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Abstract—Non-volatile memory is applied not only to storage
subsystems but also to main memory to improve performance
and increase capacity. Some in-memory database systems use
non-volatile main memory as a durable medium instead of using
existing storage devices such as hard disk drives or solid state
drives. For such in-memory database systems, the cost of memory
access instead of I/O processing decreases, and the CPU cost
increases relatively for cost calculation to select the most suitable
access path for a database query. Therefore, a high-precision cost
calculation method of query execution is required. In particular,
when the database system cannot select a proper join method,
the query execution time increases. Accordingly, we propose a
database join operation cost model using statistics information
measured by a performance monitor embedded in the CPU and
evaluated the accuracy of estimating the change point of join
methods. As a result, the proposed method can estimate more
accurately than the existing method to within one significant
figure. In conclusion, the in-memory database system using the
proposed cost calculation method is able to select the best join
method.

Keywords–Non-volatile memory; In-memory database systems;
Query optimization; Query execution cost.

I. INTRODUCTION
Improving the performance and expanding the capacity of

non-volatile memory (NVM) is made applicable to both high-
speed disk drives and main memory units. Intel and Micron
developed the NVM named 3D Xpoint memory [1] for such
use. NVM is implemented as byte-addressable memory and is
assigned as a part of the main memory space. An application
programming interface (API) [2] [3] for accessing NVM is
proposed to make the development of applications easier.
Roughly speaking, the API provides two types of access meth-
ods to NVM from software. The first is “load/store type:“ it
is the same method used to access conventional main memory
from user applications. The other is “read/write type:“ this is
the method used by existing I/O devices, such as hard disk
drives (HDDs) or solid state drives (SSD) through operating
system (OS) calls such as read/write functions. There are two
types of implementations of in-memory databases through the
application of NVM to main memory. The load/store type
must be implemented using array structures or list structures
on a main memory address area such as the durable media
of the database (Figure 1(c)). The read/write type can be
easily applied to the existing database management system
(DBMS) because the database files stored on disk drives
(Figure 1(a)) are moved to files on NVM defined by the API
for NVM (Figure 1(b)). The performance when accessing the
database using the former type is better than the latter type
because the DBMS directly accesses the database without any
I/O device emulation operation. However, operations of the
database administration (e.g., system configuration, backup,
etc.) do not have to be changed. That means that it is easy for
the administrators to introduce the in-memory database system.
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Figure 1. Disk-based database and in-memory database

The DBMS has a problem in preparation for executing a
query. In general, the DBMS executes several steps before
executing a query. First, the DBMS analyzes the query. Next, it
creates multiple execution plans. Then, it estimates the query
processing cost for each execution plan. Finally, it selects a
minimum execution plan from a plurality of candidates. For
example, when the DBMS joins two tables, such as the R table
and S table shown in Figure 2(a), it generates the execution
plan (Figure 2(b)) that minimizes the number of rows to be
referenced. At this time, the execution time depends on which
join method the DBMS selects. The DBMS estimates the cost
of each join method by using statistical information from the
database and chooses the join method with the minimum cost.
In general, the cost of a join operation is a function of the
ratio of the extracted records to all records. Hereafter, we refer
to this ratio as the selectivity. In Figure 2, the selectivity is
determined by the condition x for the column R.C in Figure
2(c). In Figure 2(c), two cost functions cross at Xcross. Join
method 2 must be chosen from the left side of Xcross and join
method 1 should be chosen from the right side of Xcross. If
the DBMS cannot estimate the selectivity Xcross accurately, it
will choose the wrong join method.
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Figure 2. Cost estimation problem for the selection of join methods

On the other hand, the query execution cost (cost) is
generally expressed as the sum of the Central Processing Unit
(CPU) cost (cpu cost) and the I/O cost (io cost) [4] [5]. The
CPU cost is the CPU time, and the I/O cost is the latency
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when accessing the disk drive:

cost = cpu cost + io cost (1)

For example, the cost formula for MySQL is given below [6].
The cost of scanning a table R is given by

table scan cost(R) = record(R)×CPR+page(R)×CPIO
(2)

where record(R) is the number of records of table R, CPR is
the CPU cost per record, page(R) is the number of pages of
table R and CPIO is the I/O cost per page stored record for
DBMS access. When table R (inner table) and table S (outer
table) are joined, the cost of a join operation is given by

table join cost(R,S) = table scan cost(R) + record(R)

× selectivity × records per key(S)× (CPIO + CPR) (3)

where selectivity is the selectivity ratio given by the
distribution of attributes, and the condition for selection such
as a where-clause definition in SQL, and records per key(S)
is the number of join keys specified by table S’s records. Here
CPR = 0.2 and CPIO = 1 are the default defined values.
However, this cost model is established under the condition
that I/O performance is the bottleneck of the query execution
time. A further improvement in disk performance increases
the CPU cost relative to the I/O cost. When the I/O cost itself
disappears ultimately in a native in-memory database (Figure
1(c)), it becomes necessary to more accurately predict the CPU
cost.

To improve the accuracy of the CPU processing cost pre-
diction, the estimation of CPU processing time must become
more accurate than the conventional method mentioned above.
In general, the CPU processing time can be predicted by the
product of the number of executed instructions and the latency
until the instruction is completed. To estimate the latency with
high accuracy, it is necessary to consider the structure of the
hardware, such as instruction execution parallelism, cache miss
ratio, and memory hierarchy. These are problems that cannot
be solved by the software algorithm alone.

In this study, we propose a method to improve the accuracy
of CPU cost estimation of in-memory databases applied to
existing DBMSs (Figure 1(b)). It is easy to apply our method
to native in-memory databases (Figure 1(c)). Our contribution
can be summarized as follows.

• First, we propose a method for modeling CPU cycles
and estimating the join operation cost for a database.
While considering the CPU pipeline architecture, we
classify CPU cycles into three components: a pipeline
stall cycle caused by instruction cache misses, a
pipeline stall cycle caused by branch misprediction,
and an access cycle of data caches or main memory.
By using this classification, we propose a CPU cycle
modeling method, which can express the total CPU
execution time. In addition, to estimate the processing
time of the join operation of a database, we decompose
the pattern of the join processing into four parts and
estimate the join operation cost by using a combina-
tion of these parts (Section II).

• Next, we analyze the behavior of measurement results
of join operation by using a performance monitor em-
bedded on the CPU and determine the cost estimation
formulas (Section III).

• Finally, we verify the accuracy of the proposed CPU
cost estimation formulas by comparing the actual
CPU processing cycle and the conventional CPU cost
estimation formula of MySQL (Section IV).

II. PROPOSED CPU COST MODEL
In this section, first, we analyze the CPU pipeline archi-

tecture and categorize pipeline events. We propose the CPU
operation cycle estimation method, which can express whole
CPU process cycles by considering the categorized events.
Next, we categorize join operations of the DBMS and divide
the join operation into several parts. We propose an estimation
model based on a combination of these parts. Finally, we create
the CPU cost formula for estimating each part of the join
operations using statistics information measured by the perfor-
mance monitor embedded in the CPU and assemble those join
parts formulas into the complete CPU cost estimation formula.

A. Model of CPU Operation Time
We chose the Intel Nehalem processor as a typical model

of a CPU for application to the database server because all of
the processors developed after Nehalem, namely Sandy Bridge,
Haswell, and Skylake, are based on the pipeline architecture of
Nehalem. Partial enhancements, such as additional cache for
the micro-operations (uOPs), increased reorder buffer entries,
and increased instruction execution units, were added to the
successor CPUs of Nehalem.
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Figure 3. Focus point of the CPU pipeline

The pipeline is composed of a front-end and a back-end
in Figure 3 [7]. The front-end fetches instructions from the
L1 instruction cache (L1I) and decodes them into uOPs in-
order. The term “in-order“ means that a subsequent instruction
cannot overtake preceding instructions in the pipeline. After
decoding instructions, the front-end issues uOPs to the back-
end. Conversely, the back-end executes the uOPs in execution
units out-of-order. The back-end can execute the uOPs in a
different order than issued by the front-end to improve the
throughput of operating uOPs. An L1I miss causes the pipeline
of the front-end to stall until the missing instruction is fetched
from the lower level of cache or main memory. A branch
prediction miss causes a dozen cycles of the instructions
executed speculatively to be flashed, and the front-end cannot
issue uOPs. In this paper, such a condition is referred to as an
instruction-starvation state (Figure 3(3)). There are cases in
which the uOP issued in the front-end is not executed because
of the saturation of the reorder buffer or the reservation station
in the back-end, or the data dependency with the preceding
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instructions. We refer to this state as a stall state in this paper
(Figure 3(2)). In addition, we refer to the state in which the
uOPs are issued without an instruction-starvation state or a
the stall state as an active state.

A summary of the related notation of the CPU cost
calculation to be used afterward is shown in Table I before
creating the CPU cost calculation model.

TABLE I. NOTATION FOR THE CPU COST CALCULATION MODEL

Symbol Description

I Number of instructions to complete a query
CPI0 Cycle per instruction (CPI) on the condition that all of instruc-

tions and data are stored in L1 cache
Li Level i cache memory (Maximum value of “i“ varies depend-

ing on the CPU. In this paper, the maximum is “3“. L3 is
represented by “last-level cache“ (LLC).

Mmem ,Lmem Number of references of instructions and data to the main
memory, main memory latency

MmemI ,MmemD Number of references of instructions to the main memory,
number of references of data to the main memory

MLi ,LLi Number of references of instructions and data to Li cache, Li
cache latency

MLiI ,MLiD Number of references of instructions to Li cache, the number
of references of data to Li cache

BFmem ,BFLi Blocking factor of main memory, Li cache reference
BFmemI ,BFLiI Blocking factor of instruction references to the main memory,

Li cache
BFmemD ,BFLiD Blocking factor of data references to the main memory, Li cache
BFMP Blocking factor when branch misprediction and instruction

cache miss occur simultaneously
Hmem Ratio of the number of references to the main memory to the

number of instructions (Hmem=Mmem/I)
HLi Ratio of the number of references to Li cache to the number

of instructions (HLi=MLi/I)
HLiI Ratio of instruction references to Li cache to the number of

instructions
HLiD Ratio of data references to Li cache to the number of instruc-

tions
CTotal Total CPU cycles to execute a query
CActive ,CStall ,
CStarvation

CPU cycles in active state, stall state, starvation state

CICacheMiss CPU cycles from the occurrence of L1I miss until the acquisi-
tion of an instruction from other cache or the main memory

CDCacheAcc CPU cycles in active state
MMP Number of branch mispredictions
LMP Recovering latency from a branch misprediction
CMP Total CPU cycles when recovering from branch mispredictions
P Selectivity of the outer table
RO, RI Number of outer table records, number of inner table records
TNLJ , THJ Nested loop join (NLJ) execution time, hash join (HJ) execution

time
Tbuild , Tprobe Execution time of the HJ build phase, execution time of the HJ

probe phase
CNLJ Total Total CPU cycles of NLJ
CNLJ ICacheMiss CPU cycles from the occurrence of L1I miss on executing NLJ

until acquisition of an instruction from other cache or the main
memory

CNLJ MP Total CPU cycles when recovering from branch mispredictions
on executing NLJ

CNLJ DCacheAcc CPU cycles in active state on executing NLJ
CBuild Total ,
CProbe Total

Total CPU cycles of the build phase of HJ, probe phase of HJ

CBuild ICacheMiss ,
CProbe ICacheMiss

CPU cycles from the occurrence of L1I miss until the acquisi-
tion of an instruction from other cache or the main memory on
executing the build phase of HJ, probe phase of HJ

CBuild MP ,
CProbe MP

Total CPU cycles of recovering from branch mispredictions on
executing the build phase of HJ, probe phase of HJ

CBuild DCacheAcc ,
CProbe DCacheAcc

CPU cycles in data cache or main memory Access on executing
the build phase of HJ, probe phase of HJ

ILoad Number of load instructions
MLMMI ,
MLMMD

Number of instruction references to local main memory, number
of data references to local main memory

LLMM Latency of local main memory
MLLLCI ,
MLLLCD

Number of instruction references to local LLC, number of data
references to local LLC

LLLLC Latency of local LLC
MRLLCI ,
MRLLCD

Number of instruction references to remote LLC, number of
data references to remote LLC

LRLLC Latency of remote LLC

In this paper, we focus on the boundary between the
front-end and the back-end in the CPU pipeline (Figure 3)
to model the overall operation of the CPU. The uOPs are
issued from front-end to back-end and are stored in the buffers,
namely the reorder buffer and reservation station. The buffers
allow us to change the processing order of uOPs from in-
order to out-of-order across the boundary. The CPU-embedded
performance monitor can measure events such as the saturation
of buffers, dequeues from buffers by the completion of uOPs,
and the existence of uOPs to issue to back-end [7]. Any CPU
cycle situation can be modeled by the performance monitor
to analyze these events. Therefore, we propose measurement-
based estimation of the query execution cost. The active state is
estimated from the number of the events that the uOP is issued
without delay in the back-end buffer. The buck-end buffer
holds the uOPs until the execution of the uOPs is completed
and the uOPs are deleted from the buffer. The stall state is
estimated from the number of the events for which the buffer
cannot receive uOPs. The starvation state is inferred from the
event count in which there are no uOPs to be issued to the
back-end buffer. The total CPU cycle is composed of the active
state cycle, the stall state cycle and the starvation state cycle.
Therefore, the following equation can be obtained:

CTotal =CActive+CStall+CStarvation (4)
Cycle Per Instruction (CPI), which refers to the number of

CPU clock cycles per instruction, is widely used as a metric for
evaluating CPU processing efficiency [8]. CPI is calculated as
the product of the number of references to the memory and the
latency of the memory access. Latency is the delay time when
fetching an instruction or data from memory. CPI is given by

CPI =CPI0+{
last level∑

i=2

(HLi × LLi×BFLi)

+(Hmem × Lmem×BFmem)} (5)
where last-level cache ( LLC) means the lowest cache in
the cache memory hierarchy and the blocking factor [8] is a
correction coefficient for concealing the latency by executing
instructions in parallel. The second term on the right-hand side
of (5) is the product of the number of memory references, the
latency, and the blocking factor, i.e., the stall state. The product
of the second term on the right-hand side of (5) and the number
of instructions I is the pipeline stall cycle (CStall ):

CStall =

LLC∑
Li=L2

(MLi×LLi×BFLi)

+(Mmem×Lmem×BFmem) (6)

CTotal =CPI×I=CPI0×I+CStall (7)
From (5)–(7), we can show that CPI0 includes the active

state and starvation state:

CPI0×I=CActive+CStarvation (8)

The starvation state is mainly caused by instruction cache
misses or branch mispredictions, and can be classified as
the number of CPU cycles from the occurrence of one of
these events until the acquisition of the next instruction to be
executed:

CStarvation =CICacheMiss+MMP×LMP×BFMP (9)
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CICacheMiss =

LLC∑
Li=L2

(MLiI ×LLi×BFLiI )

+(MmemI ×Lmem×BFmemI ) (10)

Here BF is a correction coefficient for considering that both
branch misprediction and instruction cache miss occur simul-
taneously. ICacheMiss is expressed as 10 by modifying 6
because operations after instruction cache misses and data
cache misses are the same. Only terms relating to branch
misprediction are defined:

CMP =MMP×LMP×BFMP (11)

According to the previous research [9], the CPI of the
decision support system benchmark is 1.5–2.5. In general,
when the CPI is 1, this means that one instruction is completed
in one cycle, so the instructions are executed sequentially
in query execution. In addition, since the indices and tables
of the database are usually implemented with list structures
or tree structures, it is not until the stored data which the
pointer refers to is read out that the next reference address
becomes clear. Thus, it is difficult for the CPU to predict
the destination of the next reference. In particular, the char-
acteristics of such a memory reference in the list structure
are applied to a benchmark program for measuring memory
latency [10]. Therefore, stall state occurs because the operation
of the stalled instruction waits for the preceding data reference
processing to be completed. From the viewpoint of memory
reference, the active state can be considered as an L1 data
cache (L1D) reference, and the stall state can be considered
as a reference to a cache level lower than L1 or a main memory
reference. Therefore, CPU cycles in the active state and those
in the stall state can be integrated as CDCacheAcc in

CDCacheAcc=CActive+CStall (12)

CDCacheAcc=

lastlevel∑
i=1

(MLiD×LLi×BFLiD)

+(MmemD×Lmem×BFmemD) (13)

where (6)(13) use the same symbols for latency and the
blocking factor for convenience, but the contents are different.

From the above discussion, the total number of CPU cycles
is calculated using

CTotal =CDCacheAcc+CICacheMiss+CMP (14)

In this paper, each term on the right-hand side of (14) uses
statistical information obtained from actual measurements.

B. DBMS Operation Model
DBMS queries perform operations including selection, pro-

jection, and join. Queries performing the join operation depend
on the join method chosen by the DBMS’s optimizer. The
optimizer selects the join method to minimize the operation
cost of the join operation. The cost depends on the selectivity
of records defined by the clause of the SQL and the statistics
of the attribute value of the database. Most DBMSs calculate
the statistics during data loading to the database. This paper
focuses on the cost estimation for the optimization of join
operations. There are three basic joins: nested loop join (NLJ),
hash join (HJ), and sort–merge join (SMJ).

NLJ searches records from the inner table every time
it reads one record from the outer table. The generalized

operation model of NLJ is shown in Figure 4. The process
involves tracing multiple tables and indices from the point of
view of memory access, which means repeatedly traversing
linked lists. Therefore, NLJ can be regarded as searching
between the outer table and the huge internal table created
by tracing multiple tables in the same way as loop expansion
by a compiler. Moreover, it is possible to calculate the cost
of NLJ of multiple tables using the cost estimation function
with two typical NLJs (Figure 4(a)), which is the function of
the number of total records to be referenced in the multi-table
join. NLJ and HJ are regarded as part of our proposed cost
estimation method. In this paper, we do not examine SMJ
because it is possible to apply the proposed method using
the steps from the other join methods, specifically dividing
parts into sorting and merging operations and calculating the
measured statistics values for each model. Figure 4 also shows
that HJ is decomposed into a build phase (Figure 4(b-1)) and
a probe phase (Figure 4(b-2)) because each operation of HJ
is executed sequentially and can be modeled separately in the
cost calculation formula based on measurement results.
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C. Cost Calculation Formula
Before considering the cost calculation formulas, we define

the inputs and outputs as in Table II. The information input
to the cost calculation formulas is recorded in the database
for management as statistical information, which is collected
generally by the DBMS when storing or updating the record.
Information regarding memory latency and I/O response time
is also required. This information can be measured with a
simple benchmark program [10].

TABLE II. PARAMETER LIST FOR COST CALCULATION

Input Selectivity of outer table to join and number
of records of tables

Output Calculated cost expressed by number of CPU
cycles

Parameters of
cost calculation
formulas

Static information: Memory latency and I/O re-
sponse time
Information obtained from measurement: Rela-
tional formula between the input information and
number of CPU cycles of the events on the right-
hand side of (14) (e.g., slope and intercept if the
input information and the number of cycles of the
interested event can be linearly approximated.)

In this section, we derive the cost calculation formula for
NLJ and HJ in two tables (14) where each element of (14) is
obtained as a function of the selectivity from the outer table
and the number of records. The cost formula of NLJ

CNLJ Total(P,RO,RI)=CNLJ ICacheMiss(P,RO,RI)

+CNLJ MP (P,RO,RI)+CNLJ DCacheAcc(P,RO,RI) (15)
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is obtained by combining (10)(11)(13)(14). The cost related
to each element of the instruction cache miss, the branch
misprediction, and the data reference are expressed by

CNLJ ICacheMiss(P,RO,RI)

=ML2I (P,RO,RI)×LL2×BFL2I

+MLLCI (P,RO,RI)×LLLC×BFLLCI

+MmemI (P,RO,RI)×Lmem×BFmemI (16)
CNLJ MP (P,RO,RI)

=MMP (P,RO,RI)×LMP ×BFMP (P,RO,RI) (17)
CNLJ DCacheAcc(P,RO,RI)

=ML1D(P,RO,RI)×LL1×BFL2D(P,RO,RI)

+ML2D(P,RO,RI)×LL2×BFL2D(P,RO,RI)

+MLLCD(P,RO,RI)×LLLC×BFLLCD(P,RO,RI)

+MmemD(P,RO,RI)×Lmem×BFmem(P,RO,RI) (18)

respectively. The structure of the cost calculation formulas is
basically a product-sum formula of the number of occurrences
of the event, its latency, and the correction coefficient. The
number of data references from the L1D cache, the L2 cache,
the LLC cache, and the main memory (ML1D, ML2, MLLC ,
and Mmem), the number of branch mispredictions (MMP ),
and the blocking factor BF are expressed as a function of the
selectivity P and the number of rows of the table, RO, RI .
The data references include L1D hits because they target all
data accesses.

The cost calculation formula of HJ is obtained in the same
way as NLJ:

CPhase Total(P,R)=CPhase ICacheMiss(P,R)

+CPhase MP (P,R)+CPhase DCacheAcc(P,R) (19)
CPhase ICacheMiss(P,R)

=ML2I (P,R)×LL2×BFL2I (P,R)

+MLLCI (P,R)×LLLC×BFLLCI (P,R)

+MmemI (P,R)×Lmem×BFmemI (P,R) (20)
CPhase MP (P,R)

=MMP (P,R)×LMP ×BFMP (P,R) (21)
CPhase DCacheAcc(P,R)

=ML1D(P,R)×LL1×BFL2D(P,R)

+ML2D(P,R)×LL2×BFL2D(P,R)

+MLLCD(P,R)×LLLC×BFLLCD(P,R)

+MmemD(P,R)×Lmem×BFmemD(P,R) (22)

where

{Phase,R}=
{
{Build,RO} build phase
{Probe,RI} probe phase

In the build phase, cache and main memory references, branch
misprediction, and the blocking factor are expressed as func-
tions of the selectivity P and the number of records of the
outer table (RO). In the probe phase, they are expressed as
functions of the selectivity P and the number of records of
the inner table (RI ).

The aim of this paper is to improve the accuracy of
the CPU cost calculation. Therefore, we use a method to
statistically obtain the parameters of the calculation formula
from the measured values using the performance monitor.
One of the parameters, the memory latency, depends on the
hardware configuration, which includes the number of CPUs,

the slot position in which the main memory modules are
installed, etc. According to the literature [11], the memory
access concentration is low when executing analytic queries
such as the TPC-H benchmark and does not increase the
memory latency.

III. EVALUATION OF OBTAINING PARAMETERS OF THE
COST FORMULA

To obtain the parameters in Table II, actual measurements
are made. The measurement environment is shown in Table III.
We used Westmere CPUs as they are the same architecture as
Nehalem. The servers are equipped with two CPUs. The main
memory is connected to each CPU. The memory connected
to one CPU is called local memory and the other is called
remote memory. In general, such a memory architecture is
known as non-uniform memory access (NUMA). The la-
tency of local and remote memory is different. In this study,
main memory modules are installed to only one CPU to
simplify the examination of measurement results. An NVM
Flash SSD is used as a disk device to store the database
to improve the experimental efficiency. We used the open-
source MariaDB [12] as the DBMS in this study as it supports
multithreading and asynchronous I/O, can utilize the latest
hardware characteristics, and, moreover, supports multiple join
methods. In a precise sense, the NLJ that MariaDB supports
is BNL (block nested loop join), which is an improvement on
NLJ; however, in the condition of the query and index used
in this study, it behaves like the general NLJ. The version of
MariaDB used in this study does not select the effective join
method automatically; it is specified based on the configuration
parameters.

TABLE III. EVALUATION ENVIRONMENT

CPU Xeon L5630 2.13 GHz 4-core, LLC 12 MB [Westmere-
EP]) ×2

Memory DDR3 12 GB (4 GB ×3) physically attached to only one
CPU

Disk (DB) PCIe NVMe Flash SSD 800 GB ×1 (Note: max throughput
suppressed by server’s PCIe I/F(ver.1.0a), about 1/4 of max
throughput)

Disk (OS) SAS 10,000 rpm 600 GB, RAID5 (4 Data + 1 Parity)
OS CentOS 6.6 (x64)
DBMS MariaDB 10.1.8 with InnoDB storage engine

The query to be evaluated and its measurement conditions
are shown in Figure 5. In the SQL statement, we modified
Query 3 of TPC-H for an evaluation of two-table join and ex-
tracted only join processing (Figure 5(a)). The size of database
is scale factor (SF) 5 defined in the TPC-H specification. SF5
means that the total size of the database is 5 GB. To allow us
to apply the proposed technology to the actual system, we used
small-scale data to reduce the measurement time as much as
possible. The indices of the database are created on the primary
keys and the foreign keys are defined in the specification of
TPC-H [13].

We changed the search condition of the query against the
c acctbal column of the outer table to change the selectivity
of the data to be referenced (Figure 5(c)). As for NLJ, the
selectivity and the number of records of the inner table are
changed (Figure 5(c) and (d)). The purpose of changing the
selectivity is to change the total number of records accessed by
the DBMS. In addition, the purpose of changing the number of
records of the inner table is to change the number of records

61Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-548-7

MMEDIA 2017 : The Ninth International Conferences on Advances in Multimedia



that have the same key as the record selected from the outer
table. This means changing the length of the linked lists that
have the key for join with the inner table. As for HJ, only
the outer table is accessed in the build phase, and the number
of records of the outer table is changed (Figure 5(e)). In the
probe phase, only the inner table is accessed, and the number
of records of the inner table is changed (Figure 5(d)).

The CPU performance counter data is collected by using
Intel R⃝ Vtune

TM
Amplifier XE. We refer to the literature [7] for

a description of the content of those counters. The measured
data is mainly related to the number of accesses to cache and
main memory, the state of the pipeline such as the number of
stall cycles, and the number of cache hits or misses.

It is necessary to analyze not only CPU time but also
I/O operation time to estimate the whole execution time of
a query (1). We measure the I/O count and response time
using systemtap and construct I/O cost calculation formulas
by analyzing the relation between I/O and the selectivity or
the number of records.

select  count(*)
from customer, orders
where

c_mktsegment = 'MACHINERY'
and c_acctbal > N
and c_custkey = o_custkey
and o_orderdate < date '1995-03-06‘; �

�

customer

orders

N 9998 9978 9798 9200 9000
Selectivity

(Condition 1)
3.62�10-05 4.00�10-04 3.67�10-03 1.45�10-02 1.82�10-02

(b) Query Plan
�

c_custkey=o_custkey

count(*)Join method 
is selected
Manually.

(a) SQL

Condition 1

Condition 2

(c) Selection Condition and Selectivity

Condition 1

Condition 2

(d) Inner Table

(Inner Table)

(Outer Table)

Number of Records 7,500,000 5,625,000 3,750,000 1,875,000

(e) Outer Table

Number of Records 750,000 562,500 375,000 187,500

Figure 5. Target query of measurement and cost estimation

IV. MEASUREMENT RESULTS AND COST CALCULATION
FORMULAS

In this paper, we investigate the relations among the
selectivity, the number of instructions, the number of events
related to memory reference, and the number of branch mis-
predictions. Regarding NLJ, it is expected that the number
of instructions and the number of memory references will
increase because the number of records accessed by the DBMS
increases in proportion to the increase in the selectivity. Based
on the assumptions, we now analyze the measurement results
and create formulas using linear regression. Regarding HJ, all
of the records of the outer table or inner table are accessed in
both the build phase and probe phase. The cost formulas are
presumed to not have selectivity as a variable. We analyze the
measurement results based on this presumption.

The CPU cost calculation formulas are obtained through
the following steps. First, the number of instructions, refer-
ences of each cache memory and main memory, and branch
mispredictions are analyzed using regression analysis, and the
regression models are created. In addition, the relation between
the sum of the product of the references to each memory
and its latency and CICacheMiss (10) and CDCacheAcc (13)
are modeled. Here CMP (11) is obtained from the product
of the number of pipeline stages of the front-end, which
is 12 in Nehalem, and the number of mispredictions from
the measurement results. Each value of memory latency is
referred to [14]. The number of disk I/O is modeled using
the measured I/O access count and I/O response time. Finally,
the cost calculation formulas are evaluated from the point of

the accuracy of intersection of two join methods (Xcross in
Figure 2) with the conventional method.

Figure 6(1) shows the relation between the number of
records the DBMS accessed and load instructions. Figure 6(7)
shows the relation between the total number of accessed
records and the number of instructions. The number of records
is the product of the number of outer table records, the number
of inner table records, and selectivity. The dotted line is the
linear regression line, and its slope and intercept are shown
in Table IV. The coefficient of determination (R2) is near 1
and the P value on the F test is less than 0.05. Therefore,
the regression model is highly accurate. The slope and the
intercept are used for creating the cost calculation model.
Figure 6(2) and (8) show the relation between the number
of instructions executed by the DBMS and the number of
L1 cache hits. Figure 6(3)–(6) and (9)–(12) show the relation
between the number of accesses to L2, LLC, and main memory
accesses and the number of cache misses of the upper-level
cache. These relations can be linearly approximated because
each R2 is near 1 and each P value is less than 0.05 in
Table IV. In this paper, a two-CPU server is used and the LLC
and main memory are connected to each CPU. The LLC and
main memory on the CPU on which BMS threads are running
are called the local LLC and local main memory. The others
are called remote LLC and remote main memory. The upper-
level cache is the local LLC. There exist no references to the
remote main memory because the main memory is connected
to only one CPU. Figure 6(13) shows the relation between
the number of records accessed for the join operation and
the branch miss prediction cycles, CMP . Figure 6(14) shows
the relation between the product of the number of instruction
accesses and latency, and the L1I miss cycles, CICacheMiss .
Figure 6(15) shows the relation between the product of the
number of data accesses and the latency, and the data cache
and main memory access, CDCacheAcc . Each graph can be
approximated by a regression line because each R2 is near 1
and each P value is less than 0.05 in Table IV. Figure 7(13)
shows the tendency of instructions, cache or main memory
accesses, branch misprediction cycles, instruction cache miss
cycles, and data cache access cycles. Each graph is linearly
approximated by a regression line because each R2 is near 1
and each P value is less than 0.05 in Table IV. In particular,
the slope of the regression line in Figure 6(2)–(5) and (9)–(11)
and Figure 7(a2)–(a5), (a9)–(a11), (b2)–(b5), and (b9)–(b11)
represents the cache hit rate because the definition of cache hit
rate is the quotient of the number of cache hits and the number
of cache references, and the upper-level cache miss becomes
the lower-level cache reference.

Based on the above considerations, the formula for calcu-
lating the cost of join methods is
I=A1×R+B1 (23)
ML1I =A2×I+B2 (24)
ML2I =A3×(I−ML1I )+B3

MLLLCI =A4×(I−ML1I −ML2I )+B4 (25)
MRLLCI =A5×(I−ML1I −ML2I −MLLLCI )+B5 (26)
MLMMI =A6×(I−ML1I −ML2I −MLLLCI )+B6 (27)
ILoad =A7×R+B7 (28)
ML1D =A8×ILoad+B8 (29)
ML2D =A9×(I−ML1DI )+B9 (30)
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7,500,000 5,625,000 3,750,000 1,875,000 Regression Line
Number of Inner Table Records

(1) Load Instructions (2) L1D Hit (3) L2 Data HIt (4) Local LLC Data Hit (5) Remote LLC Data Hit

(6) Local Main Memory Data Access (7) Instructions (8) L1I Hit (9) L2 Instruction HIt (10) Local LLC Instruction Hit 

(11) Remote LLC Instruction Hi (12) Local Main Memory 
Instruction Access

(13) Branch Misprediction (14) Instruction Cache Miss (15) Data Access

Figure 6. CPU event count on executing NLJ

MLLLCD =A10×(I−ML1D−ML2DI )+B10 (31)
MRLLCD =A11×(I−ML1D−ML2D−MLLLCD)+B11

(32)
MLMMD =A12×(I−ML1D−ML2D−MLLLCD)+B12

(33)
CICacheMiss =A13×(ML2I ×LL2+MLLLCI ×LLLLC

+MRLLCI ×LRLLC+MLMMI ×LLMM )+B13
(34)

CDCacheAcc=A14×(ML1D×LL1+ML2D×LL2

+MLLLCD×LLLLC+MRLLCD×LRLLC

+MLMMD×LLMM )+B14 (35)
CMP =A15×R+B15 (36)
where

R=


RO×RI×P NLJ
RO Build phase of HJ
RI Probe phase of HJ

Table IV lists the definitions of the parameters given in (23)-
(36). In the case of NLJ, the calculation formula of the number
of the disk I/Os is created by using the regression line shown in
Figure 8(a). The measured I/O response time (ioresponcetime)
was 154 µs. The I/O cost of NLJ is

io cost=A16×RO×RI×P×io responce time+B16
(37)

However, in the case of HJ, the ratio of the processing time
of disk I/O and the query execution time of HJ is less than
1% in Figure 8(b). In this paper, the cost calculation formula
is composed of only the CPU cost and the disk I/O cost.

To evaluate the cost calculation formulas, we used a larger
TPC-H database than the database used for measurement,
SF100, and chose a combination of the following two ta-
bles, customer and orders, supplier and lineitem, and part

TABLE IV. SLOPE AND INTERCEPT OF THE REGRESSION MODELS

Type Slope Intercept R2
P value

on F test Reference

NLJ A1 1.745 × 105 B1 1.64 × 109 9.99×10−1 1.30 × 10−29 Figure 6(1)
A2 9.802 × 10−1 B2 1.26 × 107 1.00 2.18 × 10−58 Figure 6(2)
A3 8.077 × 10−1 B3 2.68 × 106 1.00 2.91 × 10−40 Figure 6(3)
A4 8.318 × 10−1 B4 5.23 × 104 1.00 3.93 × 10−39 Figure 6(4)
A5 7.425 × 10−1 B5 −1.18×105 1.00 3.77 × 10−34 Figure 6(5)
A6 2.575 × 10−1 B6 1.18 × 105 9.98×10−1 7.05 × 10−26 Figure 6(6)
A7 2.464 × 104 B7 4.63 × 108 9.99×10−1 5.97 × 10−31 Figure 6(7)
A8 9.723 × 10−1 B8 7.05 × 106 1.00 3.85 × 10−53 Figure 6(8)
A9 4.342 × 10−1 B9 1.95 × 106 9.99×10−1 5.17 × 10−28 Figure 6(9)
A10 9.442 × 10−1 B10 −2.87×104 1.00 2.06 × 10−44 Figure 610)
A11 7.609 × 10−1 B11 −4.84×104 1.00 2.80 × 10−35 Figure 6(11)
A12 2.391 × 10−1 B12 4.84 × 104 9.98×10−1 3.10 × 10−26 Figure 6(12)
A13 5.526 × 10−1 B13 1.44 × 108 9.98×10−1 9.85 × 10−26 Figure 6(13)
A14 8.595 × 10−1 B14 −1.25×109 9.67×10−1 9.00 × 10−15 Figure 6(14)
A15 2.321 × 103 B15 1.92 × 107 9.90×10−1 1.35 × 10−19 Figure 6(15)

HJ A1 2.045 × 103 B1 1.58 × 107 1.00 4.21 × 10−40 Figure 7(a1)
Build A2 9.879 × 10−1 B2 2.53 × 105 1.00 2.19 × 10−61 Figure 7(a2)

A3 9.708 × 10−1 B3 −7.48×104 1.00 1.79 × 10−49 Figure 7(a3)
A4 9.191 × 10−1 B4 −6.57×104 9.99×10−1 7.76 × 10−31 Figure 7(a4)
A5 3.317 × 10−1 B5 −1.64×104 9.29×10−1 8.38 × 10−12 Figure 7(a5)
A6 6.683 × 10−1 B6 1.64 × 104 9.82×10−1 4.49 × 10−17 Figure 7(a6)
A7 6.099 × 102 B7 2.85 × 105 9.99×10−1 4.46 × 10−30 Figure 7(a7)
A8 9.902 × 10−1 B8 −1.89×103 1.00 1.05 × 10−57 Figure 7(a8)
A9 8.033 × 10−1 B9 −2.39×104 1.00 6.00 × 10−33 Figure 7(a9)
A10 9.042 × 10−1 B10 1.58 × 102 1.00 8.94 × 10−46 Figure 7(a10)
A11 2.131 × 10−1 B11 −2.74×103 9.80×10−1 1.13 × 10−16 Figure 7(a11)
A12 7.869 × 10−1 B12 2.74 × 103 9.98×10−1 8.16 × 10−27 Figure 7(a12)
A13 1.226 B13 −8.36×106 9.98×10−1 1.55 × 10−25 Figure 7(a13)
A14 3.691 × 10−1 B14 2.02 × 107 1.00 6.83 × 10−32 Figure 7(a14)
A15 2.351 × 101 B15 5.12 × 105 9.97×10−1 2.86 × 10−24 Figure 7(a15)

HJ A1 1.900 × 103 B1 2.33 × 107 1.00 3.46 × 10−46 Figure 7(b1)
Probe A2 9.883 × 10−1 B2 3.88 × 105 1.00 3.69 × 10−62 Figure 7(b2)

A3 9.750 × 10−1 B3 −1.76×104 1.00 6.81 × 10−52 Figure 7(b3)
A4 8.131 × 10−1 B4 −2.44×104 1.00 1.12 × 10−41 Figure 7(b4)
A5 9.455 × 10−1 B5 −2.44×104 1.00 8.30 × 10−36 Figure 7(b5)
A6 5.449 × 10−2 B6 2.44 × 104 9.56×10−1 1.15 × 10−13 Figure 7(b6)
A7 5.763 × 102 B7 −3.57×107 9.99×10−1 6.14 × 10−27 Figure 7(b7)
A8 9.892 × 10−1 B8 −3.89×105 1.00 6.68 × 10−54 Figure 7 (b8)
A9 7.288 × 10−1 B9 1.58 × 105 9.88×10−1 7.30 × 10−19 Figure 7(b9)
A10 7.946 × 10−1 B10 2.81 × 104 1.00 5.98 × 10−33 Figure 7 (b10)
A11 9.341 × 10−1 B11 −6.04×104 1.00 7.79 × 10−34 Figure 7 (b11)
A12 6.595 × 10−2 B12 6.04 × 104 9.52×10−1 2.69 × 10−13 Figure 7(b12)
A13 1.503 B13 2.58 × 1007 9.89×10−1 5.80 × 10−19 Figure 7(b13)
A14 3.576 × 10−1 B14 6.61 × 107 9.98×10−1 1.75 × 10−25 Figure 7(b14)
A15 2.761 × 101 B15 −1.12×107 9.35×10−1 3.83 × 10−12 Figure 7(b15)

NLJ A16 1.016 B16 2.52 × 103 1.00 1.85 × 10−15 Figure 8(a)
(I/O)
HJ A16 0.000 B16 0.000 N/A N/A N/A
(I/O)
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Figure 7. CPU event count on executing HJ
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Figure 8. Number of disk I/O and disk I/O processing time per query
execution time

and lineitem. The parameters setting of the cost calculation
formulas is generated from the measurement values when
joining customer and orders, whose size is SF5. The I/O
processing time is added to allow a comparison with the
query execution time. The proposed cost calculation method
is compared with the measured query execution time and
the conventional method (2)(3). We evaluate whether the
selectivity where the join method is switched can be estimated
accurately. However, because the conventional method does
not support HJ, single table scans of the outer table and inner
table are used. Moreover, MariaDB, as used in this experiment,
cannot use the function to automatically select the join method,
and only the join method set by the user is selected. The
goal of this study is to accurately find the intersection point
of the NLJ and HJ graphs. As a result, in all of the cases
evaluated in this study, the proposed method was able to find
the intersection point with an accuracy of one significant figure
or better compared with the conventional method (Figure 9).

V. DISCUSSION
In the acquisition of measurement data for constructing the

cost calculation formula, since the type of counters that the
hardware monitor can collect at one time is limited to four, it is
necessary to measure many times in order to perform an accu-
rate measurement of 40 events. Therefore, a certain amount of
time must be secured for measurement. For example, it takes
about 5 hours and 30 minutes for the measurement of this
study. From the point of securing time for measurement and
the point that the CPU cost calculation formula does not need
to change the CPU cost calculation formula unless there is a
change in the hardware configuration or join operation codes
of DBMS, it is appropriate to create the proposed CPU cost
calculation formula at integrating or updating a system. Next,
in the use of the cost calculation formula, the proposed CPU
cost formula is used in the optimization process to be executed
before executing a query. The CPU cost of executing the
query is calculated from the number of records to be searched.
As shown in the reference [15] [16], in a general DBMS,
histograms representing the relationship between the attribute
value and the appearance frequency are automatically acquired
when inserting or updating records. From the histogram and
the condition of the where clause of the query, it is possible to
estimate the number of records accessed by the DBMS. In this
way, CPU costs can be calculated with only the data already
acquired by the DBMS, so cost can be calculated by the cost
calculation formula before query execution.

In this study, we have proposed a cost calculation method
for the in-memory DBMS using a disk-based DBMS. The
calculation formulas have been created using the data mea-
sured by the CPU-embedded performance monitor. The study
revealed that the proposed method estimated the intersection
point of the join methods more accurately than the conven-
tional method. We used TPC-H for measuring CPU activities.

TPC-H has the advantage that it is easy to analyze the
evaluation results because the distribution of data is uniform.
However, the actual data has a skew in the distribution of
keys. The premise of the technique in this paper is the
accuracy of selectivity. Even if the distribution of data varies,
if the selectivity is the same, the same measurement result is
obtained. Since a general DBMS acquires attribute values and
their distribution in a database in the form of a histogram when
loading data to the database, the prerequisite for application
of the proposed technique is considered to be satisfactory.
However, it is necessary to develop a technique to derive
histogram information and input it as an input parameter of
the cost formulas.

Since this technique sets parameters based on actual mea-
surements, it is difficult to deal with various patterns such as
the presence or absence of indices and complicated queries.
Although we have focused on the operation of all CPU cycles,
it is necessary for practical use to simplify the model omitting
some parameters. For the collection of statistical data, it is
conceivable that actual measurement could be performed at
the time of initial installation and parameter setting. However,
when the code of the DBMS is modified, it is difficult to
change in real time, so separate complementary technology is
required. As a breakthrough measure, it is possible to reduce
the amount of data to be verified and to reduce measurement
points.

VI. RELATED WORK
Evaluating CPU performance using the performance moni-

tor for behavior analysis of a DBMS has long been performed.
In particular, in the evaluation of the benchmark TPC-D for e
decision support systems, the L1 miss and the processing delay
due to L2 cache occupy a large part as the components of the
CPI, and it is important in terms of performance. However, it
is only used for bottleneck analysis [17].

There is research that applied a CPI calculation method
focusing on a memory reference to cost calculation (5) for an
in-memory database [18] [19]. This previous research targets
DBMS that use the load/store type memory access (Figure
1(c)).

In this research, the number of cache hits or main memory
accesses is predicted from the data access pattern of the
database, and the cost is calculated as the product of the
number of the cache hits or main memory accesses and the
memory latency. Modeling of CPI0 , which is the state that all
data exists in the L1 cache, and modeling of instruction cache
misses have not been considered in previous studies. Although
not explicitly mentioned in the literature, it was presumed
that it was impossible to reproduce and measure the state in
which all instructions and data are on the L1 cache, which is
the definition of CPI0 , by means such as a CPU-embedded
performance monitor.

VII. CONCLUSIONS AND FUTURE WORK
In this study, we have proposed a cost calculation method

for the in-memory DBMS using disk-based DBMS. We fo-
cused on a CPU pipeline architecture and classified CPU cycles
into three types based on the characteristics of operation of the
front-end and back-end. The calculation formulas are created
using the data measured by the CPU-embedded performance
monitor. In the evaluation, the difference in selectivity corre-
sponding to the intersection points of NLJ and HJ between
the calculated cost and the measured time was less than 1%;
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Figure 9. Comparison of measured results, the proposed cost model, and the conventional cost model

that is, the cost formulas can model the actual join operation
with high accuracy. As a result, by applying the proposed cost
calculation formulas, we can select the join method appro-
priately and reduce the risk of unexpected query execution
delay to users of the DBMS. In the future, we will consider
joins of three or more tables. Furthermore, we will evaluate
different generation CPUs and analyze how the differences in
CPU architecture affect the cost formulas and implement a
DBMS that automatically distinguishes CPU differences from
the analysis results and automatically corrects the parameters
for cost calculation or the calculation model itself.
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