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Abstract—We consider a setup in which a Fusion Center (FC)
makes a binary decision on the sequence of system states by
relying on local observations provided by both honest and
byzantine nodes, i.e., nodes that deliberately alter the result of
the local decision to induce an error at the fusion center. In this
setting, we assume a Markovian information model for the status
with a given transition probability that can be perfectly estimated
at the FC. Hence, we consider an attacking strategy where
the byzantine nodes can coordinate their attacks by producing
correlated reports, with the aim of mimicking the behavior of
the original information and at the same time minimizing the
information conveyed to the FC about the sequence of states. In
this scenario, we derive a nearly-optimal fusion scheme based on
message passing (MP) and factor graphs. Experimental results
show that, although the proposed detector is able to mitigate
the effect of Byzantines, the coordination of the efforts is very
harmful and significantly impairs the detection performance.

Keywords–Decision Fusion in Adversarial Settings; Adversarial
Signal Processing; Byzantine attacks; Message Passing Algorithm;
Markovian Sources.

I. INTRODUCTION

We address a decision problem in which a Fusion Center
(FC) is required to make a decision about the status of an
observed system by relying on the information provided by
the nodes of a sensor network. In the adversarial version
of this problems, some of the nodes, commonly referred to
as Byzantines, malevolently alter their reports to induce a
decision error [1]. This is a recurrent problem in many scenario
wherein the nodes may take advantage from a decision error,
e.g., in cognitive radio networks [2] or online reputation
systems [3]. In this paper, we focus on a binary version of
the fusion problem, wherein the system can assume only two
states. Specifically, the nodes observe the system over an obser-
vation window of m time instants and make a local decisions
about the sequence of system states. Honest nodes send their
decisions to the FC, while Byzantines try to induce a decision
error by flipping their observations with a certain probability.
When the FC makes its decision on the system state at a certain
time instant j by relying only on the corresponding report, the
Bayesian optimal fusion rule for the non-adversarial version
of this case has been derived in [4] and it is known as Chair-
Varshney. In the presence of Byzantines, Chair-Varshney rule
requires the knowledge of Byzantines’ positions along with
their flipping probability Pmal. However, this information is
rarely available and then the FC needs to resort to suboptimal
fusion strategies. In order to improve the estimation of the
system states, the FC can gather a sequence of reports and
make a global decision. In this way, it is possible for the
FC to perform isolation of the Byzantines by identifying the

malevolent nodes and discarding their reports [5][6]. Isolation
is achieved by counting the mismatches between the reports
and the global decision. In [7], a soft isolation scheme is
proposed where the reports from suspect byzantine nodes are
given a lower importance rather than being discarded.

In [8], the optimum fusion rule under a bunch of ob-
servations is first derived assuming to know the malicious
probability Pmal of the Byzantines along with the probability
that a node is Byzantine. Then, the knowledge of Pmal at the
FC is relaxed as it is strategically chosen in a game-theoretic
framework. In this work, the authors show that, differently
from what commonly expected, always flipping the local de-
cision is not necessarily the best option for the Byzantines. In
fact, in some cases, in order to prevent identification, it is better
for the Byzantines to minimize the mutual information between
the reports submitted to the FC and the system states. One of
the main inconvenience of the optimal fusion rule proposed
in [8] is that the computational cost grows exponentially with
the size of the observation window. A nearly-optimum fusion
scheme based on message passing (MP) and factor graphs is
proposed in [9], where an iterative algorithm based on the
so called Generalised Distributive Law (GLD, [10]), permits
to achieve a linear complexity. Besides, whereas in [8] the
analysis is limited to the case of independent system states,
in [9] it is extended to the case of sequences with Markovian
distribution, which is rather common model in many practical
scenarios; for instance, in cognitive radio networks the primary
user occupancy of the spectrum is often modelled as a Hidden
Markov Model (HMM), e.g., [11][12].

In this paper, by focusing on the case of Markovian system
states, we consider the scenario in which the Byzantines
can cooperate by synchronizing their efforts to push forth
more powerful attacks. Specifically, the contribution of this
paper is twofold: we first propose two types of synchronized
attacks; then, we refine the detection scheme based on message
passing proposed in [9] and devise the nearly-optimal decision
rule for the synchronized case. Finally, we demonstrate the
effectiveness of the proposed scheme by means of numerical
simulations. The results show that, upon knowing the attacking
strategy, the new detector can mitigate the effect of the Byzan-
tines. Nevertheless, synchronization among Byzantines is very
harmful and significantly impairs the detection performance
with respect to the non-synchronized case.

The rest of this paper is organized as follows: in Section II,
we formalize the problem at hand and we propose the synchro-
nized attack models, while in Section III the message passing
algorithm is proposed. In Section IV we use simulations to
analyze the performance of the synchronized Byzantine attacks
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and the message passing algorithm. The paper is concluded in
Section V.

II. PROBLEM FORMULATION

Figure 1. Sketch of the adversarial decision fusion scheme.
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Figure 2. Hidden-Markov model for the local decisions.

1) Problem Setup: The adversarial decision fusion scheme
considered in this paper is depicted in Figure 1. We let s =
{s1, s2, . . . , sm} with si ∈ {0, 1} indicate the sequence of
system states over an observation window of length m. We
assume that the sequence of states s follows a Markov model
of order 1, with transition probabilities p(si|si−1) = 1 − ρ
if si = si−1 and p(si|si−1) = ρ when si 6= si−1. Then, the
probability of a sequence is given by p (s) =

∏
i p(si|si−1),

where for i = 1 we have p(s1|s0) = p(s1) = 0.5.
The nodes collect information about the system through

the vectors x1,x2 . . .xn, with xj indicating the observations
available at node j. Based on such observations, a node j
makes a local decision ui,j about system state si. We assume
that the local error probability is p(ui,j 6= si) = ε, which does
not depend on either i or j. Then, the sequence of the local
decisions follows a Hidden-Markov distribution [13], as shown
in Figure 2. The state of the nodes in the network is given by
the vector h = {h1, h2, . . . , hn} with hj = 1/0 indicating

that node j is honest or Byzantine, respectively. Finally, the
matrix R = {ri,j}, i = 1, . . . ,m, j = 1, . . . , n contains all the
reports received by the FC. Specifically, ri,j is the report sent
by node j relative to si. For honest nodes we have ui,j = ri,j
while, for Byzantines, possibly ui,j 6= ri,j . Then, by assuming
an error-free transmission between nodes and FC, according
to the local decision error model, for honest nodes we have:

p (ri,j |si, hj = 1) = (1− ε)δ(ri,j − si)
+ ε(1− δ(ri,j − si)),

(1)

where δ(a) is equal to 1 when its argument is 0 and 0
otherwise. On the other hand, the probability that the FC
receives a wrong report from a Byzantine depends on the attack
strategy and is discussed in the following section.

2) The Attacks Model: In the general context of synchro-
nized attacks, we consider two different strategies. In the first
case, the Byzantines generate a fake states sequence ŝ and
decide to flip the reports only when ŝi = 0. The rationale
of this attack is to reduce the mutual information conveyed
by the Byzantines towards the FC with respect to the classical
Pmal = 1 case, thus reducing the identification probability. The
generation of the fake sequence can be achieved for instance
by using a pseudo random generator with a common seed to
synchronize the local clocks of the sensors.

In the second attack strategy, the Byzantines generate a fake
sequence which follows the statistic of the original sequence,
namely a Markovian sequence ŝ with transition probability
ρ̂. Then, they introduce some intentional i.i.d errors with
probability ε thus mimicking the behavior of the honest nodes.
In this case, the mutual information between the system states
and the malicious reports is completely canceled. To elaborate,
for the first attack, we have

p (ri,j |si, ŝi, hj = 0) =

ŝi[(1− ε)δ(ri,j − si) + ε(1− δ(ri,j − si))]
− (ŝi − 1)[εδ(ri,j − si) + (1− ε)(1− δ(ri,j − si))]

(2)

where ε is the error probability of the local decisions at the
nodes. For the second case, the report conditional probabilities
depend on the fake states only:

p (ri,j |ŝi, hj = 0) =

(1− ε)δ(ri,j − ŝi) + ε(1− δ(ri,j − ŝi)),
(3)

where this time ε is the probability of the i.i.d. errors intro-
duced intentionally.

Eventually, we consider that nodes’ state are independent
of each other and the state of each node is a Bernoulli random
variable with parameter α, that is p(hj = 0) = α,∀j. In this
way, the number of byzantine nodes in the network is a random
variable following a binomial distribution, corresponding to
the maximum entropy case [8] with p (h) =

∏
j

p(hj), where

p(hj) = α(1− hj) + (1− α)hj .

III. MP-BASED DECISION FUSION WITH SYNCHRONIZED
BYZANTINES

Given the sequence of reports, the optimum decision at
the FC can be taken by looking at the bitwise Maximum A
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Posteriori Probability (MAP) estimation of the system states
{si} which reads as follows:

s∗i = argmax
si∈{0,1}

p (si|R)

= argmax
si∈{0,1}

∑
{s,̂s,h}\si

p (s, ŝ,h|R)

= argmax
si∈{0,1}

∑
{s,̂s,h}\si

p (R|s, ŝ,h) p(s)p(̂s)p(h)

= argmax
si∈{0,1}

∑
{s,q,h}\si

∏
i,j

p (ri,j |si, ŝi, hj)
∏
i

p(si|si−1)∏
i

p(ŝi|ŝi−1)
∏
j

p(hj) (4)

where the notation
∑
\

denotes a summation over all the

variables contained in the expression except the one listed after
the operator. For a given h, the matrix of the observations R
at the FC follows a HMM.

The objective function in the optimal fusion rule expressed
in (4) can be seen as a marginalization of a sum product of
functions of binary variables, and, as such, it falls within the
MP framework [14]. Specifically, in our problem, the variables
are the system states si, the fake system states ŝi, and the
status of the nodes hj , while the functions are the probabilities
of the reports p (ri,j |si, ŝi, hj), the conditional probabilities
p(si|si−1), p(ŝi|ŝi−1), and the a-priori probabilities p(hj). The
resulting bipartite graph along with all the messages exchanged
are shown in Figure 3. These messages are exchanged to
parallely estimate each state si in the vector s. Specifically,
we have:

τ
(l)
i (si) = ϕ

(l)
i (si)

n∏
j=1

ν
(u)
i,j (si)

i = 1, . . . ,m

τ
(r)
i (si) = ϕ

(r)
i (si)

n∏
j=1

ν
(u)
i,j (si)

i = 1, . . . ,m

ϕ
(l)
i (si) =

∑
si+1=0,1

p (si+1|si) τ (l)i+1(si+1)

i = 1, . . . ,m− 1

ϕ
(r)
i (si) =

∑
si−1=0,1

p (si|si−1) τ (r)i−1(si−1)

i = 2, . . . ,m

ϕ
(r)
1 (s1) = p(s1)

ν
(u)
i,j (si) =

∑
hj=0,1

∑
ŝi=0,1

p (ri,j |si, ŝi, hj )λ(u)j,i (hj)ν̂
(d)
i,j (ŝi)

i = 1, . . . ,m, j = 1, . . . , n

ν
(d)
i,j (si) = ϕ

(r)
i (si)ϕ

(l)
i (si)

n∏
k=1
k 6=j

ν
(u)
i,k (si)

i = 1, . . . ,m− 1, j = 1, . . . , n

ν
(d)
m,j(sm) = ϕ

(r)
i (sm)

n∏
k=1
k 6=j

ν
(u)
m,k(sm)

j = 1, . . . , n

τ̂
(l)
i (ŝi) = ϕ̂

(l)
i (ŝi)

n∏
j=1

ν̂
(u)
i,j (ŝi)

i = 1, . . . ,m

τ̂
(r)
i (ŝi) = ϕ

(r)
i (ŝi)

n∏
j=1

ν
(u)
i,j (ŝi)

i = 1, . . . ,m

ϕ̂
(l)
i (ŝi) =

∑
ŝi+1=0,1

p (ŝi+1|ŝi) τ̂ (l)i+1(ŝi+1)

i = 1, . . . ,m− 1

ϕ̂
(r)
i (ŝi) =

∑
ŝi−1=0,1

p (ŝi|ŝi−1) τ̂ (r)i−1(ŝi−1)

i = 2, . . . ,m

ϕ̂
(r)
1 (s1) = p(ŝ1)

ν̂
(u)
i,j (ŝi) =

∑
hj=0,1

∑
si=0,1

p (ri,j |si, ŝi, hj )λ(u)j,i (hj)ν
(d)
i,j (si)

i = 1, . . . ,m, j = 1, . . . , n

ν̂
(d)
i,j (ŝi) = ϕ̂

(r)
i (ŝi)ϕ̂

(l)
i (si)

n∏
k=1
k 6=j

ν̂
(u)
i,k (si)

i = 1, . . . ,m− 1, j = 1, . . . , n

ν̂
(d)
m,j(ŝm) = ϕ̂

(r)
i (ŝm)

n∏
k=1
k 6=j

ν̂
(u)
m,k(ŝm)

j = 1, . . . , n

λ
(d)
j,i (hj) =

∑
si=0,1

∑
ŝi=0,1

p (ri,j |si, ŝi, hj ) ν(d)i,j (si)ν̂
(d)
i,j (ŝi)

i = 1, . . . ,m, j = 1, . . . , n

λ
(u)
j,i (hj) = ω

(u)
j (hj)

m∏
q=1
q 6=i

λ
(d)
j,q (hj)

i = 1, . . . ,m, j = 1, . . . , n

ω
(d)
j (hj) =

m∏
i=1

λ
(d)
j,i (hj)

j = 1, . . . , n

ω
(u)
j (hj) = p(hj)

j = 1, . . . , n

(5)

As for the scheduling policy, the MP procedure starts by
initializing the messages λ(u)j,i (hj) = p(hj) and ν̂

(d)
i,j (ŝi) =

1 and sending them to all p (ri,j |si, ŝi, hj ) factors, and by
sending the messages p(s1) and p(ŝ1) to the variable nodes s1
and ŝ1, respectively. Hence, the MP proceeds according to the
general message passing rules, until all variable nodes are able
to compute the respective marginals, thus concluding the first
iteration. Successive iterations are carried out by starting from
leaf nodes and by taking into account the messages received at
the previous iteration for the evaluation of new messages. The
algorithm stops when convergence of messages is achieved, or
after a maximum number of iterations.
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This version of the MP algorithm described above is an
extension of the one proposed in [9], which does not take into
account the possibility of synchronized attacks. More specif-
ically, in the attack model considered in [9], the Byzantines
independently flip the observations with a given probability
Pmal, thus yielding

p (ri,j |si, hj = 0) =

(1− η)δ(ri,j − si) + η(1− δ(ri,j − si))
(6)

where η = ε(1 − Pmal) + (1 − ε)Pmal is the probability of
receiving a wrong report from a Byzantine. For the honest
nodes, the probability model was the same as in Equation (1).

In order to evaluate the complexity of the algorithm shown
in Figure 3, we consider the number of operations performed
to estimate the vector of system states s. By number of
operations we mean the number of additions, substractions,
multiplications and divisions done at the FC for the state
estimation.

By looking at equation (5), we see that running the message
passing algorithm requires the following number of operations:

• n+1 operations for each of τ (l)i (si), τ
(r)
i (si), ν

(d)
i,j (si),

τ̂
(l)
i (ŝi), τ̂

(r)
i (ŝi), and ν̂(d)i,j (ŝi).

• 3 operations for each of ϕ(l)
i (si), ϕ

(r)
i (si), ϕ̂

(l)
i (ŝi)

and ϕ̂(r)
i (ŝi) .

• n operations for each of ν(d)m,j(sm) and ν̂(d)m,j(ŝm).

• 8 operations for each of ν
(u)
i,j (si), ν̂

(u)
i,j (ŝi) and

λ
(d)
j,i (hj).

• m operations for each of λ(u)j,i (hj) and ω(u)
j (hj).

summing up to 8n+2m+41 operations for each iteration over
the factor graph. Therefore, we can argue that the complexity
of the algorithm increases linearly with both n and m in
contrast to the complexity the optimum fusion rule presented
in [8] which grows exponentially with n.

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we evaluate the performance of the pro-
posed synchronized attacks. We denote the two attack strate-
gies described in Section II-2 as ATTACK SYNC FLIP and
ATTACK SYNC FAKE, respectively. We also compare the
performance of these attacks with the unsynchronized attack
considered in [8] where the Byzantines act independently
from each other and flip the decisions with a given Pmal.
Specifically, we consider the two cases Pmal = 1.0 and
Pmal = 0.5, which are the most meaningful cases, as shown
in [8]. Simulation results are provided for both the MP-
based detector proposed in [9] (referred to as MP UN) and
the MP-based detector proposed in this paper (referred to as
MP SYNC).

We consider the following settings: a sensor network with
n = 20 nodes, transition probability of the Markovian states
ρ = 0.95, an observation window m = 10, local error
probability ε = 0.15, the fraction of Byzantines in the network
α ∈ [0, 0.45] and ρ̂ = {0.5, 0.95}. To evaluate the performance
of the MP algorithm, we consider three performance metrics:
the probability of decision error Pe, the probability of correct

identification of byzantines nodes P (B|B), and the probability
of mis-identifying a byzantine node as honest P (B|H). The
performance metrics are estimated over 20000 simulations.

Figure 4 shows the performance of the detectors subject to
different attacks. As first observation, we can note that both
the synchronized attacks have a much more detrimental effect
on the system performance than the un-synchronized attacks
(bottom-most curves displayed in Figure 4). Moreover, the
worst performance is provoked by the ATTACK SYNC FAKE
strategy with perfect information model estimation, i.e., ρ̂ = ρ
(upper-most curves displayed in Figure 4). The rationale is
twofold: on one side, the sequence of reports sent from
the Byzantines does not convey any information to the FC
concerning the true states’ values (zero-mutual information
case); on the other side, in the ATTACK SYNC FAKE case,
when the fake sequence ŝ perfectly matches the state model,
the identification of the byzantine nodes become very difficult
at the FC. When instead ρ̂ 6= ρ, the effectiveness of the
attack decreases. Indeed, since the Byzantines’s reports do
not follow exactly the same model as that of the honest
nodes, the identification becomes easier. As an example, in
Figure 4, it is shown that for ρ̂ = 0.5, the efficiency of
the ATTACK SYNC FAKE is considerably reduced and it
gives almost the same results of the ATTACK SYNC FLIP.
Finally, it is worth noting from Figure 4 that the MP SYNC
significantly outperforms the MP UN in the presence of syn-
chronized attacks. In Figure 5, we report the performance
of the MP SYNC in terms of P (B|B) and P (B|H) to
understand how well the MP algorithm can correctly identify
the nodes’ status. Upon inspection of the figure, we see that
identification of the Byzantines is quite good when they adopt
the ATTACK SYNC FLIP strategy (P (B|B) is around 0.9
and P (B|H) is lower than 0.1). Similar results are obtained
for the mismatched ATTACK SYNC FAKE case with ρ̂ = 0.5
and that is why the curves of both cases are superposed
on each other. When instead the Byzantines adopt the AT-
TACK SYNC FAKE strategy with perfect estimation of the
model, the mission of the detector as expected becomes harder
than before (for α = 0.45 we have P (B|B) = 0.7 and
P (B|H) = 0.25).

V. CONCLUSION

We presented two types of synchronized attacks capable
to affect the performance of decision fusion in sensor net-
works. Then, we propose a nearly-optimum detector for coping
with synchronized attacks by extending the message passing
approach proposed in [9]. Experimental results show that,
although the proposed detector is able to mitigate the effect
of Byzantines, the coordination of the efforts is very harmful
and significantly impairs the detection performance.
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