
3D Model Representations and Transformations
in the Context of Computer-Aided Design:

a State-of-the-Art Overview

Christoph Schinko, Ulrich Krispel, Eva Eggeling, and Torsten Ullrich
Institute of Computer Graphics and Knowledge Visualization, Graz University of Technology

& Visual Computing, Fraunhofer Austria Research GmbH, Austria
email: { christoph.schinko, ulrich.krispel, eva.eggeling, torsten.ullrich } @fraunhofer.at

Abstract—Within a virtual world, either in virtual reality or in a
simulation environment, the digital counterparts of real objects
are described by mathematical and computational models. De-
pending on the purpose, the field of application, and the used tool-
chain a wide variety of model representations is established. As a
consequence, conversion methods and transformation algorithms
are becoming increasingly important. This article gives a state
of the art overview on model representations and on the most
important transformation techniques.

Keywords–3D Model Representations; 3D Transformations

I. INTRODUCTION

Many different ways of model descriptions are available, tai-
lored to the requirements in their respective areas of research.
In the context of Computer-Aided Design (CAD), the model
description of a digital counterpart of a real object is called a
shape description. At this point, it is important to emphasize
that there are differences in the process of shape perception
between human beings and computers. For a computer, the
task of shape classification heavily depends on the underlying
description. Even after successfully classifying shapes, a com-
puter is yet not aware of the meaning of shape, as discussed
by Sven Havemann et al. in their work [1]. For the description
of shape, it is important to be aware of these differences, even
if shape classification is not in the context of this article.

The following sections describe the model representations
(Section 2), transformation (Section 3) and Level-of-Detail
(Section 4) techniques, as well as semantic enrichment meth-
ods (Section 5).

II. MODEL REPRESENTATIONS

In dictionaries, shapes are described by words forming a tex-
tual definition. For a human being, this description is sufficient
enough to easily recognize the described shape when seeing
it. The precondition for this accomplishment of the human
brain is a basic understanding of the terms and definitions
used in the description. From a computer science point of
view, this definition is of a rather abstract nature representing a
difficult basis for creating detectors. A computer program relies
on more formal, mathematical definitions. In the context of
CAD and Computer-Aided Manufacturing, a shape model has
to be complete and has to comprehend all needed information.
For these purposes, volumetric and boundary-/surface-based
representations are used.

A. Point Sets
Points are a basic primitive to describe the surface of a
shape [2]. A point set is a list of points defined in a coordinate
system. While points are not the primitive of choice when

using 3D modeling software to create shapes, they are widely
used by 3D scanners due to the nature of their measurements.
A point set is the outcome when measuring a large number of
points on an object’s surface.

For rendering approaches of point sets, the literature survey
by Markus Gross and Hanspeter Pfister offers in-depth expla-
nation [3]. The creation of another shape representation from
point set data is called shape reconstruction.

B. Polygonal Faces
A very common representation to describe a shape’s surface
is to use a mesh of polygonal faces. The accuracy of the
representation heavily depends on the shape’s outline and
is directly affected by the number of faces. A cylinder, for
example, cannot be accurately represented by planar faces – it
can only be approximated. This limitation is often outweighed
by its advantages in the field of CAD:

• Computer graphics hardware is tailored towards pro-
cessing polygonal faces – especially triangles. This
is the reason why many of the other shape represen-
tations are converted into polygonal meshes prior to
rendering.

• A lot of tools and algorithms exist to create, process
and display polygonal objects [4] [5].

The data structures for storing polygonal meshes are numerous.
In a very simple form, a list of coordinates (x,y,z) representing
the vertices of the polygons can be used. The de-facto standard
data interface between CAD software and machines (e.g.
milling machines, 3D printers, etc.) is the stereolithography file
format (STL). It simply consists of a triangle list specifying
its vertices. While this data structure is sufficient for some
manufacturing purposes, it may not satisfy the needs of a
3D modeler for editing. More sophisticated data structures re-
producing hierarchical structures (groups, edges, vertices) and
adding additional attributes like normals, colors and texture
coordinates provide a remedy. The problem of traversing a
mesh can be tackled by introducing vertex-, face- and half-
edge-iterators. A half-edge is a directed edge with references
to its opposite half-edge, its incident face, vertex and next
half-edge. By defining operations using this data structure, it
is possible to conveniently traverse a mesh [6].

C. Parametric Surface Representations
A parametric representation of a shape’s surface is defined
by a function f : Ω → S mapping a 2D parameter domain
Ω ⊂ IR2 to the surface S = f(Ω) ⊂ IR3. As any surface can be
approximated by polynomials, the concept of polynomial sur-
face patches has gained currency in the CAD domain [7] [8].

10Copyright (c) IARIA, 2017. ISBN: 978-1-61208-548-7

MMEDIA 2017 : The Ninth International Conferences on Advances in Multimedia

The idea is to split the function domain into smaller regions.
Each surface patch, henceforth called patch, is described by a
distinct parametric function approximating the local geometry
of the patch [9].

1. Bézier Surfaces
A Bézier surface is a three-dimensional surface generated from
the Cartesian product of two Bézier curves [10]. A Bézier
surface of degree (m,n) is defined as a parametric function
f(u, v) =

∑m
i=0

∑n
j=0 bijB

m
i (u)Bn

j (v). It is evaluated over
the unit square (u, v) ∈ [0, 1] × [0, 1] with the control points
bij using the Bernstein polynomials Bn

i (t) =
(
n
i

)
ti(1− t)n−i

of degree n, for t ∈ [0, 1].
In CAD, Bézier surfaces are often used in the form of bi-

cubic Bézier patches, i.e., a set of 4× 4 points represents the
control mesh and is responsible for the shape of the surface. In
all cases, Bézier curves and surfaces have important properties:

• A Bézier surface fulfils the partition of unity property,
i.e.,

∑m
i=0

∑n
j=0B

m
i (u)Bn

j (v) = 1, thus the relation-
ship between a Bézier surface and its control mesh is
invariant under affine transformations.

• A Bézier surface is contained within the convex hull
of its control mesh and the four corner points of the
control mesh are interpolated by the Bézier surface.

• A Bézier surface exhibits four boundary curves being
Bézier curves themselves and their control points are
the boundary points of the control mesh.

• The control points do not exert local control alone.
Moving a single control point affects the whole sur-
face. Geometric continuity (e.g. G1, G2) between
patches can only be achieved by satisfying constraints
on the control points’ positions.

2. Rational Bézier Surfaces
The idea behind rational Bézier surfaces is to add adjustable
weights to extend the design space of shapes [11]. In contrast
to a Bézier Surface, which can only approximate spheres
and cylinders, the rational Bézier Surfaces can describe them
exactly – a very important property in CAD. A rational Bézier
surface of degree (m,n) is defined with the control points bij ,
the weights wij , and the Bernstein polynomials Bm

i (u) and
Bn

j (v) as

f(u, v) =

∑m

i=0

∑n

j=0
wijbijB

m
i (u)Bn

j (v)∑m

i=0

∑n

j=0
wijBm

i
(u)Bn

j
(v)

.

3. B-spline Surfaces
B-spline surfaces exhibit advantages when joining patches
under continuity requirements. Let m,n, k, l ∈ IN with n ≥ k
and m ≥ l. Then, a B-spline surface of degree (l, k) is
defined as f(u, v) =

∑m
i=0

∑n
j=0 dijN

l
i (u)Nk

j (v), with the
basis functions N0

i (t) = 1, if ti ≤ t < ti+1; and 0, otherwise
and Nr

i (t) = t−ti
ti+r−tiN

r−1
i (t) + ti+1+r−t

ti+1+r−ti+1
Nr−1

i+1 (t) for
1 ≤ r ≤ n and a nondecreasing sequence of knots, a so-called
knot vector, T = {t0 ≤ · · · ≤ tn ≤ · · · ≤ tn+m+1}.

It can be evaluated over (u, v) ∈ [ul, um+1[×[vk, vn+1[
with the control points dij and the polynomials N l

i (u) and
Nk

j (v). The control points dij forming the control polygon are
called de Boor points. In computer graphics, B-spline surfaces

are typically used in the form of bi-cubic B-spline patches
with 4 × 4 control points per patch. B-splines with knots ti
satisfying the condition t0 = 0 and ti+1 = ti or ti+1 = t1 +1,
(i = 0, . . . , n+m) are called uniform B-splines.

B-spline surfaces satisfy properties similar to Bézier sur-
faces [10]. (1) The relationship between a B-spline surface
and its control mesh is invariant under affine transformations.
(2) A B-spline surface is contained within the convex hull
of its control mesh. (3) In contrast to Bézier surfaces, the
control points exert local control – if a control point is moved,
only the local neighbourhood is affected and (4) by choosing
appropriate knot vectors, a B-spline surface can become a
Bézier surface.

4. NURBS Surfaces
The combination of rational Bézier techniques and B-Spline
techniques leads to non-uniform, rational B-Splines, NURBS
for short [12]:

Let m,n, k, l ∈ IN with n ≥ k and m ≥ l. Additionally,
let w00, . . . , wmn ∈ IR, u = (u0 . . . um+l+1)T and v =
(v0 . . . vn+k+1)T be two knot vectors and d00, . . . , dmn ∈ IR3.
Then, a non-uniform, rational B-spline (NURBS) surface of
degree (l, k) is defined as

f(u, v) =

∑m

i=0

∑n

j=0
wijdijN

l
i (u)N

k
j (v)∑m

i=0

∑n

j=0
wijN l

i
(u)Nk

j
(v)

.

over (u, v) ∈ [ul, um+1[×[vk, vn+1[with the control points
dij , the polynomials N l

i (u) and Nk
j (v), the knot vectors u

and v for the de Boor points d00, . . . , dmn and the weights
w00, . . . , wmn. Similar to B-spline patches, NURBS surfaces
are commonly used in computer graphics in the form of bi-
cubic NURBS patches.

B-spline surfaces and Bézier surfaces are special cases of
NURBS surfaces [13]. If all weights are equal, a NURBS
surface becomes a B-spline surface. Additionally, when all
knot vectors are chosen appropriately, the B-spline surface
becomes a Bézier surface.

A common way to model arbitrarily complex smooth
surfaces is to use a mesh of bi-cubic NURBS patches. Regular
meshes consisting of bi-cubic patches formed by vertices of
valence four can be seen as connected planar graphs. A direct
consequence of the Euler characteristic for connected planar
graphs with the aforementioned properties is that such meshes
must be topologically equivalent to an infinite plane, a torus,
or an infinite cylinder - all other shapes cannot be constructed
unless using trimming or stitching. The resulting surfaces offer
precise feature control at the cost of computational complexity
due to trimming and stitching [14].

D. Subdivision Surfaces
Subdivision surfaces are the generalization of spline surfaces to
arbitrary topology. Instead of evaluating the surface itself, the
refinement of the control polygon represents the subdivision
surface. There are many different subdivision schemes, e.g.,
Catmull-Clark [15], Doo-Sabin [16], Loop [17], Kobbelt [18],
etc.

The subdivision scheme presented by Edwin Catmull and
Jim Clark is a generalization of bicubic B-Spline surfaces to
arbitrary topology [15]. The set of 4 × 4 control points pij

11Copyright (c) IARIA, 2017. ISBN: 978-1-61208-548-7

MMEDIA 2017 : The Ninth International Conferences on Advances in Multimedia

forms the starting mesh for an iterative refinement process
where each step results in a finer mesh.

Subdivision surfaces are invariant under affine transfor-
mations. They offer the benefit of being easy to implement
and computationally efficient. Only the local neighbourhood
is used for the computation of new points. A major advantage
of subdivision surfaces is their repeated refinement process –
level-of-detail algorithms are always “included” by design.

E. Implicit Surface Representations
In contrast to the parametric surface representations described
above, implicit surfaces, are defined as isosurfaces by a func-
tion IR3 → IR [19]. Therefore, similar to voxels, a surface is
only indirectly specified. A simple 3D example of an implicit
surface is the following definition of a torus with major radius
R and minor radius r

f(x, y, z) = (x2 + y2 + z2 +R2 − r2)2 − 4R2(x2 + y2) = 0.

Inside and outside of the surface is defined by f(x, y, z) < 0,
respectively f(x, y, z) > 0. While a parametric description of
the torus exists, many implicit surfaces do not have a closed,
parametric form. In terms of expressiveness, implicit surfaces
are more powerful than parametric surfaces [20].

Drawbacks of implicit surfaces are the inherent difficulty of
describing sharp features (unless trimming is used) or finding
points on the surface. However, this representation has several
advantages. Efficient checks whether a point is inside a shape
or not are possible. Surface intersections, as well as boolean
set operations can also be implemented efficiently. Since the
surface is not represented explicitly, topology changes are
easily possible.

Implicit surfaces can be described in algebraic form (see
the example of the torus), as a sum of spherical basis functions
(so called blobby models), as convolution surfaces (skeletons),
procedurally, as variational functions, or by using samples. The
latter approach directly relates to volumetric shape descrip-
tions.

F. Volumetric Shape Descriptions
Volumetric approaches can be used to indirectly describe a
shape’s surface. In contrast to surface-based descriptions, they
define the surface to be a boundary between the interior and the
exterior of a shape. However, the idea behind these approaches
is not so much a description of a shape’s surface, but a
description of the entire volume.

1. Voxels
Data sets originating from measurements do not have con-
tinuous values and are limited to the points in space where
measurements have been collected. It is very common that
data points form a uniform regular grid. Such data points
in 3D are known as voxels, a name related to their 2D
counterparts: the pixels. Since a voxel represents only a single
point on the grid, the space between voxels is not represented.
Depending on the area of application, the data point can be
multi-dimensional, e.g., a vector of density and color. Due
to the fact that position and size of a voxel are pre-defined,
voxels are good at representing regularly sampled spaces. The
approximation of free-form shapes suffers from this inherent
property. Voxel representations do not suffer from numerical

instabilities as they are typically defined on an integer grid. A
major drawback of voxel representations is the amount of data
needed for storage.

Typical use cases are the visualization and analysis of
medical data (medical imaging) acquired from sources like
Computed Tomography (CT), Magnetic Resonance Imaging
(MRI), or 3D ultrasonography.

2. Convex Polytopes
Shapes can be described as geometric objects with flat sides
– so called polytopes. They are defined in any dimension
as n-dimensional polytopes or n-polytopes. Two-dimensional
polygons are called 2-polytopes and three-dimensional poly-
topes are called 3-polytopes. A special case of a polytope is
a convex polytope having the additional property of being a
convex set of points in n-dimensional space IRn, respectively
in n-dimensional Euclidean space IEd. Convex polytopes can
be defined over their convex hull, or by the intersection of
half-spaces.

Branko Grünbaum and Geoffrey C. Shephard define a con-
vex polytope as the convex hull of any finite set of points in
Euclidean space IEn (n ≥ 0) [21]. A set S ⊆ IEd is convex, if
for any pair of points x, y ∈ S, the line segment λx+(1−λ)y
with 0 ≤ λ ≤ 1, lies entirely in S. For any set S, the smallest
convex set containing S is called the convex hull of S. A
definition relying on the convex hull of a set of points is called
a vertex representation.

Convex polytopes can also be defined as the intersection of
a finite number of half-spaces [22]. Because of the fact that the
intersection of arbitrary half-spaces need not be bounded, this
property must be explicitly required. An algebraic formulation
for convex polytopes consists of the set of bounded solutions
to a system of linear inequalities. Hence, a closed convex
polytope can be written as a system of linear inequalities. Open
convex polytopes are defined similarly with strict inequalities
instead of non-strict ones [23].

A limitation of convex polytopes is the inherent restriction
to represent convex geometry only. The representation of non-
convex geometry is possible through composition of convex
polytopes. Topologically, convex polytopes are homeomorphic
to a closed ball.

3. Constructive Solid Geometry
Constructive solid geometry (CSG) is a technique to create
complex shapes out of primitive objects. These CSG primi-
tives typically consist of cuboids, cylinders, prisms, pyramids,
spheres and cones. Complex geometry is created by instantia-
tion, transformation, and combination of the primitives. They
are combined by using regularized Boolean set operations like
Union, Difference and Intersection that are included in the
representation. A CSG object is represented as a tree with inner
nodes representing operators and primitives in the leaves.

In order to determine the shape described by a CSG tree,
all operations have to be evaluated bottom-up until the root
node is evaluated. Depending on the representation of the leaf
geometry, this task can vary in complexity. Some implemen-
tations rely on representations that require the creation of a
combined shape for the evaluation of the CSG tree, others do
not create a combined representation. In that sense, CSG is not

12Copyright (c) IARIA, 2017. ISBN: 978-1-61208-548-7

MMEDIA 2017 : The Ninth International Conferences on Advances in Multimedia

as much a representation as it is a set of operations that need to
be implemented for the underlying shape representation [24].

However, CSG can also be performed on other shapes and
shape representations. Two different approaches can be used to
create CSG objects: Object-space approaches and image-space
approaches. The main difference between the two approaches
is that object-space approaches create shapes, while image-
space approaches “only” create correct images.

Object-space CSG approaches using primitives described
implicitly can be calculated accurately. Performing CSG on
other shape representations (like polygonal meshes) typically
introduces accuracy problems, due to the finite precision of
floating-point numbers. A common representation used for
CSG operations are binary space partitioning (BSP) trees.
BSP is a method for subdividing a space into convex cells
yielding a tree data structure. This data structure can be used
to perform CSG operations using tree-merging as described by
Bruce Naylor et al. [25]. The algorithm is relying on accurate
information of inside and outside of a shape (or, in case of
planes, above and below).

G. Algorithmic/Generative Shape Descriptions
Algorithmic shape descriptions are also called generative,
procedural, or parametric descriptions. However, there are
differences between the three terms. Parametric descriptions
are loop-computable programs (the functions it can compute
are the primitive recursive functions), and therefore always
terminate [26]. On the other hand, procedural descriptions
offer additional features, like infinite loops (the functions
it can compute are computable functions), are structured in
procedures, and are not guaranteed to terminate. Compared
to procedural descriptions, generative descriptions are a more
general term, including, for example, functional languages.

In this context, algorithmic descriptions are henceforth
referred to as generative descriptions. The process of creating
such descriptions is referred to as generative modeling. In
contrast to many other descriptions, which are only describing
a shape’s appearance, generative shape descriptions represent
inherent rules related to the structure of a shape. In simple
terms, it is a computer program for the construction of the
shape. It typically produces a surface-based or volumetric
shape description for further use. In the article “Modeling
Procedural Knowledge – A Generative Modeler for Cultural
Heritage” [27] by Christoph Schinko et al., the authors state
that all objects with well-organized structures and repetitive
forms can be described in such a way. Many researchers
enforce the creation of generative descriptions due to its many
advantages [28].

Its strength lies in the compact description compared
to conventional approaches, which does not depend on the
counter of primitives but on the model’s complexity itself [29].
Particularly large scale models and scenes – such as plants,
buildings, cities, and landscapes – can be described efficiently.
Generative descriptions make complex models manageable as
they allow identifying a shape’s high-level parameters.

Another advantage is the included expert knowledge within
an object description, e.g., classification schemes used in
architecture, archaeology, civil engineering, etc. can be mapped
to procedures. For a specific object only its type and its in-
stantiation parameters have to be identified. This identification

is required by digital library services: markup, indexing, and
retrieval [30]. The importance of semantic meta data becomes
obvious in the context of electronic product data management,
product lifecycle management, data exchange and storage or,
more general, of digital libraries.

Generative descriptions have been developed in order to
generate highly complex shapes based on a set of formal
construction rules. They represent a whole family of shapes,
not just a single shape. A specific exemplar is obtained by
defining a set of parameters, or a sequence of processing steps:
Shape design becomes rule design [31].

Because such descriptions already belong to a specific class
of shapes, there is no need for detectors. However, with a
generative description at hand, it is interesting to enrich other
descriptions and representations. What is the best generative
description of one or several given instances of an object class?
This question is regarded as the inverse modeling problem [32].

III. MODEL TRANSFORMATION

In a product lifecycle, the digital counterpart of a future,
real-world object has to pass several stages of a multistep
pipeline. First sketches of a product are represented in a
different representation than the final CAD production-ready
dataset. Furthermore, virtual product tests and simulations
require special purpose model representation as well. As a
consequence, each transformation between two possible model
representations has a field of application. For the most impor-
tant representations Table I lists the conversion methods and
algorithms.

IV. LEVEL-OF-DETAIL TECHNIQUES

Managing level of detail is at once a very current and a very
old topic in computer graphics. As early as 1976 James Clark
described the benefits of representing objects within a scene at
several resolutions. Recent years have seen many algorithms,
papers, and software tools devoted to generating and manag-
ing such multiresolution representations of objects automati-
cally [53].

The idea of “Level of Detail”, or LOD for short, is an
important topic in computer graphics as it is one of the key
optimization strategies that would help 3D graphical programs,
such as modelling software to run faster and reliably rendered
across all the new and old hardware.

V. SEMANTIC ENRICHMENT

The problem of extracting semantic information from 3D data
can be formulated simply as What is the point? [54] A-priori it
is not clear whether a given point of a laser-scanned 3D scene,
for example, belongs to a wall, to a door, or to the ground [55].
To answer this question is called semantic enrichment and it
is always an act of interpretation [1].

The idea of generalized documents is to treat multimedia
data, in particular 3D data sets, just like ordinary text docu-
ments, so that they can be inserted into a digital library. For
any digital library to be able to handle a given media type, it
must be integrated with the generic services that a DL provides,
namely markup, indexing, and retrieval. This defines a digital
library in terms of the function it provides [56] [57]. Like
any library, it contains meta-information for all data sets. In
the simplest case, the metadata are of the Dublin Core type

13Copyright (c) IARIA, 2017. ISBN: 978-1-61208-548-7

MMEDIA 2017 : The Ninth International Conferences on Advances in Multimedia

TABLE I. TRANSFORMATION BETWEEN MODEL REPRESENTATIONS.

Model Transformation

from\to
Point Sets Polygonal Faces Parametric Surfaces Subdivision Surfaces Implicit Surfaces Volumetric Shapes Generative Shapes

Point Sets Surface Reconstruction
Library [33], Poison
Reconstruction [34]

Surface Fitting and Re-
gression [9]

Surface Fitting [35] Surface Fitting [36] Direct Evaluation [37] Generative Fitting [32]

Polygonal Faces Monte Carlo Sampling
[38]

Surface Fitting [39] Surface Fitting [40]
[41]

Variational
Interpolation [42]

Scan-line Filling [43] Generative Fitting [32]

Parametric Surfaces Monte Carlo Sampling
[38]

Triangulation [10] [12] Conversion [11] NURBS-compatible
Subdivision [44]

Spherical Coordinates
[45]

Forward Differencing
[46]

Inverse (Procedural)
Modeling

Subdivision Surfaces Point Sampling [38] Evaluation [47] NURBS-compatible
Subdivision [44]

Evaluation [47] with
Forward Differencing
[46]

Inverse (Procedural)
Modeling

Implicit Surfaces Point Evaluation [48] Marching Cubes [49] Spherical coordinate
representations [45]

Interpolation [50] Voxelization [51] Inverse (Procedural)
Modeling

Volumetric Shapes Point Sampling / Iso-
Surface-Extraction

Marching Cubes [49] via Marching Cubes via Marching Cubes via Marching Cubes Inverse (Procedural)
Modeling

Generative Shapes Evaluation [28] Evaluation [28] Evaluation [28] Evaluation [28] Evaluation [28] Evaluation [28] Euclides [52]

(title, creator/author, and time of creation, etc.) [58]. This is
insufficient for large databases with a huge number of 3D
objects, because of their versatility and rich structure. Scanned
models are used in raw data collections, for documentation
archival, virtual reconstruction, historical data analysis, and
for high-quality visualization for dissemination purposes [59].
Navigating and browsing through the geometric models must
be possible not only in 3D, but also on the semantic level.
The need for higher-level semantic information becomes im-
mediately clear when considering typical questions users might
want to ask when a large database of 3D objects is available.

• How many different types of chairs are stored in the
library?

• I want to compare the noses of all these statues, can
you extract them?

• . . .

These questions cannot be answered, if the library simply treats
3D objects as binary large objects (BLOB) as it is done quite
often. For a heap of geometric primitives without semantics,
it is hard – if not impossible – to realize the mandatory
services required by a digital library, especially in the context
of electronic data exchange, storage and retrieval.

In the context of CAD, the processes of markup, indexing,
and retrieval are a challenge with many open problems [60]
[61].

VI. CONCLUSION

Model representations and their transformation into each other
have been a challenge in the past and will remain a future
challenge as well. The search for a comprehensive model rep-
resentation combining the advantages of the various, different
approaches is still on-going.

ACKNOWLEDGMENT

The authors gratefully acknowledge the support of the Aus-
trian Research Promotion Agency, the Forschungsförderungs-
gesellschaft (FFG) for the research project AEDA (K-Projekt
“Advanced Engineering Design Automation”).

REFERENCES

[1] S. Havemann, T. Ullrich, and D. W. Fellner, “The Meaning of Shape
and some Techniques to Extract It,” Multimedia Information Extraction,
vol. 1, 2012, pp. 81–98.

[2] M. Zwicker, M. Pauly, O. Knoll, and M. Gross, “Pointshop 3D: an
interactive system for point-based surface editing,” Proceedings of 2002
ACM Siggraph, vol. 21, 2002, pp. 322–329.

[3] M. Gross and H. Pfister, Point-Based Graphics. San Francisco,
California, USA: Morgan Kaufmann Publishers Inc., 2007.

[4] M. Botsch, L. Kobbelt, and M. Pauly, Polygon Mesh Processing.
Natick, Massachusetts, USA: AK Peters, 2010.

[5] M. Attene, D. Giorgi, M. Ferri, and B. Falcidieno, “On converting
sets of tetrahedra to combinatorial and pl manifolds,” Computer Aided
Geometric Design, vol. 26, 2009, pp. 850–864.

[6] M. Botsch, S. Steinberg, S. Bischoff, and L. Kobbelt, “Openmesh –
a generic and efficient polygon mesh data structure,” Proceedings of
OpenSG Symposium, vol. 1, 2002, pp. 1–5.

[7] G. Farin, Curves and Surfaces for Computer Aided Geometric Design,
G. Farin, Ed. Academic Press Professional, Inc., 1990.

[8] H. Pottmann and S. Leopoldseder, “Geometries for CAGD,” Handbook
of 3D Modeling, G. Farin, J. Hoschek, and M.-S. Kim (editors), vol. 1,
2002, pp. 43–73.

[9] J. Hoschek and D. Lasser, Grundlagen der Geometrischen Datenverar-
beitung (english: Fundamentals of Computer Aided Geometric Design),
J. Hoschek and D. Lasser, Eds. Teubner, 1989.

[10] H. Prautzsch, W. Boehm, and M. Paluszny, Bézier and B-Spline
Techniques, H. Prautzsch, W. Boehm, and M. Paluszny, Eds. Springer,
2002.

[11] G. Aumann and K. Spitzmüller, Computerorientierte Geometrie (en-
glish: Computer-Oriented Geometry), G. Aumann and K. Spitzmüller,
Eds. BI-Wissenschafts-Verlag, 1993.

[12] L. Piegl and W. Tiller, The NURBS book, L. Piegl and W. Tiller, Eds.
Springer-Verlag New York, Inc., 1997.

[13] J. Fisher, J. Lowther, and C.-K. Shene, “If you know b-splines well,
you also know NURBS!” Proceedings of the 35th SIGCSE technical
symposium on Computer science education, vol. 35, 2004, pp. 343–
347.

[14] G. Farin, NURBS for Curve and Surface Design from Projective
Geometry to Practical Use, G. Farin, Ed. AK Peters, Ltd., 1999.

[15] E. Catmull and J. Clark, “Recursively generated B-spline surfaces on
arbitrary topological meshes,” Computer-Aided Design, vol. 10, 1978,
pp. 350–355.

[16] D. Doo and M. Sabin, “Behavior of Recursive Division Surfaces near
Extraordinary Points,” Computer Aided Design, vol. 10, no. 6, 1978,
pp. 356–360.

[17] C. Loop, “Smooth Subdivision Surfaces Based on Triangles,” Master’s
Thesis, University of Utah, USA, vol. 1, 1987, pp. 1–74.

[18] L. Kobbelt, “Interpolatory Subdivision on Open Quadrilateral Nets with

14Copyright (c) IARIA, 2017. ISBN: 978-1-61208-548-7

MMEDIA 2017 : The Ninth International Conferences on Advances in Multimedia

Arbitrary Topology,” Computer Graphics Forum, vol. 15, no. 3, 1996,
pp. 409–420.

[19] E. Sultanow, “Implizite Flächen (english: Implicit surfaces),” Technical
Report at Hasso-Plattner-Institut, vol. 1, 2004, pp. 1–11.

[20] A. Knoll, Y. Hijazi, C. Hansen, I. Wald, and H. Hagen, “Interactive
Ray Tracing of Arbitrary Implicits with SIMD Interval Arithmetic,”
Proceedings of IEEE Symposium on Interactive Ray Tracing, vol. 7,
2007, pp. 11–18.

[21] B. Grünbaum and G. C. Shephard, “Convex polytopes,” Bull. Lond.
Math. Soc., vol. 1, 1969, pp. 257–300.

[22] U. Krispel, T. Ullrich, and D. W. Fellner, “Fast and Exact Plane-Based
Representation for Polygonal Meshes,” Proceeding of the International
Conference on Computer Graphics, Visualization, Computer Vision and
Image Processing, vol. 8, 2014, pp. 189–196.

[23] W. Thaller, U. Krispel, R. Zmugg, S. Havemann, and D. W. Fellner,
“Shape Grammars on Convex Polyhedra,” Computers & Graphics,
vol. 37, 2013, pp. 707–717.

[24] Y. Hijazi, A. Knoll, M. Schott, A. Kensler, C. Hansen, and H. Hagen,
“CSG Operations of Arbitrary Primitives with Interval Arithmetic and
Real-Time Ray Casting,” Scientific Visualization: Advanced Concepts,
vol. 978-3-939897-19-4, 2010, pp. 78–89.

[25] B. Naylor, J. Amanatides, and W. Thibault, “Merging bsp trees yields
polyhedral set operations,” SIGGRAPH Comput. Graph., vol. 24, no. 4,
1990, pp. 115–124.

[26] U. Schöning, Theoretische Informatik - kurz gefasst, 5th ed. Heidel-
berg: Spektrum Akademischer Verlag, 2008.

[27] C. Schinko, M. Strobl, T. Ullrich, and D. W. Fellner, “Modeling
Procedural Knowledge – a generative modeler for cultural heritage,”
Proceedings of EUROMED 2010 - Lecture Notes on Computer Science,
vol. 6436, 2010, pp. 153–165.

[28] U. Krispel, C. Schinko, and T. Ullrich, “A Survey of Algorithmic
Shapes,” Remote Sensing, vol. 7, 2015, pp. 12 763–12 792.

[29] R. Berndt, D. W. Fellner, and S. Havemann, “Generative 3D Models:
a Key to More Information within less Bandwidth at Higher Quality,”
Proceeding of the 10th International Conference on 3D Web Technology,
vol. 1, 2005, pp. 111–121.

[30] D. W. Fellner and S. Havemann, “Striving for an adequate vocabulary:
Next generation metadata,” Proceedings of the 29th Annual Conference
of the German Classification Society, vol. 29, 2005, pp. 13–20.

[31] U. Krispel, C. Schinko, and T. Ullrich, “The Rules Behind – Tutorial
on Generative Modeling,” Proceedings of Symposium on Geometry
Processing / Graduate School, vol. 12, 2014, pp. 21–249.

[32] T. Ullrich and D. W. Fellner, “Generative Object Definition and Se-
mantic Recognition,” Proceedings of the Eurographics Workshop on
3D Object Retrieval, vol. 4, 2011, pp. 1–8.

[33] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),”
in IEEE International Conference on Robotics and Automation (ICRA),
Shanghai, China, May 9-13 2011.

[34] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson Surface Recon-
struction,” in Symposium on Geometry Processing, A. Sheffer and
K. Polthier, Eds. The Eurographics Association, 2006.

[35] K.-S. D. Cheng, W. Wang, H. Qin, K.-Y. K. Wong, H. Yang, and
Y. Liu, “Fitting Subdivision Surfaces to Unorganized Point Data using
SDM,” Proceedings of 12th Pacific Conference on Computer Graphics
and Applications, vol. 1, 2004, pp. 16–24.

[36] P. Keller, O. Kreylos, E. S. Cowgill, L. H. Kellogg, and M. Hering-
Bertram, “Construction of Implicit Surfaces from Point Clouds Using a
Feature-based Approach,” in Scientific Visualization: Interactions, Fea-
tures, Metaphors, ser. Dagstuhl Follow-Ups, H. Hagen, Ed. Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2011,
vol. 2, pp. 129–143.

[37] S. Muraki, “Volumetric shape description of range data using
“blobby model”,” SIGGRAPH Comput. Graph., vol. 25,
no. 4, Jul. 1991, pp. 227–235.

[38] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and
G. Ranzuglia, “Meshlab: an open-source mesh processing tool,” in Sixth
Eurographics Italian Chapter Conference, 2008, pp. 129–136.

[39] W. Ma and J. P. Kruth, “Nurbs curve and surface fitting for reverse

engineering,” The International Journal of Advanced Manufacturing
Technology, vol. 14, no. 12, 1998, pp. 918–927.

[40] X. Ma, S. Keates, Y. Jiang, and J. Kosinka, “Subdivision surface fitting
to a dense mesh using ridges and umbilics,” Computer Aided Geometric
Design, vol. 32, 2015, pp. 5–21.

[41] D. Panozzo, M. Tarini, N. Pietroni, P. Cignoni, and E. Puppo, “Auto-
matic construction of quad-based subdivision surfaces using fitmaps,”
IEEE Transactions on Visualization & Computer Graphics, vol. 17, no.
undefined, 2011, pp. 1510–1520.

[42] G. Yngve and G. Turk, “Robust creation of implicit surfaces from
polygonal meshes,” IEEE Transactions on Visualization and Computer
Graphics, vol. 8, no. 4, 2002, pp. 346–359.

[43] A. Kaufman, “An Algorithm for 3D Scan-Conversion of Polygons,” in
EG 1987-Technical Papers, A. Kaufman, Ed. Eurographics Associa-
tion, 1987.

[44] T. J. Cashman, U. H. Augsdörfer, N. A. Dodgson, and M. A. Sabin,
“Nurbs with extraordinary points: High-degree, non-uniform, rational
subdivision schemes,” ACM Trans. Graph., vol. 28, no. 3, Jul. 2009,
pp. 46:1–46:9.

[45] C. Ünsalan and A. Erçil, “Conversions between parametric and implicit
forms using polar/spherical coordinate representations,” Comput. Vis.
Image Underst., vol. 81, no. 1, 2001, pp. 1–25.

[46] A. Kaufman, “Efficient algorithms for 3d scan-conversion of parametric
curves, surfaces, and volumes,” in Proceedings of the 14th Annual
Conference on Computer Graphics and Interactive Techniques, ser.
SIGGRAPH ’87, 1987, pp. 171–179.

[47] W. Ma, “Subdivision surfaces for cad?an overview,” Computer-Aided
Design, vol. 37, no. 7, 2005, pp. 693–709.

[48] P. Ning and J. Bloomenthal, “An evaluation of implicit surface tilers,”
IEEE Computer Graphics and Applications, vol. 13, no. 6, 1993, pp.
33–41.

[49] E. V. Chernyaev, “Marching Cubes 33: Construction of topologically
correct isosurfaces,” Technical Report CN/95-17, 1995.

[50] X. Jin, H. Sun, and Q. Peng, “Subdivision interpolating implicit
surfaces,” Computers & Graphics, vol. 27, no. 5, 2003, pp. 763–772.

[51] N. Stolte and A. Kaufman, “Novel techniques for robust voxelization
and visualization of implicit surfaces,” Graphical Models, vol. 63, no. 6,
2001, pp. 387–412.

[52] C. Schinko, M. Strobl, T. Ullrich, and D. W. Fellner, “Scripting
technology for generative modeling,” International Journal on Advances
in Software, vol. 4, no. 3-4, 2011, pp. 308–326.

[53] D. Luebke, M. Reddy, A. Cohen, Jonathan D. abd Varshney, B. Watson,
and R. Huebner, Level of Detail for 3D Graphics, 1st ed. Heidelberg,
Germany: Morgan Kaufmann, 2002.

[54] S. Biasotti, B. Falcidieno, D. Giorgi, and M. Spagnuolo, Mathematical
Tools for Shape Analysis and Description. Morgan & Claypool
Publishers, 2014.

[55] M. Attene, F. Robbiano, M. Spagnuolo, and B. Falcidieno, “Charac-
terization of 3d shape parts for semantic annotation,” Computer-Aided
Design, vol. 41, 2009, pp. 756–763.

[56] D. W. Fellner, “Graphics Content in Digital Libraries: Old Problems,
Recent Solutions, Future Demands,” Journal of Universal Computer
Science, vol. 7, 2001, pp. 400–409.

[57] D. W. Fellner, D. Saupe, and H. Krottmaier, “3D Documents,” IEEE
Computer Graphics and Applications, vol. 27, no. 4, 2007, pp. 20–21.

[58] Dublin Core Metadata Initiative, “Dublin Core Metadata Initiative,”
http://dublincore.org/ [retrieved: Feb. 2017], 1995.

[59] V. Settgast, T. Ullrich, and D. W. Fellner, “Information Technology for
Cultural Heritage,” IEEE Potentials, vol. 26, no. 4, 2007, pp. 38–43.

[60] C. Schinko, T. Vosgien, T. Prante, T. Schreck, and T. Ullrich, “Search
& retrieval in cad databases – a user-centric state-of-the-art overview,”
Proceedings of the International Joint Conference on Computer Vision,
Imaging and Computer Graphics Theory and Applications (GRAPP
2017), vol. 12, 2017, pp. 306–313.

[61] H. Laga, M. Mortara, and M. Spagnuolo, “Geometry and context for
semantic correspondences and functionality recognition in man-made
3d shapes,” ACM Transactions on Graphics, vol. 32, 2013, p. 150ff.

15Copyright (c) IARIA, 2017. ISBN: 978-1-61208-548-7

MMEDIA 2017 : The Ninth International Conferences on Advances in Multimedia

