farget network to estimate
max, Q(s},a’) term. The online network was trained via
backpropagation, while a value produced by the target network
is considered as a constant. The target network’s weights were
fixed during the online network training and were periodically
updated to trained online network.

If we denote parameters of the online network as 6 and
parameters of the target network as 6, then loss can be

60

MMEDIA 2019 : The Eleventh International Conference on Advances in Multimedia

expressed as:
N2
L= (Qlsisais0) = (ri +ymaxQ(s,a’30)) @)

where summation taken over a batch (defining the number of
samples that will be propagated through the network).

To form a batch authors in [11] propose to use experience
replay, which contains tuples (s,a,r,s’) of state, performed
action, reward and next state. During training, authors uses
estimation of Q(s,a) not for all actions, but only for the
performed ones, and, thus, backpropagate the error through
neurons corresponding only to these actions.

Although DQN have shown good results in playing Atari
video games, it has several problems, such as slow and unstable
training [12], and overestimating of expected reward [13], from
which we want to get rid off. There are several extensions to
DQN, which can fix these drawbacks or boost up resulting
performance.

2) Double Q-learning: Conventional Q-learning suffers
from maz operator in (2) and agent always overestimates
obtained reward. There is simple solution called Double Q-
learning [13] that is to replace max, Q(s,a) with

Q(s', argmax Q(s'a); 0) (5)

leading to faster and more stable training process.

3) Dueling Networks: The Dueling network [12] is a
specific architecture, which explicitly uses the Q-function
decomposition: Q(s,a) = V(s)+A(s,a), where V (s) is value
and A(s,a) is advantage. In order to solve the problem of
unidentifiability in the sense that given Q we cannot recover
V and A uniquely, we present Q-function estimator now has
two streams: one for V'(s) and one for A(s, a) approximations,
and Q-function is computed as following:

Nq
Q(s,a) = V(s) + A(s,a) — Ni ZA(s,aj) (6)

Dueling network may result in a huge performance boost.

B. Recurrent Q-learning

Simple Q-learning and extension works under assumption
that we have full access to the environment state at any time.
However, in practice we do not. In many cases, we can only
observe part of the environment state, and observation may be
incomplete or noisy. In such a case, it is better to use Partially
Observable Markov Decision Process (POMDP) formalism.
POMDRP is a tuple (S, A, R,T,Q),0), where first four items
come from MDP, () indicates observation set and O indicates
observation function: O(St41,at) = p(0t41|St41,az), Vo € .
Due to no available knowledge of environment’s state, the
agent makes a decision by interacting with the environment and
receiving new observations. The agent updates its distribution
of belief in true state based on distribution of the current state.

1) Deep Recurrent Q-Network (DRQN): Since we do not
have state s; in POMDP, we could not estimate Q(s;,a;) like
in DQN. However, there is a simple solution to it. One needs to
equip an agent with memory h; and approximate Q(s;, a;) by
Q(o¢, hi—1,at). One of the most popular approaches is to use
recurrent neural networks to solve the problem. Dependence

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-697-2

on o; can be eliminated by modelling hy = LST M (04, hy—1)
called long-short term memory block [14]. Such networks are
called Deep Recurrent Q-Network (DRQN) [15].

Experience replay now contains tuples (o, a,r, 0’) denoting
observation, performed action, reward and next observation. It
is essential to sample sequences of consecutive observations
from experience replay to make use of agent memory: without
such sampling it can not learn sequences. It is natural to learn
only from several last observations, because agent has to form
its memory from a few observations. All previously mentioned
extensions of DQN can be integrated into DRQN model.

2) Multi-step learning: DQN is trained on a single time
step, although DRQN trained on a sequence. One may use
this in the loss construction as follows: to replace single-step
temporal difference (3) by n-step temporal difference [16]:

TD(n) = Q(si,a;)—
—(ri+yrign +...+ 7”71Ti+n—1 +A" max Q(Sitn,a"))
@)

This also provides faster and more stable training, especially
with delayed rewards, but n has to be properly tuned [17].

3) Distributional RL: Instead of learning Q-function,
which is an expectation of discounted reward, it is possible
to learn distribution of discounted reward [18] [19]. These
distributions can be presented by probability masses, placed
on a discrete support z with N atoms, z; = Vi + ¢ *
Azyi = 0,...,N, where Az = (Vinaz — Vinin)/ (N — 1)
and (Vynin, Vinax) Tepresent admissible value interval. Authors
denote the value distribution as Z, then distributional version
of (2) holds: Z(x,a) 2 R(x,a) + v x Z(X’, A’), which may
be used for training. They proposed loss function and exact
algorithm to learn such discounted reward distribution and
name it Categorical 51 (C51), where 51 is the number of atoms
z;. It has been shown that an agent trained in distributional
manner has richer expressiveness and usually converges to a
better policy.

IV. HEALTH GATHERING SCENARIO

In “Health gathering” scenario, the agent spawns in square
room with lava on the floor. The agent has no access to its
health and can only turn left, right and move forward (see
screenshot of agent view at Fig. 1). There is a bunch of health
kits, which increase agent’s health and make it survive longer.
We used the following reward shaping: agent receives +1 for
every step, -100 if it dies, and + amount of healing, which is
equal to health(o;) — health(o;—1) if this value is bigger than
zero, where health(o) represents the agent health in the game.

Figure 1. A Screenshot of Health Gathering Scenario

61

MMEDIA 2019 : The Eleventh International Conference on Advances in Multimedia

An episode ends if the agent dies or if 2100 tics done. We
assume that such shaping will force agent to pick up health
kits with some latency and do it only if it has been badly
wounded. Agent trained with frameskip 4 and screen resolution
of 108 x 60.

V. PROPOSED APPROACH

In this section we describe our baseline models, as well
as combined agent architectures. We use two agents as a
baseline to compare with: simple DQN and DRQN with
LSTM. Also we use two modified versions: first is DRQN with
Dueling architecture and Double Q-Learning and dropout with
keeprate=0.5 (D4RQN), and second in addition with C51 and
Multi-step (C51M).

We decide to use simplified neural network architecture for
all agents in this scenario. Also, all the agents preprocess game
screenshot by convolutional feature extractor with the same
architecture, presented in Table I. CR denotes Convolution +
Relu, n denotes number of convolution filters, £ denotes kernel
size, s denotes stride.

TABLE I. CONVOLUTIONAL FEATURE EXTRACTOR

Input size Basic Input size Other

30 x 45 x 1 | CR, n=8, k=6,s=3 | 60 x 108 x 3 | CR, n=32, k=8, s=4

9 x 14 x 8 CR, n=8, k=3, s=2 14 x 26 x 32 | CR, n=064, k=4, s=2

4 x6x8 6 x 12 x 64 CR, n=64, k=3, s=1
4 x 10 x 64

After convolutions, the feature map is reshaped to vector
form and is feeded into next layers. DQN network has dense
layer with 512 units , with Relu activation in both cases.
DROQN has LSTM cell with 128 and 512 units respectively.
Both DQN and DRQN has one more dense layer at the end
with number of actions units and linear activation.

D4RQN and C51M has dropout layer after convolutions
with keep rate = 0.5. After this they both have LSTM layer
with 512 units. D4RQN splits computation into two streams:
value stream and advantage stream by dense layers with 1 and
number of actions units with linear activation. Outputs from
streams are combined by formula (6) and targets during opti-
mization are picked according to (5) thus combining Double
Q-learning and Dueling Networks.

There are atoms in C51M algorithm supporting discounted
reward distribution. Each atom has the probability, calculated
as softmax over atoms. We split LSTM output into two
streams: value stream with number of atoms units and value
stream with number of actions linear layers, each with number
of atoms units. For each atom these streams combined by
formula (6) and then softmax function applied. To compute
Q-value from this distribution we use formula: Q(s,a) =

n_atoms . .

; z:pi(s, a; 8), where z; and p; is the i-th atom support
and probability and 6 represents network parameters. An
illustration of the network architecture for C51M algorithm
is presented in Fig. 2.

We choose 51 atoms as in the original algorithm for our
scenario. It is crucial to pick right values for V,,,;,, and V,,,4, in
atom support. These values must represent lowest and highest
possible discounted reward. Indeed, if we choose V,,;, and
Vinaz too close to each other, agent will not have rich enough
expressiveness, but if we choose the gape too much then only
few atoms will be used during training and agent degrades
down to DQN.

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-697-2

Conv + Relu
n=64, k=3, s=1

Conv + Relu
n=64, k=4, s=2

Conv + Relu
n=32, k=8, s=4

game
screenshot

Values stream
1 dense layer
with 51 units

Discounter reward
probability distribution

LST™™
512 units

Advantage stream
#(actions) dense layers
each with 51 units

hy, ¢y

Figure 2. Neural Network for C51M Architecture

In Health Gathering scenario we set these values to —b
and 195. The maximum possible reward equals to maximum
episode length which is 2100, and can not be precisely precom-
puted for shaped reward because of environment randomness.
We also decide to focus on small rewards for the agent and
significantly reduced range of rewards.

VI. EXPERIMENT DESIGN

In this section we provide training procedure details. We
set experience replay size to 10° . It is important to sample
sequences of consecutive observations from experience replay,
such that only the last observation may be terminating. We
decide to do it by simply checking if any of observations in a
sequence is terminal, except the last one, and if there is one,
we resample until there are no such cases. By doing so, we
greatly reduce total amount of terminate observations to train
on. It is important in Health Gathering scenario, because agent
receives huge penalty at the last observation if it dies. We set
batch size and sequence length to 128 and 10, respectively. We
use first four observations to update agent’s memory and last
six to train on. We set number of steps for gradient descent
per epoch to 8000 and number of steps before sampling from
experience replay to 15. We also reduce learning rate to 0.0002.

VII. RESULTS

In this section we describe our experimental results and
compare performance of all the described agents. For each
scenario, we compare learning stability by measuring TD loss
at each gradient descent step, learning speed by measuring
per-episode reward changes during training and performance
of agents after each training epoch. For Fig. 3 the visualization
is the following: C51M (dark-blue), DQN (red), DRQN (light-
blue) and D4RQN (orange). For TD loss plots we visualize
C51M separately, so that we could see the difference between
this model and other agent architectures.

A. Health Gathering

TD loss for all the agents can be seen at Fig. 3(a) and
3(b). Again, all agents, except DQN, show stable learning
process. Rewards obtained during training can be observed at
Fig. 3(c) (plot is constructed in relative time-scale). D4ARQN
obtains max score more than in half of training episodes, but
other agents do not show stable performance. Test rewards
presented at Fig. 3(d). C51M has lower performance while
D4RQN unexpectedly has highest reward while training than
while testing with turned off dropout. We further study agents’
performance with and without dropout at testing time.

62

MMEDIA 2019 : The Eleventh International Conference on Advances in Multimedia

(c) Rewards per Training Episodes

(b) TD Loss for C51M Agent

7

(d) Rewards per Testing Episodes

Figure 3. Health Gathering Scenario Comparison

We noticed that D4ARQN detects health packs very well
and goes directly to them. With this strategy agent is able
to survive all 2100 frames, which is length of the episode,
and dies rarely. However, if there are multiple health packs in
different sides and approximately on the same distance, agent
can not decide where to go and jiggles screen some time in
attempt to go both directions at once before deciding which
direction it wants to go. DQN does not detect health pack as
well as D4ARQN and may just move into a wall and die. DRQN
plays pretty well, but agent’s behaviour was not interpretable
in terms of similarity to any reasonable humans’ behaviour.

C51M is good at detecting health packs, too. But it scores
lower than D4RQN and DRQN have, because it tries to wait
several frames before pick up a health pack. We believe that
such behaviour occurs, because of our reward shaping and
experience replay design. If agent has low health it will obtain
bigger reward than if it will pick up health pack will full
health. Agent trains on terminal observations rarely due to our
sampling method. Also, we believe that human players tend to
do the same: it is optimal to pick up health pack when you have
only, for example, 50 health points, instead of 90 or more. In
situations where health is not observable, skilled players will
wait optimal time, learned after several deaths. Alas, C51M
did not learn it in our experiment and usually waited too long.

B. Summary results

Since Health Gathering scenario forced to end after 2100
steps during training, it is interesting to test agents without
this forced ending. So, we modified config file and set episode
length to 10000 and call it Health Gathering Expanded. We add
this version of scenario in Table II that contains final perfor-
mance of all trained agents in order: DQN, DRQN, D4RQN
dropout off, D4ARQN dropout on, C51M dropout off, C51M
dropout on. Values in Table II equal to mean(R) + std(R),
where R is non-shaped rewards over 100 episodes.

From Table II we can observe that dropout at testing time
may increase agent’s performance: Health Gathering scenario

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-697-2

TABLE II. RESULTS COMPARISON

Model HG HG Expanded
DQN 1262.0 £ 631.0 | 1469.6 £+ 1257.0
DRQN 1578.1 £ 665.9 | 3173.5 4+ 28423
D4RQN 1890.0 + 434.3 | 4781.7 4 2938.8
D4RQNd | 2078.8 4 144.5 | 9291.4 + 2231.2
C51M 1451.7 £ 708.9 | 2466.4 + 1766.5
C51Md 1593.7 £ 702.3 | 4138.4 4 3634.6

for both D4ARQN and C51M. Our results are available via link
https://github.com/DEAkimov/vizDoom

VIII. CONCLUSION

In this work, we were the first to present a new model-
free deep reinforcement learning agents in POMDP settings
for 3D first-person shooter. The presented agents drastically
outperformed baseline methods, such as DQN and DRQN.
Our agent successfully learned how to play several scenario
in VizDoom environment and show human-like behaviour.
We aim to further compare such an agent with our other
deterministic intelligent agents developed for imitating human
behavior [20] [21].

We aim to present our other experiments on Basic and
Defend the Tower scenarios in Vizdoom, as well as use our
agent as backbone architecture for more challenging task, like
Deathmatch scenario, which is exactly our plan for future
work. Moreover, our agent could be easily combined with
Action-specific DRQN [22], Boltzmann exploration [16], Pri-
oritized Experience Replay [8], and can be modified to use
in-game features as well as separate networks for action and
navigation to improve further.

ACKNOWLEDGEMENTS

The work was supported by the Russian Science Foun-
dation under grant 17-11-01294 and performed at National
Research University Higher School of Economics, Russia.

63

MMEDIA 2019 : The Eleventh International Conference on Advances in Multimedia

[1]

[2]

[3]

[4]

[5]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

I. Makarov and P. Polyakov, “Smoothing voronoi-based path with
minimized length and visibility using composite bezier curves.” in AIST
(Supplement), vol. 191. Ceur WP, 2016, pp. 191-202.

I. Makarov, P. Polyakov, and R. Karpichev, “Voronoi-based path plan-
ning based on visibility and kill/death ratio tactical component,” in AIST
(Suppl). Ceur WP, 2018, pp. 129-140.

1. Makarov and et al., “Modelling human-like behavior through reward-
based approach in a first-person shooter game,” in EEML, vol. 1627.
Ceur WP, 2016, pp. 24-33.

M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaskowski,
“Vizdoom: A doom-based ai research platform for visual reinforcement
learning,” in Computational Intelligence and Games (CIG), 2016 IEEE
Conference on. IEEE, 2016, pp. 1-8.

M. Hessel and et al., “Rainbow: Combining improvements in deep
reinforcement learning,” arXiv preprint arXiv:1710.02298, 2017, pp. 1-
14.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade
learning environment: An evaluation platform for general agents,”
in Proceedings of the 24th International Conference on Artificial
Intelligence, ser. IJCAI'15. AAAI Press, 2015, pp. 4148-4152.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2832747.2832830

G. Lample and D. S. Chaplot, “Playing fps games with deep reinforce-
ment learning.” in AAAI, 2017, pp. 2140-2146.

T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” arXiv preprint arXiv:1511.05952, 2015, pp. 1-21.

C. Schulze and M. Schulze, “Vizdoom: Drqn with prioritized experience
replay, double-q learning, & snapshot ensembling,” arXiv preprint
arXiv:1801.01000, 2018, pp. 1-9.

C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, no. 3, May 1992, pp. 279-292. [Online]. Available:
https://doi.org/10.1007/BF00992698

V. Mnih and et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, 2015, pp. 529-533.

Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and
N. De Freitas, “Dueling network architectures for deep reinforcement
learning,” arXiv preprint arXiv:1511.06581, 2015, pp. 1-15.

H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double g-learning.” in AAAI, vol. 16, 2016, pp. 2094-2100.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, 1997, pp. 1735-1780. [Online]. Available:
https://doi.org/10.1162/nec0.1997.9.8.1735

M. Hausknecht and P. Stone, “Deep recurrent g-learning for partially
observable mdps,” CoRR, abs/1507.06527, 2015, pp. 1-9.

R. S. Sutton, “Learning to predict by the methods of temporal differ-
ences,” Machine learning, vol. 3, no. 1, 1988, pp. 9-44.

R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998, vol. 1.

M. G. Bellemare, W. Dabney, and R. Munos, “A distributional perspec-
tive on reinforcement learning,” arXiv preprint arXiv:1707.06887, 2017,
pp. 1-19.

I. Makarov, A. Kashin, and A. Korinevskaya, “Learning to play
pong video game via deep reinforcement learning,” in Proceedings of
AIST’17. Ceur WP, 2017, pp. 236-241.

1. Makarov, M. Tokmakov, and L. Tokmakova, “Imitation of human
behavior in 3d-shooter game,” in AIST2015 Analysis of Images, Social
Networks and Texts. Ceur WP, 2015, pp. 64-77.

I. Makarov and et al., “First-person shooter game for virtual reality
headset with advanced multi-agent intelligent system,” in Proceedings
of the 24th ACM International Conference on Multimedia, ser. MM
’16. New York, NY, USA: ACM, 2016, pp. 735-736.

P. Zhu, X. Li, P. Poupart, and G. Miao, “On improving deep reinforce-

ment learning for pomdps,” arXiv preprint arXiv:1804.06309, 2018, pp.
1-7.

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-697-2

64

