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Abstract—Many remote sensing applications require the availabil-
ity of radiometric surface temperature information with both high
acquisition rate and high spatial resolution, but unfortunately
this requirement is still not achievable through a single sensor.
However, the huge amount of remote sensed data provided by
several heterogeneous spaceborne sensors allows to use data
fusion in order to overcome this issue. In this paper, we propose
a method for sharpening thermal images in a nearly real-time
scenario, also capable to deal with missing data due to cloudy
pixels. Moreover, we analyze the robustness of the method with
respect to cloud mask misclassifications and assess its effectiveness
via numerical simulations based on SEVIRI (Spinning Enhanced
Visible and InfraRed Imager) data.

Keywords–Thermal Sharpening; Cloud Masking; Multitemporal
Analysis; Bayesian Smoothing; Robustness.

I. INTRODUCTION

In remote sensing applications, such as agriculture, forest
management and coastal monitoring [1], remote sensed Bright-
ness Temperature (BT) images acquired with sufficient high
temporal resolution (htr) and High Spatial Resolution (HSR)
could be of paramount importance. Due to physical constraints
of spaceborne sensors, the strategy for achieving images with
high spatial and temporal resolutions relies on fusing low tem-
poral resolution/High Spatial Resolution (ltr/HSR) and high
temporal resolution/Low Spatial Resolution (htr/LSR) data [2].
This possibility is guaranteed by the huge amount of remotely
sensed data acquired by the many satellites in operation [3].

In previous research studies [4]-[6], the authors have in-
vestigated several smoothing techniques for possible use in
non-real time scenarios. The most promising one relies on the
fusion of images obtained by temporal interpolation of ltr/HSR
data with others obtained by spatial interpolation of (htr/LSR)
data (see Figure 1). This technique has the advantage of being
simple enough while catching the temporal and spatial corre-
lation that real data exhibit [7]. Unfortunately, the scenario is
complicated by the presence of clouds, that is a serious issue
for multitemporal techniques [8]. Simply using a cloud mask,
as can be obtained via several strategies [9] [10], could not be
sufficient. Indeed, the incompleteness of the images sequence
may compromise the functionality and the effectiveness of
most fusion algorithms. To circumvent this problem, a possible
strategy is to fill the gaps in the image sequences due to
clouds by estimating the BT of the cloud covered areas. Such
a strategy may take advantage of the temporal correlation

present in the image sequence, but must also take into account
the unavoidable events of misclassified pixels. To deal with
these issues, in this paper we consider several approaches
to implement the said fusion strategy, focusing on different
methods of spatial and temporal interpolation whose accuracy
and robustness with respect to pixel misclassification in the
cloud map is compared via a simulation setup based on the
use of SEVIRI data [11].

The paper is organized as follows: Section II presents
the formalization of thermal image sequences enhancement;
Section III reports the numerical results; finally, conclusions
and future developments come in Section IV.

II. METHOD DESCRIPTION

As stated before, the BT of the ground surface is masked
by the top of cloud, thus contaminating the data. The solution
we propose (depicted in Figure 1) relies on the availability
of sufficiently accurate cloud masks, both for htr/LSR and
ltr/HSR data, and is described by the following steps.

1) Temporal Interpolation (TI): the first step is applied to both
the htr/LSR sequence L = {Lk : k ∈ TL} and the ltr/HSR
sequence H = {Hk : k ∈ TH}.

1.1) H = {Hk : k ∈ TH} is upsampled to the same time
resolution of L = {Lk : k ∈ TL} and the cloudy
pixels are estimated via a TI algorithm to obtain a

sequence Ĥ = {Ĥk : k ∈ TL} (see, e.g., images H4

and Ĥ4 in Figure 1);

1.2) cloudy pixels in L = {Lk : k ∈ TL} are estimated via

a TI operator IT (·) to obtain a sequence L̃ = {L̃k :
k ∈ TL} (see Lk and L̃k for k = {2, 3, 4} in Figure 1).

2) Spatial Interpolation (SI): L̃ = {L̃k : k ∈ TL} is upsampled
to the same spatial resolution of H via an SI operator IS(·) to

obtain the sequence {L̂k : k ∈ TL}. In our setup, we choose
to use a bicubic interpolator B(·).

3) Data Fusion: in this step the two intermediate sequences L̂
and Ĥ are combined, instant by instant, to obtain the estimated
sequence E = {Ek : k ∈ TE}, where, for sake of simplicity,
TE = TL. More in detail, two fusion sub-steps are performed.

3.1) Sharpening Fusion (SF): the two intermediate se-

quences L̂ and Ĥ are combined, instant by instant,
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Figure 1. Pre-processing steps for BT enhancement. The image sequences are: {Lk} =htr/LSR, {eLk} = temporal interpolation of htr/LSR, {Hk} = ltr/HSR,

{ bHk} = temporal interpolation of ltr/HSR, {bLk} = spatial interpolation of htr/LSR, {Ek} = target htr/HSR. Dark spots in images H4 and L2,L3,L4 are the
cloudy pixels.

through a sharpening rule FS(·, ·), producing the esti-
mate of an htr/HSR sequence S = {Sk : k ∈ TL}. For
its appealing sharpening features [12] the High Pass
Modulation (HPM) (or High Frequency Modulation -
HFM) injection scheme [13] is employed in the data
fusion along with an undecimated wavelet decompo-
sition (see also [5] for further details).

3.2) Bayesian Smoothing (BS): Bayesian smoothing allows
to obtain the final estimated sequence E by using
(for example) the Rauch-Tung-Striebel (RTS) algo-
rithm [14], using the sharpened sequence as obser-
vation, as explained in [15].

III. NUMERICAL RESULTS

In this section, we consider: i) the accuracy of the proposed
estimators in terms of Root Mean Square Error (RMSE),

defined as
√

E[(I − J)2] where I is the ground truth, J is the
estimated image and E[·] indicates the sample average over the
pixels; ii) the design of the TI operator IT (·) under a criterion
of robustness with respect to cloud masking error.

As test set, we employ sequences of thermal images ac-
quired by the SEVIRI sensor in the band IR 10.8, characterized

by the a spatial resolution of about 6 km and a temporal rate
of 4 images per hour. In particular, the presented results are
related to data collected on 16 August 2014 on the Iberian
peninsula (latitude between 35.7 and 41.4 degrees North,
longitude between 4.1 and 9.8 degrees West). The simulation
setup is as follows. The original dataset plays the role of the
estimating htr/HSR sequence E . H is simulated by selecting
a subset of E with a temporal interval ∆H = 8 between each
couple of ltr/HSR images. L is simulated by generating a
spatially degraded version of E , with spatial resolution ratio
R = 6 between E and L.

Given the unavailability of a ground truth for the soil (or
sea) temperature under the clouds, we use clear sky images
and artificially change the BT of the whole image in order to
mimic a temperature decrease which is typical when clouds
are present. The top of the cloud is supposed to have a BT of
270 K, and the initial and final transition phases, modeled via
a raised cosine function, are completed in 1 hour (see Figure 2,
panel (a)). The time duration of each period of cloud coverage
is indicated with ∆c = {2, 4}, and the cloudy images are
chosen to be in the midpoints between two HSR images, that
are the most critical point for our algorithms. More in detail:
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Figure 2. Panel (a): BT time evolution for cloud simulation (black dashed line) and original data (red continuous line) when ∆c = 2 hh. Panels (b)-(d):
RMSE computed between the forecast of thermal SEVIRI image and the actual value for the simulated Spain dataset in the PCC case. The panel (b) refers to
the case in which the clouds are absent. Panels (c) and (d) refer to cloud data periods (highlighted by the gray-shaded areas) with time duration ∆c = 2 hh

and ∆c = 4 hh respectively.

TABLE I. RMSE RELATED TO SIMULATED PCC SCENARIOS.
RELEVANT PARAMETERS ARE R = 6 AND ∆H = 8 hh.

Type ∆c [h] I S RTS/S

Whole
Cloud 2 1.251 0.759 0.697
Cloud 4 1.332 0.883 0.832

Clear-sky [2,4] 1.249 0.756 0.692

Cloudy

Cloud 2 1.346 0.916 0.875
Clear-sky 2 1.337 0.905 0.859

Cloud 4 1.475 1.099 1.061
Clear-sky 4 1.319 0.887 0.834

• when ∆c = 2 hours, we put the cloud coverage
in the intervals [03.00 − 05.00], [11.00 − 13.00] and
[19.00 − 21.00] UTC (Universal Time Coordinated);

• when ∆c = 4 hours, we put the cloud coverage
in the intervals [02.00 − 06.00], [10.00 − 14.00] and
[18.00 − 22.00] UTC.

The approach has been assessed in two cases: i) Perfect
Cloud Classification (PCC), in which perfect cloud/no cloud
pixel classification is assumed; ii) Non Perfect Cloud Classifi-
cation (NPCC), in which misclassifications are considered.

A. Perfect Cloud Classification

In the scenario of error-free cloud mask, we use a TI
scheme based on a blockwise Cubic Interpolation (CI) to com-

pute L̃ and H̃ sequences and then we compare the following
three algorithms.

• Interpolated image estimation (I): this method is used
as a yardstick, since it does not involve any data fusion
(the estimate at time k is given by the bicubic in-
terpolation bicubic interpolation of the LSR sequence

L̂ = IS(L̃)).

• Sharpened image estimation (S): The estimate at time
k is produced by performing a SF, as described in
Sect. II, namely it coincides with the sequence S =
FS(L̂, Ĥ).
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∆c t = 12.00 UTC t = 20.00 UTC
I S RTS/S I S RTS/S

2 1.898 1.054 1.026 0.970 0.878 0.864
4 1.968 1.099 1.110 1.471 1.448 1.427

Figure 3. Example of estimation with missing data. Panel (a): missing image to be estimated (acquired at 12.00 UTC on 16 August 2014). Panels (b)-(d):
images estimated at 12.00 UTC on 16 August 2014 for ∆c = 2 by algoritms I (b), SI (c) and RTS/S (d). Panels (e)-(g): images estimated at 12.00 UTC on 16

August 2014 for ∆c = 4 by algoritms I (e), SI (f) and RTS/S (g). Panel (h): missing image to be estimated (acquired at 20.00 UTC on 16 August 2014).
Panels (i)-(k): images estimated at 20.00 UTC on 16 August 2014 for ∆c = 2 by algoritms I (i), SI (j) and RTS/S (k). Panels (l)-(n): images estimated at

20.00 UTC on 16 August 2014 for ∆c = 4 by algoritms I (l), SI (m) and RTS/S (n). At the bottom, RMSE values for the estimated images.
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Figure 4. RMSE computed between the forecast of thermal SEVIRI image and the actual value for the simulated Spain dataset (top plots) and related cloud
mask (bottom plots). The gray-shaded areas in top plots are referred to the true cloud data periods with time duration ∆c = 2 hh. The panel (a) refers to PCC

case, while the panel (b) refers to NPCC case.
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Figure 5. RMSE computed between the forecast of thermal SEVIRI image and the actual value for the simulated Spain dataset (top plots) and related cloud
mask (bottom plots). The gray-shaded areas in top plots are referred to the true cloud data periods with time duration ∆c = 4 hh. The panel (a) refers to PCC

case, while the panel (b) refers to NPCC case.
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• RTS smoother with Sharpened observation (RTS/S): in
this method, we employ a BS algorithm, i.e., the RTS
one, that is fed by observations constructed upon the
sharpened images.

The results are summarized in Figures 2-3 and in Table I.
More in detail, in Figure 2, plots (c) and (d), it is shown the
RMSE vs. time for the cases ∆c = 2 hours and ∆c = 4
hours, respectively. We can see that the error in estimating the
htr/HSR sequence slightly increases in the first case during
missing data intervals (i.e., the gray-shaded areas), with respect
to the case without missing data (i.e., Figure 2, plot (b)), while
the performance significantly degrades for ∆c = 4.

The performance trend is made evident looking at the
RMSEs in Table I, computed over all time frames (Whole)
and over the cloudy frames only (Cloudy), and more precisely
comparing over the HSR images estimated in the cloudy
frames (Type = “Cloud”) with the RMSEs of the HSR images
estimated in the same frames when no clouds have been added
(Type = “Clear-sky”). Finally, in Figure 3 we present some
image useful for a visual appreciation of the effectiveness of
both the S algorithm and (even more) the RTS/S algorithm in
producing satisfactory estimated HSR images (Figure 3, panels
(c) and (d) for ∆c = 2 and panels (f) and (g) for ∆c = 4 ), in
comparison with the missing HSR original image (Figure 3,
panel (a)) acquired at 12.00 UTC. A similar comparison can
be carried out looking at panels (i)-(n) of Figure 3, that are
the estimated HSR images of a missing HSR original image
(Figure 3, panel (h)) acquired on the same area, in the same
day, but at 20.00 UTC. In any case, in the average, the best
algorithm is RTS/S because it is the most stable one, though
it is not uniformly the best one in every instance.

B. Non Perfect Cloud Classification

In dealing with the effects of cloud/no cloud misclassifi-
cation, but limiting ourselves to the RTS/S rule, we focus on
two possible TI interpolation strategies: (i) CI and (ii) MMSE,
namely a polynomial fitting obtained via a Minimum Mean
Square Error.

The results are summarized in Figure 4 and Figure 5 that
refers to the cases ∆c = 2 hh and ∆c = 4 hh respectively. We
can see that CI strategy outperforms MMSE one in PCC case,
but it is less robust than MMSE when a single cloudy pixel
is misclassified, as shown in panel (b) of both Figure 4 and
Figure 5. Note also that the misclassification of a clear-sky
pixel (not shown in this contribution) is by far less dangerous,
because both techniques are not very sensitive to this kind of
error, as evident by the analysis carried out in the previous
subsection. Accordingly, these results give some hints for the
design of the cloud detection algorithm, that should aim to
minimize the probability of a miss.

IV. CONCLUSION

High spatial resolution thermal maps, collected with an ele-
vate acquisition rate, are often required for several applications
about the monitoring of rural and urban areas. In this paper, we
present a framework that is able to perform a non real-time
sharpening of thermal images encompassing the presence of
missing data. It combines techniques of temporal smoothing
and spatial enhancement by taking advantage of a Bayesian
smoother relied upon the Rauch-Tung-Striebel algorithm and
a pansharpening method belonging to the multi-resolution

analysis family (an undecimated wavelet decomposition with
a high pass modulation injection scheme). The experimental
results using real data acquired by the SEVIRI sensor (band IR
10.8) demonstrate the ability of the proposed approach to reach
better performance with respect to techniques based on either
temporal interpolation or spatial sharpening and, in particular,
the ability of the proposed technique to deal with missing data
(e.g. due to the presence of clouds).

This work deserves further investigations towards the in-
troduction of a priori knowledge about the surface (such as
its Digital Elevation Model) or of the physical model of the
incoming solar radiation.
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