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Abstract—This paper investigates classification of deep moon-
quakes. Because some waveforms in deep moonquake contain
much noise and small amplitude, estimating the source using
conventional means is difficult. Therefore, we use machine
learning based on waveform similarity to estimate the seismic
sources of moonquakes. However, when the source of moonquake
is unknown, the arrival time to the observation points is not
determined. Therefore, cutting the S wave of a moonquake based
on the arrival time is difficult. To classify waveforms for which
the arrival time is not determined, we use long waveform from
the start time of event, which might contain the arrival time.
Moreover, we classify 43 unlabeled moonquakes observed by
Apollo 12. As a result, labels were given with high classification
probability for many moonquakes.

Keywords–Waveform analysis; Neural Network.

I. INTRODUCTION

With the NASA Apollo mission, observation devices called
the Apollo Lunar Surface Experiments Package (ALSEP)
were installed. The Passive Seismic Experiment (PSE), one
experiment using ALSEP, is an experiment of observing moon-
quakes on the lunar surface using five seismometers. Each of
them includes three long-period instruments (one vertical and
two horizontal components) and one short-period instrument
(vertical component). Among them, using 1-4 seismometers
(Apollo 12, 14, 15, 16), records of moonquakes were kept for
about seven and a half years.

The moonquake data observed by PSE are still being
analyzed. Much knowledge has been gained for the prediction
of the cause of occurrence, the degree of activity, and the
internal structure of the Moon [1] [2]. Based on the depth
and factors, moonquakes have four types: artificial impacts,
natural impacts, shallow moonquakes, and deep moonquakes.
Deep moonquakes are the most numerous types of events [3]
recorded by the PSE. Moreover, deep moonquakes are known
to occur periodically from the same source. Waveforms [4] of
moonquakes of the same source are similar [5] [6].

To analyze the substances constituting the Moon and the
Moon ’s internal structure, some researches try to estimate
the source of the deep moonquakes. As a result, labels repre-
senting the source are assigned to a part of the observed deep

moonquake. The labeled deep moonquake is published in a
moonquake event catalog [7]–[9].

Although waveforms observed at three observation points
are used generally to estimate sources, the number of such
waveforms is few. Previous researches estimate sources by vi-
sual inspection and similarity of waveforms. The most current
event catalog still lists events selected from the data in this
manner. A combination of waveform cross correlation and
single-link cluster analysis performed on this catalog [10].
However, many events are difficult to classify into existing
sources because of the noise and other hindrances. In fact, the
catalog has more than 300 undefined deep moonquake tremors
that have not been identified, and more than 3,300 unknown
types of moonquakes. To solve this problem, it is necessary
to discover applicable features to classify the waveforms into
the sources. Therefore, in this study, we specifically examine
machine learning as a new classification method for deep
moonquake sources. In addition, if we manually label large
amounts of data that are not labeled, then analytical processing
takes enormous amount of time. However, it is assumed that
it can be automated using machine learning.

In this study, the source estimation of deep moonquakes is
regarded as a multi-class classification problem. Labeled events
are regarded as learning data. We have studied a method to
classify sources of deep moonquake automatically and assign
labels to deep moonquakes.

Because Kikuchi et al. [11] indicated that Neural [12] has
the highest classification performance of deep moonquakes,
we used Neural Network to classify the moonquakes. Neural
Network outputs the output class with a probability. Therefore,
in this study, we labeled the probabilities of deep moonquakes.

Because the source is unknown and S / N is low, it is
unclear when the wave arrives. Therefore, we apply some
estimation method of arrival time of the moonquakes, and
evaluate the classification of these based on the estimated time.

The structure of this paper is the following. Section 2
presents a description of related studies. Section 3 presents a
description of the method, results, and discussion of determin-
ing the waveform classification method for unclassified events.
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Section 4 presents a description of the method, results, and
discussion of classification of unclassified events. Section 5
presents a description of the summary and future tasks of this
paper.

II. RELEVANT STUDIES

A. Studies of moonquake classification
Some studies have been conducted to estimate sources

of deep moonquakes. Nakamura [13] used a combination of
waveform cross-correlation and single-link cluster analysis for
deep moonquake events and estimated the source manually
based on the results. In addition, Bulow [14] devised pre-
processing methods and discovered new events. First, noise
included in the waveform was removed using a band pass
filter in a process known as despiking. Next, they performed
clustering with cross-correlation as similarity. Consequently,
many deep moonquakes were newly discovered and labeled.
Actually, A1 found many deep moonquakes. Particularly, it
has been found that many deep moonquakes of A1 have
remarkable features. The estimation results of these two studies
are reflected in the lunar event catalog. Endrun [15] uses
Hidden Markov Model to classify more than 50% of the
unclassified deep moonquakes of Apollo 16 and proposes
those labels. Moreover, in that study, more than 200 new deep
moonquake events were discovered. In this study, we attempt
to classify the sources of deep moonquakes using Neural
Networks, which have attracted much attention in recent years.

Some studies convert conversion of moonquake data to
a power spectral density (PSD). The PSD is the amplitude
intensity calculated for each frequency component. Goto [16]
et al. compare the classification performance using four fea-
tures: PSD, its envelope, the envelope of the waveform, and
conversion to PSD. Among them, a feature quantity with high
classification performance is the conversion of the waveform
to PSD. Therefore, in this paper, we use PSD as a feature
of the classification. Research by Kato [17] et al. is a study
that converts waveforms into PSD and performs clustering. In
the research, the cutout time from the P wave arrival time
is changed. Classification is performed using the PSD. As a
result, the classification performance was highest immediately
after the P wave arrival time. In this study, PSD from P wave
arrival time is used as training data.

III. DETERMINATION OF WAVEFORM CLASSIFICATION
METHODS FOR UNCLASSIFIED EVENTS

In this section, we describe a method to classify waveforms
of unclassified event. As described before, the arrival time of
the unclassified event is unknown. Therefore, we propose the
classification procedure of the event even if the arrival time of
the unclassified event is unknown.

A. Experiment method
In this section, we describe datasets, feature quantity,

evaluation index, and classification methods of waveforms of
unclassified events. In this research, from a study by Kikuchi
et al. [11], we use Neural Network, which has the highest
classification performance of moonquakes, to classify the lunar
earthquake. Neural Network is a machine-learning algorithm
produced by various researchers [12]. In image contest [18] in
2012, since Hinton et al. first used this method, attention has
been devoted to its effectiveness. Neural Network changes the

value of input data in each neuron using weights and activation
functions. Moreover, the output of the output layer is compared
with the correct solution data to calculate an error. The
weight is updated by back-propagating the error. Consequently,
Neural Network learns. For this research, we use multilayer
perceptron, which is a kind of Neural Network. The multilayer
perceptron performs linear classification only in two layers: the
input layer and the output layer. Adding an intermediate layer
makes it possible to perform nonlinear classification. In this
study, to perform multi-class classification, cross entropy was
used for the error function of the output layer. A soft-max
function was used as the activation function. The soft max
function is a function for making classes of classification into
a probability distribution by setting the sum of output values
to 1. The number of neurons in the output layer was set to 9,
which is the number of classes of classification to be done in
this study.

1) Dataset: In this paper, we only use the deep moon-
quakes, for which there are a particularly large number of
events [19]. Moonquake data are recorded as components in
three directions of the X axis, Y axis, and Z axis. In this
research, because the data of the long-period seismograph are
used, the three components of X axis, Y axis, and Z axis are
expressed respectively as LPX, LPY, and LPZ. In addition,
because the waveform of the moonquakes includes much
noise, the seismic source in this study is classified using the
waveform to which preprocessing is applied. As preprocessing,
average subtraction, trend subtraction, band pass filter of 0.3–
1.5 Hz, and spike removal processing were performed. An
example of the lunar wave waveform after preprocessing is
shown in Figure 1 for each of the three components. In Figure
1, the horizontal axis shows time. The vertical axis shows
amplitude. From Figure 1, it is apparent that the waveform
differs depending on the difference in components in one event.
According to an earlier study [11] conducted by the authors,
we use LPZ data also in this research because the classification
performance in case of using LPZ was high.

For this research, we use only the moonquake data ob-
served by Apollo 12, for which the observation period was long
and the number of events was large. Our dataset consists of 9
sources with 50 and more events labeled. The label assigned
by the conventional method cited the catalog. Seismometers of
two types, peak mode and flat mode, differ depending on the
period of the moonquake observation. These two modes have
different frequency characteristics. In this study, we used only
events observed in peak mode, where the observation period
was long. The number of events for each epicenter is shown in
Table I. From Table I, the number of events is shown to differ
depending on the source. However, as shown in our earlier
study [11], classification performance was high even when the
number of events was not balanced. Therefore, we do not do
preprocessing such as balancing events.

In this study, the continuing length of the event used for
classification was set to 15 min because the classification
performance was high in a preliminary experiment and the
amount of data was reduced in our earlier research [11]. The
sampling frequency of the moonquake is 6.62514 Hz. One
point represents about 0.151 s. As a result the data of 15 min
constitute 5,962 points.

2) Evaluation criteria: In this study, we use three criterions
F-score, precision, and recall. F-score is calculated by the
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TABLE I. NUMBER OF MOONQUAKE EVENTS USED FOR THE EXPERIMENT (FOR EACH SOURCE.)

Source A1 A6 A8 A9 A10 A14 A18 A20 A23
Number of events 262 85 93 94 108 87 106 106 54
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Figure 1. Moonquake waveform example.

harmonic mean of the precision and recall score. The precision
score is the ratio of how many correct answers are included in
the classification result. The recall score is the ratio of what
was actually classified correctly among those that should come
out as a result of classification. As an example, the precision
score, recall score, and F-score of A1 when classifying events
are shown in the following equations.

Precision score =
Number correctly predicted as A1

Number predicted as A1

Recall score =
Number correctly predicted as A1

Total number of A1

F-score =
2 ∗ Precision score ∗ Recall score

Precision score + Recall score
We use the equations above to calculate the F-score for other
sources also.

3) Feature value: In this study, we use PSD using the
waveform of the moonquake. PSD is a calculation of the
amplitude intensity for each frequency component and is used
for time correlation analysis of time series data. In this study,
PSD is calculated using the Welch method. In our previous
study [11], we compared the classification performance of the
sampling number from 256 points to 2,048 points: the higher
the sampling number was, the higher the achieved classifi-
cation performance. Therefore, as a preliminary experiment,
the classification performances of 2,048 points, 4,096 points,
and 8,192 points of sampling numbers were compared. The
classification performance of 4,096 points was high, so PSD
of 4,096 sampling points was also used in this experiment.

4) Waveform classification method of unclassified events:
In this section, we describe the approach for classifying the
waveforms for which the arrival time is unknown. Since arrival
time is not able to be used for the classification, we use
segments, which might contain correct arrival time, extracted

from the waveform of event. The segments consist of divided
waveforms by 15 minutes. We divide waveforms segments by
15 minutes in accordance with previous research [11]. As a
result, the evaluation data contains 30,000 points from the
start time of the event. We compare five approaches for the
classification as presented below.

Method 1
We classify the waveforms based on center of the
time at which the amplitude is the largest.
In this method, we set waveform of 15 min from
7 min and 30 s before the maximum amplitude.

Method 2
We divide the waveform into segments, and clas-
sify them all into a source. We regard the largest
number of label as the label of waveform.
Figure 2 is an image diagram when one waveform
is divided into segments. Figure 3 shows an image
for which waveforms divided into segments as
shown in Figure 2 are labeled by Methods 2,
3, and 4. In Figure 3, a classification probability
and a label based on that were assigned to each
segment.

Method 3
We divide the waveform into segments, and clas-
sify them all into a source. We regard the highest
classification probability as the label of waveform.

Method 4
We divide the waveform into segments, and clas-
sify them all into a source. We regard the highest
value in the average of classification probability
as the label of waveform.

Method 5
We classify the waveform using the waveform
after the arrival time specified by preliminary
experiments.
For determination of a specific segment of method
5, waveforms to be used as evaluation data are
divided into segments and are classified using seg-
ments of the same time. Moreover, classification
is performed using the segment of the time with
the largest F-score.

The segment was shifted by 10 points; the 15-minute waveform
was regarded as one segment. Methods 2, 3, and 4 differ in
their methods of classifying the results of all segments into
classification results of one waveform. To ascertain the method
of classifying waveforms of unclassified events, we conducted
five cross validations using events with a known source.

Unclassified events are classified using the method with the
highest F-score among these five methods.

B. Results and discussion
In this section, we use each method described in Section

III-A4 to classify the moonquakes and to evaluate their clas-
sification performance.
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Figure 2. The waveform image divided into segments.

A1 A6 A8 A9 A10 A14 A18 A20 A23 label

segment1 55% 10% 5% 5% 10% 1% 1% 5% 8% A1

segment2 10% 5% 10% 2% 9% 2% 2% 2% 58% A23

segment3 70% 4% 2% 1% 2% 1% 10% 5% 5% A1

max 80% 30% 20% 10% 70% 5% 40% 40% 90% A23

average 10% 5% 5% 10% 50% 3% 4% 3% 10% A10

・ 
・ 
・

Method2
the label of source is the most  
frequent label in each segments.

Method3
the label of source is the  
highest probability label  
in each segments.

Method4
the label of source is the highest  
average label of each labels

Classification probability per segment (example)

The label of the segment is a label  
with a high classification probability.

Figure 3. Images of Method 2, Method 3, Method 4 in Section III-A4I.

TABLE II. HYPERPARAMETERS OF THE NEURAL NETWORK.

Number of neurons Activation function Optimization function Dropoutfirst layer second layer third layer fourth layer
1,500 1,000 500 250 tanh Adam Yes

1) Determination of hyperparameters: The Neural Net-
work used for the classification of the lunar earthquake in
this study has an arbitrarily determinable value called a hy-
perparameter. To improve the classification performance, it
is necessary to adjust the hyperparameter and to construct a
classifier that is optimal for the dataset.

Preliminary experiments determine hyperparameters such
as the number of neurons of the middle layers, number of
layers, activation function, optimization function, presence or
absence of dropout. In this study, we change the parameters
of numbers of neurons in the middle layer, numbers of layers,
activation function, optimization function, presence or absence
of dropout, and compare performance of the classfication
result. An appropriate hyperparameter is determined by finding
the highest F-score for each classification result. First, the
number of neurons in the first middle layer is determined.
The number of neurons used for this study is the number of
neurons at the time when fluctuation of the F-score of the
classification result disappears because of the increase in the
number of neurons.

Second, the number of middle layers and the number of
neurons in the added middle layer are determined. We increase
the number of layers in the middle layer and increase the
number of layers if the F-score of the classification result rises.
At this time, for the newly added layer, the number of neurons
is determined in the same way as in the case of the first layer.
These are repeated until there is no increase in the F-score of
the classification result.

Third, we determine various functions to be applied to each
layer. Classification is performed using one of the activation
functions such as sigmoid, tanh, and ReLU, and a function
with the highest F-score is applied to each layer.

With Neural Network, there is a technique called Dropout
that stops the operation of some neurons randomly selected
during learning. Using this, it is robustly learned and its
effectiveness is improved. Dropout was applied to the middle

TABLE III. F-SCORE OF CLASSIFICATION RESULT OF EACH
METHOD.

Method name F-score
Method 1 0.31
Method 2 0.21
Method 3 0.30
Method 4 0.19
Method 5 0.68

layer of Neural Network because it was observed that over-
learning was occurring as a result of classification without
Dropout.

Finally, the optimization function is determined. Classi-
fication was performed using each of Adam [20], AdaGrad
[21], AdaDelta [22], and SGD as optimization functions. The
optimization function with the highest F-score of its classifica-
tion result was used for this study. Table II shows parameters
applied to Neural Network, as determined by tuning.

Implementation of Neural Network used Chainer [23],
which is a module of Python.

2) Classification results of respective methods and discus-
sion: After the tuning of Section III-B1, the dataset of the
moonquake was classified using the five methods of Section
III-A4. Then, we compare their classification performances.
Table III shows the F-score obtained as a result of the classifi-
cation. The values in the table are averages of those calculated
for each source. From Table III, when classification was done
using method 5, the F-score was the highest result. Method 5
is a method of determining the segment with the highest F-
score and classifying it using the waveform from that time. As
in Method 2, Method 3, and Method 4, because all segments
are not considered in classification, Method 5 does not affect
the segment of noise. Therefore, the F-value of Method 5 is
regarded as being higher than these methods.
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Figure 4. F-score of classification in the same time segment between events.

Figure 4 shows visualization of F-score using method 5
for each segment. The horizontal axis of Figure 4 represents
the segment number. Because the segments that shifted by
10 points are made, the waveform of 30,000 points is 3,000
segments. Because the segment is made from the event start
time, the origin is the segment immediately after the event is
started. Figure 4 shows that the F-score near the 160th segment
was high and the 167th segment was the highest F-score. In
other words, the classification performance of the segment
after 1,670 points (252.07 s) from the event start time was
the highest. For each source used for classification this time,
the median value of the P wave arrival time from the event
start time is 1,583 points (238.94 s). The minimum is 1,523
points (229.88 s). This time 1,670 points (252.07 s) are close
to the two values. It seems reasonable to observe the highest
F-value near 1,670 points (252.07 s) by these factors.

Table III shows that Method 1 for classifying waveforms
using the waveform centered at the largest amplitude caused
a low F-score. The classification performance is low, because
the part with the largest amplitude of the waveform is hidden
by noise.

Method 2, Method 3, and Method 4, for which waveforms
are divided into segments and classification is performed
considering all the segments, also produced a low F-score in
Table III. Method 2 is a method of using the label which is
the largest in the classification result of each segment as the
label of the waveform. Using this method, it seems that since
the waveform contains many noise segments, the label of the
segment of noise is better than the label of less S wave by
majority decision. Therefore, the classification performance of
Method 2 was low.

Method 3 is a method of using the label with the largest
classification probability of all segments as the label of the
waveform. Similarly to Method 2, it seems that there is a noisy
segment that has a high classification probability, and that the
label influenced the classification result. However, we assume
Method 3 is attributable to one segment. Compared to Method
2 and Method 4, because it was not influenced by noise, it
is considered that the F-value was higher than Method 2 and
Method 4. Method 4 is a method by which the label having
the largest average classification probability of each segment

TABLE IV. CLASSIFICATION RESULT OF UNCLASSIFIED EVENTS
(RANKING TOP 5).

Event Source Classification probability
1974-06-28-13:49 A1 0.99993
1972-12-09-01:39 A10 0.99992
1972-05-10-07:43 A1 0.99985
1972-05-15-18:06 A20 0.99982
1977-04-27-15:41 A10 0.99944

TABLE V. NUMBER OF UNCLASSIFIED EVENTS CLASSIFIED IN
EACH SOURCE.

Source Number of events
A1 7
A6 3
A8 12
A9 1

A10 11
A14 2
A18 4
A20 3
A23 0

is used as the waveform label. Similarly to Method 2, it seems
that since there were many segments of noise in the waveform,
when calculating the average, the influence of noise was much
received. Therefore, the classification performance of Method
4 was low. In other words, Method 2, Method 3, and Method 4,
which are methods using all segments, are regarded as having
lowered classification performance because there were many
segments for which noise dominates the waveform used for
classification.

IV. CLASSIFICATION OF UNCLASSIFIED EVENTS

In this section, we classify unclassified deep moonquakes
using the method with the highest classification performance
determined in Section III.

A. Experiment procedure
The same data as those in Section III were used as training

data in this experiment. Unclassified events are 43 events
observed in Peak mode at Apollo 12 point, known as a deep
moonquake. Then, the same preprocessing as that used in
Section III-A1 was applied; LPZ data were used. Moreover, as
explained in Section III, the 15-minute waveform after 1670
points from the event start time was used. These are converted
to PSD and are classified by a neural network.

B. Results and discussion
Table IV presents the ranking in descending order of

event classification probability as a result of classification of
unclassified moonquakes using neural networks. The event
with the highest classification probability is the event of 1974-
06-28-13: 49. It was classified into A1 with the probability of
about 1.00. Figure 5 shows this event of 1974-06-28-13: 49.
Figure 6 presents an example of the event of A1 in which the
event of 1974-06-28-13: 49 is classified. The red lines in Figure
5 and Figure 6 refer to 1670 points of waveform arrival time
determined in Section III. Even comparing Figure 5 and Figure
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Figure 5. Event with the highest classification probability
(1974-06-28-13:49).
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Figure 6. Example of waveform of A1 (1975-04-23-12:05).

6, it is difficult to classify the unclassified waveform by the
naked eye. However, as presented in this report, classification
by machine learning is considered to be a new proposal of
classification. The associated human cost can be reduced.

Figure 7 presents the classification probability of each
event. The horizontal axis is the event number. It is in the
order in which the event occurred. The vertical axis is the
classification probability. Figure 7 shows that the classification
probability is high overall. Moreover, Table V shows the
number of each label in this classification. Among the sources,
A8 has the largest number of events classified; A23 has none
of the events classified.

However, some problems exist with the results of the
classification. This is caused by the following limitations in
our experiments. Some of unlabeled event might happen from
undiscovered sources. Also, we use a part of sources as dataset
in those experiments, since the small number of events is
difficult to train in neural networks. Therefore, the correct
source of some events does not exist in our dataset.

There are also preprocessing problems. Figure 8 presents

Event number
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Figure 7. Classification probability of each event.
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Figure 8. Example of event used for classification (1972-05-20-08:45).

an example of the event used for classification this time.
Figure 8 shows that the amplitude of the waveform fluctuates
greatly at regular time intervals. Parts with large amplitude
and small parts are regarded as formed because despiking of
preprocessing deletes a large value for a certain period of time
and linearly interpolates. In other words, a waveform exists
with an error in the waveform information at the stage of
preprocessing. More accurate classification might be achieved
by reviewing pretreatment methods or using a waveform to
which preprocessing is not applied.

V. CONCLUSION

As described in this paper, moonquake sources were clas-
sified using neural networks. To examine the classification
method of the event where the arrival time of the moonquake
is unknown, the classification performance of several methods
was compared. Results show that the method with the highest
classification performance was to divide the waveform into
segments and to classify them using specific segments. That
particular segment was the segment with the highest classifi-
cation performance, as a result of classification of segments
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by simultaneity. Moreover, the start time of the segment is
the arrival time of the waveform. Additionally, we classified
unclassified events using this method. We proposed a new
classification result by machine learning of unclassified events
for which classification is difficult to accomplish by the naked
eye.

Future tasks include expansion of the source to be clas-
sified. The classifiers used for this study can only classify
sources used for teaching data. However, because sources other
than teaching data of this study include few events, it is difficult
to regard each source as one class. It is necessary to devise
a means by which all sources except the teaching data of
this study are regarded as one class. As a result, a more
accurate classification is possible. Throughout this study, if
the location of the source of the event which has not been
classified to date is decided, then the number of events of
each source will increase. Results show that the occurrence
cycle of deep moonquake is reviewed. Further constraints are
imposed on the mechanism of occurrence of the moonquake.
Moreover, depending on the source, by increasing the number
of observation points, the source position can be ascertained
accurately from the runtime data.
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