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Abstract—In a number of application scenarios, proper video
signals may exhibit simultaneous correlation characteristics over
the space and time dimensions which jointly describe periodic
features or behaviors. Examples of such scenarios may be found in
video monitoring of physical systems, sport and athlete coaching
with automatic video supervision, biomedical applications to
newborn video monitoring for the detection of epileptic seizures
or apnea episodes, surveillance systems and others. A general
Maximum Likelihood (ML) approach to the detection of common
periodic features possibly present in a set of video signals and
the estimation of their characteristics, such as the fundamental
frequency and the local amplitude, is proposed. Application
examples in various scenarios are presented and the performance
of the proposed ML solutions is shown to be effective.

Keywords–Features extraction; periodicity analysis; video pro-
cessing; maximum likelihood estimation.

I. INTRODUCTION

A video signal is characterized by a multidimensional do-
main in which two space dimensions specify the pixel position
within a frame and a time dimension describes the evolution
of the frame image (3D). An additional space dimension may
come from the simultaneous use of multiple cameras framing
the same scene from different viewpoints, bringing the overall
dimensionality to 4D. This paper discusses the extraction
of periodic features from video signals obtained by one or
multiple cameras—a topic which has been the subject of a
large body of literature, e.g., see [1] and references therein.

A first approach considered in the literature uses spatial
matching to identify an object or a portion of the image,
follow the evolution of its trajectory over time in successive
frames and analyze this trajectory to extract possible periodic
features [1], [2]. Despite being very general, this approach
is impacted by the reliability of the spatial matching step,
which is largely affected by the quality and resolution of the
video sequence, as well as possible optical effects, including
illumination variations, reflections, occlusions and others.

As nicely pointed in [2, Figure 1], the fundamental ability
to recognize periodic features in a sequence of frames does
not require high quality or resolution, as demonstrated by
an example of a significantly blurred low-resolution sequence
of images in which the human brain can still appreciate the
periodic feature of a man waking on a treadmill.

A second approach discussed in the literature avoids the
critical spatial matching step and uses suitable projections of
the video sequence in the spatial domain to extract compact
representations of the video variations in the time domain,
which can then be easily analyzed in the frequency domain
to recognize possible periodic features. In this category, [1]

projects each frame onto the x and y dimensions to obtain
two signals x[n] and y[n], in the time index n, that can
be jointly analyzed to extract possible periodic components.
Another example within this approach is [3], where each frame
is projected onto the single space dimension represented by
the average luminance signal, which can be easily processed
along the time domain to extract the frequency components of
interest and detect possible periodic features.

These approaches, despite being general and reasonable,
are based on specific initial assumptions—spatial matching in
the first one and frame projection in the second one—which
may possibly limit their effectiveness and efficiency. To avoid
these specific assumptions and their possible consequences, in
this paper, we wish to take a more basic and radical approach
by considering the direct application of fundamental estimation
and detection criteria to the multidimensional video signal.
To this purpose, we have selected the sound and trustable
Maximum Likelihood (ML) principle, which is very well
studied, documented and widely applied [4], [5].

As in all applications of the ML criterion, a key part of the
problem is the selection of a suitable observation model. To
this purpose, we propose to base the estimation and detection
process on the direct observation of the 3D or 4D video
sequence, possibly affected by noise. The proposed solutions
are then considered in a few application examples and their
performance is analyzed and discussed.

The remainder of this paper is organized as follows. In
Section II, the model of periodic variations and the extraction
of related features in multidimensional video signals are de-
scribed. Section III presents some applications in specific fields
of the proposed technique. Finally, conclusions are drawn in
Section IV.

II. ANALYSIS OF PERIODIC VARIATIONS

A. Preliminaries
A digital video signal consists of a series of digital images,

also known as frames, properly captured over time. Precisely,
a video can be defined as a multidimensional signal which
describes the evolution over time occurring in the framed area.
Moreover, digital frames are bidimensional projections of the
real world on the camera sensor and a loss of information about
the full 3D motion has to be considered. Therefore, a physical
3D displacement in the space corresponds to spatio-temporal
variations in the structure of the multidimensional signal; such
movements affect to some degree the pixel intensity values in
the video signal captured by the camera sensor.

Periodic variations can be of particular interest: in fact, they
can represent specific events and need to be properly detected
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Figure 1. An example of periodic motion and the variations it causes in a
multidimensional signal: a physical pendulum swinging from left to right.

and analyzed. In the specific case of periodic movements or
recurring events, the pixel intensity values in the video stream
may exhibit periodic features. As an example, in Figure 1,
some frames extracted by a video capturing the motion of a
physical pendulum are shown, with a spatio-temporal reference
system describing the spatial plane (m1,m2) and the temporal
dimension (n). Considering a reference pixel, specified by
the highlighted point, the intensity variations which affect it
are also shown: these periodic pixel-wise variations can be
exploited to analyze spatio-temporal movements.

Before detailing the model of multidimensional periodicity
and the approach to detection and estimation of periodic fea-
tures, some preliminary considerations have to be introduced.
The model proposed in the next subsection is valid under the
following assumptions:

1) the camera is still or is moving solidly with the
framed subject;

2) the subject of interest is not affected by translation
or superposed motion.

The first condition is related to the considered scenario: as
the main goal is to extract periodic features of subjects in
the scene, global movements are not considered.1 The second
condition assumes that no large movements or intensity varia-
tions affect the subject: the only main motion components are
expected to be the periodic variations.

B. Model of Periodic Variations

For the presented assumptions, the model of periodicity in
a multidimensional signal is now defined. Consider a video
signal acquired by a camera sensor with a sampling period
Ts, namely with a frame rate fs = 1/Ts. A gray-scale frame
captured at the sampling instants nTs can be described by a
matrix X[n] composed of M1 × M2 pixels, where M1 and
M2 are the numbers of rows and columns of the matrix,
respectively, and X[m1,m2, n] is the intensity of the pixel
with coordinates (m1,m2) in the n-th frame. For color videos,
a proper number of channels has to be considered: as an
example, for standard Red, Green and Blue (RGB) cameras
each frame is composed by three matrices, one per color
channel.

To simplify the notation for the following steps, the op-
erator of vectorization of a matrix and its inverse are now
introduced. Let X[n] be the matrix representing the video

1Motion compensation algorithms could be used to limit this effect [1].

signal: the vectorized version x [n] is defined as

x [n] = vec (X [n]) =

=
[
X[0, 0, n] · · · X[0,M2 − 1, n]

X[1, 0, n] · · · X[1,M2 − 1, n]

...

X[M1 − 1, 0, n] · · · X[M1 − 1,M2 − 1, n]
]T

(1)

where the column vector x [n] has size M1M2×1, its element
x [p, n] denotes the intensity value of the p-th element of the
n-th vectorized frame and (·)T denotes the vector transpose.
Accordingly, the inverse operator is defined as

X [n] = vec−1 (x [n]) (2)

where the frame sampled at discrete time nTs is retrieved to
the original size M1 ×M2.

Another useful representation is given by the variations of
the single p-th element over time. Starting from the vector
x [n] introduced in (1), the evolution of the signal relative to
the pixel in position p is denoted by the vector

x̃ [p] =
[
x[p, 0] x[p, 1] . . . x[p,N − 1]

]T
(3)

which has size N × 1, where N is the total number of
considered frames.

Relying on the assumptions introduced at the beginning of
Section II, the video frames are recorded by still cameras and
contain pixel intensity variations related only to the periodic
motion. In order to extract periodic features from the video
signal, a proper model of the multidimensional structure is
needed. Considering the scenario in which movements are
driven by a single common periodicity, a useful model, in-
cluding noise on the sequence of frames, may be given as

X[n] = B + A cos (2πf0nTs + Φ) + W[n] (4)

where all the matrices have size M1 × M2 (equal to the
resolution of the involved camera sensor), B describes the
pixel-wise continuous components, A is the matrix of the
amplitudes, f0 is the common fundamental frequency, Ts is the
video sampling period, n is the frame index, Φ is the matrix
of the initial phases, {W [n]} are matrices of independent and
identical distributed (i.i.d.) zero-mean Gaussian noise samples.
In (4) and the following equations, the cos (·) operator and the
addition of a scalar to a vector or matrix are applied element-
wise. The vectorized version of equation (4), according to (1),
is given by

x[n] = b + a cos (2πf0nTs + φ) + w[n] (5)

where the definition (1) is applied to the matrices X[n], B, A,
Φ and W[n].

Given this multidimensional model, the aim is to efficiently
extract periodic features, such as the fundamental frequency
f0 and the amplitudes A, which are useful to check the
presence/absence of periodicity (or measure its repetition pe-
riod) and identify the position of periodic variations in the
video, respectively. In order to achieve the estimation of these
parameters, it will be shown that the application of the ML
approach to the model (5) is a reliable solution.
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It can be noticed that extensions to a full RGB video,
considered analyzing jointly the three color channels or mul-
tiple camera sensors, can be an application example of this
approach, as shown in [6].

C. Generalized Maximum Likelihood Estimation

The approach consists of a generalized version of ML
estimation applied to multidimensional signals. The param-
eters to be estimated are: the fundamental frequency f0,
the relative local amplitudes a and possibly the phases φ.
These parameters can be collected in a vector θ = [a, f0,φ].
Following standard methods in [5], the likelihood function to
be minimized in order to obtain the ML estimate θ̂ is

J (θ) =

M1M2−1∑
p=0

N−1∑
n=0

[
x[p, n]

− a[p] cos (2πf0nTs + φ[p])
]2 (6)

where NTs is a suitable observation window and x[p, n]
represents the observed video signal in the p-th position at
discrete time nTs.

The ML estimation of the parameters of interest is now
derived, following proper steps similar to the ones in [5], [7].
Using trigonometric identities in (6), it is possible to obtain

J (θ) =

M1M2−1∑
p=0

N−1∑
n=0

[
x[p, n]− α[p] cos (2πf0nTs)

− β[p] sin (2πf0nTs)
]2 (7)

where α[p] = a[p] cos(φ[p]) and β[p] = −a[p] sin(φ[p]).
As a[p] and φ[p] are strictly related with α[p] and β[p], it
is possible to substitute the vector parameter θ with θ′ =
[α,β, f0]. By properly combining the variables in the temporal
dimension, it is possible to obtain a simplified version of the
likelihood function:

J
(
θ′
)

=

M1M2−1∑
p=0

(x̃[p]− α[p]c− β[p]s)
T

· (x̃[p]− α[p]c− β[p]s) (8)

=

M1M2−1∑
p=0

(x̃[p]−Hγ[p])
T

(x̃[p]−Hγ[p]) (9)

where

c =
[
1 cos(2πf0Ts) . . . cos(2πf0(N − 1)Ts)

]T
s =

[
0 sin(2πf0Ts) . . . sin(2πf0(N − 1)Ts)

]T
are vectors of size N × 1 associated with the cosine and sine
components over time. In (9), the parameters α[p] and β[p]
and the vectors c and s are grouped by defining: γ[p] =
[α[p] β[p]]T, with size 2 × 1, and the matrix H = [c s], with
size N × 2.

A formulation in terms of a simple linear model [5], [8],
can be obtained using a suitable notation which groups the

involved vectors and matrices as

x̄ =
[
x̃[0]T x̃[1]T · · · x̃[M1M2 − 1]T

]T
,

Z =


H 0 · · · 0
0 H · · · 0
...

...
. . .

...
0 0 · · · H

 and

d =
[
γ[0]T γ[1]T . . . γ[M1M2 − 1]T

]T
where x̄, Z and d have size N(M1M2) × 1, N(M1M2) ×
2M1M2 and 2M1M2 × 1, respectively. Equation in (9) can
now be expressed in the form

J
(
θ′
)

= (x̄− Zd)
T

(x̄− Zd) . (10)

Following the classical theory of estimation for multiple
parameters in linear models [5], the function (10) can be
minimized over d for

d̂ =
(
ZTZ

)−1
ZTx̄ (11)

so that its minimum with respect to d is

J (f0) =
(
x̄− Zd̂

)T (
x̄− Zd̂

)
= x̄T

(
I− Z

(
ZTZ

)−1
ZT
)

x̄ (12)

where I is the identity matrix, d̂ in (11) has been used and
the dependence of J(·) on the remaining variable f0 has
been emphasized. This optimization is effective for d, which
includes only information relative to the amplitudes a and
the phases φ; in order to obtain the estimation of f0, the
last equation has to be minimized over f0 or, equivalently,
maximized over the term

x̄TZ
(
ZTZ

)−1
ZTx̄. (13)

After the maximization of (13), the estimation of the parame-
ters in θ̂′ is obtained, from which the parameters a, f0 and φ
can be computed.

A proper approximation and simplification of the matrix
Z
(
ZTZ

)−1
ZT can lead to an approximate ML estimator.

Following [5], [7], [9], the ML estimator of the frequency f0
can be obtained by maximizing the periodogram I[k] over the
overall p positions. More precisely, this can be obtained as

f̂0 =
fs
N

arg max
kmin≤k≤kmax

I [k] (14)

where, assuming regular periodicity, the arg max search is
limited to the discretized frequencies set [kmin; kmax], related
to the real frequencies fmin = kmin

N fs and fmax = kmax
N fs, and

the periodogram is defined as

I [k] =
2

N

M1M2−1∑
p=0

∣∣∣∣∣
N−1∑
n=0

x [p, n] e−j2π
k
N n

∣∣∣∣∣
2

. (15)

This simplified estimator is approximately ML if the real
frequency f0 is not close to 0 or fs/2, only.
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Figure 2. Example of periodicity analysis for the video of a pendulum. In (a) the intensity variations on the reference pixel and (b) the estimation of vec−1(a)
i.e., the amplitudes at the position of the various pixel.

III. APPLICATIONS

In this section, the performance of the ML approach
is discussed, showing its effectiveness in the extraction of
periodic features. In particular, we discuss the importance of
estimating the fundamental frequency f0 in the framed image
variations and the capability of localizing them inside the
frame by the estimation of local amplitudes a. The first feature
is attractive, because it may be very useful in several tasks that
involve the monitoring of some events or movements related
to a periodic variation. The second one is equally important,
since the localization of such variations may be a key feature
to increase computational efficiency in some applications or
video signal analysis for surveillance purposes.

In order to show the efficiency and the simplicity of the ML
approach, three examples in different scenarios are reported,
describing the capabilities of the approach and focusing on
its properties in each application. Specifically, the examined
scenarios are related to:

1) analysis of physical oscillations
2) analysis on movements of athletes and people doing

gymnastic activity
3) monitoring of vital signs in animals and humans.

A. Physical Oscillations
As a first application example, we analyze the periodicity

of the oscillations of a physical pendulum captured by a still
camera positioned in front of the pivot. This example demon-
strates the effectiveness of ML estimation on multidimensional
signals.

The recorded video sample, where few frames were prelim-
inarily depicted in Figure 1, shows an oscillating plank, with
the pivot hooked on a border of a desk. Selecting a proper
reference pixel, it is possible to show the intensity variations
over time connected with the periodic passage of the pendulum
on the involved pixel.

In Figure 2(a), these variations over the time dimension
of the multidimensional signal are displayed: the peaks inside
the signal correspond to the passage of the white pendulum
on the reference position, which has higher intensity values
than the dark background. By measuring the distance between
the peaks, it is possible to estimate the average rate of the
oscillation: by inspection of the signal in Figure 2(a), an
average oscillation time of T̄0 = 1.27 Hz can be obtained,
corresponding to a fundamental frequency f0 = 0.787 Hz:
this value is used as reference and can be compared with the

estimate extracted by the video estimation system. Applying
the approximate ML approach (14) on the considered sample
video, a frequency f̂0 = 0.77 Hz is estimated, with a relative
estimation error equal to 2.16%.

The influence of the periodicity on every pixel is computed
by the estimation of â. Using (11), the amplitudes are obtained
and shown in Figure 2(b), where the results are shown as an
image with size equal to that of original video frames. It can be
noticed that in the area directly below the pivot the estimated
amplitudes have lower values: this effect is due to the fact that
in this area the pixel intensities are stressed by variations with
a rate doubled with respect to the fundamental one. Differently,
the areas on the left and right of the axes of the pivot are mainly
affected by the fundamental periodicity: therefore, the intensity
of the estimated amplitude is higher. It is remarked that the
estimated amplitudes are reported in a logarithmic scale, with
the purpose to enhance and make more visible the difference
between the various areas.

B. Athlete Monitoring
As a first realistic application example, the scenario of

monitoring of physical activity made by people or athletes
is presented. In fact, many physical exercises involve periodic
movements or repetition of a single gesture: examples of these
movements are given by weight-lifting, sit-ups and stretches.
These repetitive movements are expected to involve specific
body parts without a global motion of the gymnast, as they
are performed on a fixed position.

To show the effectiveness of the ML approach in this
environment, we consider a video sample of a man doing a
series of push-ups. The duration of the video sample is about
26 s, it is recorded with a frame rate fs = 30 Hz and has a
frame size of 516× 216 pixels. By visual inspection, the man
was able to do about 19 push-ups during the whole video,
with an approximate average frequency of f̄0 = 0.73 Hz. In
Figure 3(a), a sample frame of the considered video is shown.

Initially, the analysis of the local amplitudes is clarified:
after an estimate by video processing of the fundamental
frequency with an average push-up rate of f̂0 = 0.725 Hz, the
parameter vec−1(â) is computed and shown in Figure 3(b). As
in the example of the pendulum described in Subsection III-A,
pixels with higher value are those mainly affected by the peri-
odic motion of the push-ups. On the other side, the background
has lower intensity value, since pixel variations are modified
only by random motion on the scene or noise. In Figure 3(b),
the estimated amplitudes are reported in logarithmic scale. It
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(a)

(b)

Figure 3. Example of athlete monitoring: (a) sample frame of a man doing
push-ups and (b) amplitude estimation for f̂0 = 0.725 Hz.

is clear that this analysis can be used to localize the periodic
motion and, as an example, create a mask for further video
processing algorithms.

Afterwards, a deeper analysis of the fundamental frequency
estimation is performed. The repetition times of the athlete
doing push-ups were measured by the use of a stopwatch and
computing a curve fitting of the evolution of the push-up rates
over time. The video was analyzed with temporal windows of
NTs = 10 s and an overlapping parameter of 90%, obtaining
an estimation of the fundamental frequency for every second.
In Figure 4, the stopwatch reference compared with the rates
estimated by applying the ML approach proposed in Section II
is shown; the quality of the estimation is clear, exhibiting also
a pattern similar to that of the original rates.

As further evidence of the effectiveness of the proposed
approach in the estimation of the periodic features of the
video signal, the error on the estimation of f0 is also reported.
Considering the results shown in Figure 4, a Root Mean
Squared Error (RMSE) of 0.0128 Hz is obtained, which,
normalized to the average value of the reference, gives an
average relative error of 1.8%.

C. Monitoring of Vital Signs

As last example of the reliability of the ML approach for
periodic feature extraction, an application in the biomedical
scenario is proposed. In particular, monitoring of vital signs is
a key tool to asses the health condition of a patient. Recent
studies [9]–[13] report that some of the vital signs, such as
hearth and respiratory rates, can be evaluated by contactless
systems employing video cameras and multidimensional signal
processing. Among vitals signs, the Respiratory Rate (RR)
plays a very important role as indicator of the health of a
patient. It is now demonstrated that the proposed ML approach
can be used for both tasks of estimating the RR of a framed
patient and localizing the areas mainly affected by respiratory
movements. This last feature may be very useful in order to
reduce computational complexity of video processing-based

Figure 4. Performance evaluation in the estimation of the fundamental
frequency f0, related to the push-up rate of an athlete.

algorithms by localizing Regions of Interests (ROI), as shown
in [9].

A first test is performed on monitoring the respiration of
a sleeping cat. The animal was completely still and breathing
with a constant RR f0 ∈ [0.28, 0.35] Hz, obtained by a chrono-
graph. The RR reference measurements were obtained by live
inspection during video recording by careful observation of
the animal. These measurements can be easily converted to
breaths per minute (bpm) if desired. In Figure 5(a), a sample
frame of the video sequence is shown: the video signal has a
total duration of 1 min and 13 s with a sampling rate of 15 Hz
and a camera resolution of 320× 240 pixels.

In Figure 5(b), the likelihood function J(f0) used for
the estimation of the fundamental frequency is shown. The
periodicity related to breathing movements obtained by pro-
cessing the variation of pixel intensity is clear. Taking the
arg max of the likelihood function, the frequency f̂0 = 0.3 Hz
can be estimated, according to the frequency range used as
reference. As discussed in Section II, after the estimation of
the fundamental frequency, the parameter vec−1(â) can be
computed. In Figure 6, the estimated pixel-wise amplitudes
are shown. Higher values are obtained in the pixel positions
mainly involved in breathing movements that are near the chest
and the abdomen of the cat. By selecting this area as a possible
ROI, it is feasible to develop algorithms that are robust against
possible large random movements [9], excluding other areas
that are involved in useless movements or random noise.

As a last test, relying on the work presented in [9], the
estimation of the RR on a real newborn patient and the
localization of breathing areas are performed. The video was
recorded in the University Hospital of Parma, by video cameras
with resolution of 720 × 576 and sampling rate fs = 25 Hz,
with an overall duration of 3 min and 3 s. As in the push-up
example, the RR is here estimated over time and compared
with the pneumographic reference, the gold-standard system
for monitoring of respiration mainly used by clinicians. Using
windows of analysis of length NTs = 20 s and an overlapping
parameter of 90% (i.e., with RR estimation obtained every
2 s), the comparison between the reference and the estimation
by video processing is depicted in Figure 7. Excluding the
first five windows, where the algorithm has startup issues, the
correspondence of the estimated RRs with the pneumographic
ones is very good.

As described in Subsection III-B, also for this example a
thorough analysis is performed, reporting the RMSE and the
average relative estimation error on the RR. A RMSE equal to
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(a) (b)

f 0

Figure 5. Monitoring of a sleeping cat: (a) frame sample from the video recording and (b) the likelihood function J(f0) for the estimation of the RR.

Figure 6. Estimated amplitudes for the video example of a sleeping cat:
maximum values of vec−1(a) can be noticed near the chest of the animal.

Figure 7. Estimation of the RR in monitoring of a newborn: comparison of
the estimation from video signals and the pneumographic device.

0.051 Hz is obtained with an average relative error of 7.5% An
in-depth analysis on the performance for RR estimation of the
technique introduced in Section II is beyond the scope of this
paper. The interested reader is referred to [9]. Nonetheless, the
presented results highlight the usefulness of the ML approach
applied to multidimensional video signals for the extraction of
periodic features.

IV. CONCLUSION

In this paper, we proposed a method for the extraction
of periodic features in video signals. Under the assumptions
of still camera and that the framed subject is not affected
by translation or superposed motion, we introduced a model
of periodicity in multidimensional signals; then, we applied
the ML criterion for the estimation of the periodic features
of interest. Finally, we demonstrated the effectiveness of

this approach, showing three different application examples:
monitoring of physical oscillations, athlete movements and
vital signs. The advantage in the localization of periodic
variations and estimation of the fundamental frequency has
been demonstrated by comparing the obtained results with
suitable reference values.
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