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Abstract—In this study, a multiexposure image fusion 

approach using homomorphic filtering and detail enhancement 

is proposed. First, the N input low dynamic range (LDR) RGB 

color images are transformed into the HSI color space. 

Intensity enhancement is achieved by homomorphic filtering, 

gamma correction is used to compensate the nonlinear 

response of display devices, and “cross-image” median filtering 

is used to generate the reference intensity image. Guided 

filtering and weighted least squares (WLS) optimization are 

used to perform local and global detail extractions on the N 

processed LDR images, respectively. The N weighting maps of 

the N processed LDR images are estimated by spatial and 

cross-image consistencies and then refined by cross bilateral 

filtering. Finally, the multiresulution spline based scheme is 

used to perform multiexposure image fusion. Based on the 

experimental results obtained in this study, the performance of 

the proposed approach is better than those of four comparison 

approaches. 

Keywords-low dynamic range (LDR) image; high dynamic 

range (HDR) image; tone mapping; homomorphic filtering; 

multiexposure image fusion 

I.  INTRODUCTION 

In the last decade, image fusion has been employed in 
different application areas [1-2]. Image sensors usually have 
a limited dynamic range and a low dynamic range (LDR) 
image usually contains some under-exposed or over-exposed 
regions. Additionally, a natural scene usually contains high 
dynamic range (HDR) contents. To cope with this problem, a 
series of LDR images with different exposures can be fused 
to obtain an HDR image, which will be displayed on LDR 
devices. There are two main types of HDR imaging, namely, 
typical HDR imaging and multiexposure image fusion [3]. 

HDR imaging consists of two main steps: HDR 
reconstruction and tone mapping. First, HDR reconstruction 
techniques [4] usually recover the camera response function 
(CRF) and combine the radiance maps via a weighting 
function from a series of LDR images. Second, tone mapping 
is to compress the dynamic range of HDR images in order to 
display on LDR devices. Existing tone mapping approaches 
can be classified into global and local operators [5-7]. 

Compared to HDR reconstruction, multiexposure image 
fusion usually consists of two steps: selection and blending 
[8]. “Selection” decides the best representative regions and 

exposures among all the input LDR images via assigning 
weights to the pixels of each LDR image. For blending, the 
selected regions from LDR images are fused according to 
their weights individually. 

Multiexposure image fusion is similar to alpha blending 
[9]. Li, Zheng, and Rahardja [10] introduced a new quadratic 
optimization based image fusion approach. In [3], a mostly 
detailed LDR image is synthesized directly from input LDR 
images by solving different optimization problems. Song et 
al. [11] proposed a probabilistic model to preserve the 
calculated image luminance levels and suppress reversals in 
image luminance gradients. 

On the other hand, in Mertens et al. [1], a weight for a 
pixel is determined by three quality measures: contrast, 
saturation, and well-exposedness. All LDR images are 
blended at multiple scales by using the Laplacian and 
Gaussian pyramidal image decompositions. Gu et al. [12] 
modified the gradient field iteratively with twice average 
filtering and nonlinearly compressing in multi-scales. Fused 
gradient field is derived from the structure tensor of LDR 
images based on multi-dimensional Riemannian geometry. 
Zhang and Cham [13] used the gradient information to 
accomplish multiexposure image composition in both static 
and dynamic scenes. Zhang and Cham [14] also proposed a 
multiexposure image fusion approach for both static and 
dynamic scenes using both temporal consistency and spatial 
consistency. Zeev et al. [15] introduced a new way to 
construct edge-preserving multi-scale image decompositions, 
based on weighted least squares (WLS) optimization. 

The paper is organized as follows. The proposed 
multiexposure image fusion approach is described in Section 
2. Experimental results are addressed in Section 3, followed 
by concluding remarks. 

II. PROPOSED APPROACH 

A. System Architecture 

As shown in Fig. 1, the proposed multiexposure image 
fusion approach for static scenes contains six stages. First, 
the N input LDR color images are transformed from the 
RGB color space into the hue, saturation, and intensity (HSI) 
color space so that the intensity and color (hue and saturation) 
components can be separately processed. Intensity 
enhancement is achieved by homomorphic filtering in the 
frequency domain and gamma correction [16] is used to 
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compensate the nonlinear response of display devices. To 
eliminate under-exposed or over-exposed regions in LDR 
images, the “cross-image” median filter is used to generate 
the reference intensity image. The guided filter [7] and 
weighted least squares (WLS) optimization [15] are used to 
perform local and global detail extractions on the N 
processed LDR images with gamma correction, respectively. 
Based on the reference intensity image, spatial consistency 
and cross-image consistency involving five consistency 
measures are computed to estimate the N weighting maps of 
the N processed LDR images with gamma correction. The 
cross bilateral filter is used to refine the N weighting maps. 
Finally, the multiresulution spline based scheme [17] is used 
to perform multiexposure image fusion and generate the final 
HDR image. 
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LDR images 
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Figure 1.  The framework of the proposed approach. 

B. Homomorphic filtering 

In this study, considering nonlinear intensity perception 
of the human visual system (HVS), the homomorphic filter is 
used to perform intensity enhancement in the frequency 

domain. ),( yxI n

i
 denotes the intensity of pixel ),( yx  in the 

n-th input LDR image, ),(
,

yxI n

Hi
 denotes the intensity of 

pixel ),( yx  in the n-th homomorphic filtered image, and 

),( vuH is the transfer function of the homomorphic filter. 

The homomorphic filter processes the illumination and 
reflection components separately in the frequency domain 
(u,v) via the logarithm function. Here, ),( vuH  is a modified 

Gaussian highpass filter defined as 
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where the constant c controls the sharpness of the transition 

slop of the filter function between 
L

r and 
H

r , 
0

D  is a positive 

constant, and ),(2 vuD  is the distance between a point (u,v) 

and the center (W/2,H/2) of the frequency rectangle. Here, 

,
L

r  ,
H

r  and ,c  are empirically set to 0, 1, and 1, 

respectively. 
 

C. Gamma Correction 

Gamma correction [16] is used to compensate the 
nonlinear response of display devices, which is defined as 
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where s denotes the gamma correction coefficient in the 

range [0,1], 
n

Cin

I  and 
n

C
I  are the color components of the n-th 

LDR image and the n-th processed LDR image with gamma 
correction, respectively, and Lin and Lout denote the 

luminances of 
nI  and n

H
I  (the n-th homomorphic filtered 

LDR color image), respectively. 
 

D. Reference Intensity Image Generation 

In this study, the reference intensity image is generated 
by performing cross-image median filtering over the N 
homomorphic filtered LDR images to exclude under-
exposed or over-exposed regions in the N input LDR images. 
Cross-image median filtering is performed in a pixel-by-
pixel manner over the N homomorphic filtered LDR images 

to generate the “median” image of ),( yxI n
H

, ,,...,2,1 Nn   

as the reference intensity image, i.e., 

)),,(,),,(),,((median),( 21 yxIyxIyxIyxI N

HHHR
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where ),( yxI
R

 denotes pixel ),( yx  of the reference 

intensity image and N is the number of homomorphic filtered 
LDR images. 

 

E. Detail Extraction 

Edge-preserving filters, such as the bilateral filter [18], 
weighted least squares optimization [15], and the guided 
filter [7], will not blur strong edges (without ringing artifacts) 
in the decomposition process. Using edge-preserving 
filtering, detail extraction is to decompose each processed 
LDR image with gamma correction into two (base and detail) 
layers and use the detail layer to compensate image details. 

1) Local detail extraction 
In this study, the guided filter [7], an edge-preserving 

filter, is used to decompose each processed LDR image with  
gamma correction into a base layer and a detail layer, i.e., 

,ˆ
LLC

III   (4) 

where 
L

I  and 
L

Î  denote the base and detail layers, 

respectively. Here, the guided filter is applied to the three (R, 
G, B) color component images when edges or fine details 
are not discriminative in a single color component image. It 
is assumed that the filtering output 

L
I  is a linear 
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transformation of the guidance image 
C

I  in a local window 

  centered at pixel k, i.e., 

,k
k
C

T
k

k
L bIaI   (5) 

where   is a 3×3 sliding window, k
LI  and k

CI  denote the   

3×3 pixels of 
LI  and 

CI  in window ,  T denotes the 

transpose operator, and 
k

a  and 
k

b  are two matrices of 

constants in window  , which can be directly estimated by 
linear regression as 
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where P  is the input image, 
kP  denotes the 3×3 pixels of 

P  in window ,  
k

P  is the mean of the 3×3 pixels of P  in 

window ,  
k

  is the mean of the guidance image CI  in 

window ,    is the number of pixels in window ,    

is a parameter empirically set to 0.16, 
k
Σ is the 3 × 3 

covariance matrix of the guidance image CI  in window ,  

and U  is the 3×3 identity matrix. 
 

2) Global detail extraction 
In this study, WLS optimization [15] is used to 

decompose each processed LDR image with gamma 
correction and extract global details. Using matrix notation, 
we have 
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where 
x

A  and 
y

A  are two diagonal matrices containing the 

smoothness weights )(
Cx

Ia  and ),(
Cy

Ia  respectively, and 

matrices 
x

D  and 
y

D  are two discrete differentiation operators. 

The vector 
G

I  minimizing (8) can be uniquely determined as 

the solution of 
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where U  is the identity matrix. 

 

F. Weighting Map Estimation and Refinement 

For multiexposure image fusion, weighting map 
estimation is used to form the desired HDR image by 
keeping only the “best” regions (parts) in input LDR images. 
Weighting maps are determined by giving weights to the 
pixels of all LDR images. Here, two quality measures of 
spatial and cross-image consistency are used to estimate the 
weighting map of each processed LDR image with gamma 
correction, which is then refined by the cross bilateral filter. 

1) Weighting map estimation of spatial consistency 
In this study, four image quality measures of spatial 

consistency, namely, contrast, saturation, well-exposedness, 
and saliency, are used to estimate the weighting map of each 

processed LDR image with gamma correction. Three quality 
measures of spatial consistency, namely, contrast, saturation, 
and well-exposedness [1], are defined as 
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where p denotes a pixel in the n-th processed LDR image 

with gamma correction,   denotes the absolute value, )(L  

is a Laplacian filter with window size 3×3, )(avg  denotes 

the average of the RGB color components, and   is 

empirically set to 0.2. The fourth quality measure of spatial 
consistency is saliency [4]. First, Laplacian filtering is 
applied to each processed LDR image with gamma 

correction to obtain the corresponding high-pass image .nH  

Then, the local average of the absolute value of nH  is used 

to construct the saliency map nW
saliency

 of ,nH  which is 

computed as 
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C

n   )(
g

G


 is a Gaussian filter of 

size 11×11, the standard derivation 
g

  is empirically set to 

5, and   is the convolution operator. As a summery, the 
weighting map of spatial consistency is determined as 
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2) Weighting map estimation of cross-image consistency 
Zhang and Cham [14] found that the gradient directions 

of the pixels in well-exposed regions are stable in different 
exposures. Therefore, the weighting map of cross-image 
consistency can be estimated by measuring gradient direction 
changes between each processed LDR image with gamma 
correction and the reference intensity image. Here, the first 
derivatives of a 2-D Gaussian function in x and y directions 
are used to extract the gradient information as 
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where ),( yxI n

C
 denotes pixel ),( yx  in the n-th processed 

LDR image with gamma correction and the standard 
derivation 

d
  is empirically set to 0.5. The weighting map of 

cross-image consistency is estimated as the 1-D Gaussian 

function of the difference between ),( yxn  and 

that ),( yxref  of the reference intensity image, i.e., 
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where 
t

  controls the influence of gradient direction 

changes and 
t

  is set adaptively to the exposure quality of 

the reference intensity image as 


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where the well-exposed range is ],1[   with the image 

range normalized to ]1 ,0[ . Here,   controls the influence 

of gradient direction changes detected based on the well-

exposed pixels of the reference intensity image and )(    

is used to reduce the influence of the detected gradient 

direction changes. In this study, the three parameters ,  ,  

and  are empirically set to 0.02, 0.9, and 0.9, respectively. 

 
3) Weighting map refinement 

The initial weighting map directly estimated as 
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temporal

n
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n
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may be noisy. To cope with this problem, a cross bilateral 
filter based refinement [19-20] is employed so that 
neighboring pixels having similar intensities will have 
similar weight values, i.e., 
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where p is a pixel in the n-th weighting map,  is a 3×3 
sliding window centered at p, and q is a pixel in window .  

Here, the standard derivations 
s

  and 
t

  are empirically set 

to 5 and 5, respectively. 
 

G. Image Fusion 

Based on the N weighting maps of the N processed LDR 
images with gamma correction, a composite image is 
generated by fusing N processed LDR images with gamma 
correction. Using the multiresolution spline based scheme 
[17] to achieve seamless image fusion, the final HDR image 

F
I  is obtained by integrating the composite image and the 

extracted detail image }ˆ,...,ˆ,ˆ,...,ˆ{ 11 n
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where }{L  and }{G  denote the Laplacian and Gaussian 

pyramids, respectively, and   is a small constant to avoid 

singularity. 

III. EXPERIMENTAL RESULTS 

In this study, the proposed approach is implemented 
using Matlab 7.10.0 (R2010a) on Intel Core i7-2700K CPU 
3.5GHz-Microsoft Windows 7 platform with 8GB main 
memory. To evaluate the effectiveness of the proposed 
approach, four comparison approaches are employed, where 
the source codes of Mertens et al.’s approach [1] and Shen et 
al.’s approach [3] are directly employed, whereas and Zhang 

and Cham’s approach [14] and Li et al.’s approach [10] are 
implemented in this study. Here, nineteen LDR image 
sequences with different numbers of LDR images are 
employed. 

In this study, four objective image quality measures, 
namely, the structural similarity (SSIM) index [21] , the 
saturation, the blind image quality index (BIQI) [22], and the 
naturalness image quality evaluator (NIQE) [23], are 
employed. In terms of the SSIM index, saturation index, 
BIQI, and NIQE, the performance comparisons between the 
four comparison approaches and the proposed approach for 
the nineteen LDR image sequences are listed in Tables I~IV, 
respectively. The average performances of the proposed 
approach are better than those of four comparison 
approaches. To perform subjective evaluation, subjective 
scores, i.e., 1 (worst) up to 10 (best), are collected from 
eighteen people. Here, the final images of multiexposure 
image fusion of each LDR image sequence are shown on an 
EIZO LCD color monitor (S2402W) periodically (three 
seconds per image) and each viewer gives his subjective 
scores for different final images of each LDR image 
sequence. The subjective performance comparisons between 
the four comparison approaches and the proposed approach 
for the nineteen LDR image sequences are shown in Table V.  
As two illustrated experimental results shown in Figs. 2 and 
3, the overall image quality of the final images of 
multiexposure image fusion of the proposed approach is 
better than those of the four comparison approaches. In Fig. 
2, more texture details of windows are persevered in the final 
image of the proposed approach, whereas in Fig. 3, the 
contrast of books in the final image of the proposed approach 
is better than those of the four comparison approaches. 

IV. CONCLUDING REMARKS 

In this study, a multiexposure image fusion approach using 

homomorphic filtering and detail enhancement is proposed. 

Based on the experimental results obtained in this study, 

several observations can be found. (1) Based on Tables I~IV, 

on the average, the objective performance measures, namely, 

SSIM, saturation, BIQI, and NIQE, of the proposed 

approach are better than those of the four comparison 

approaches. (2) Based on Table V, the subjective evaluation 

of the final HDR images of the proposed approach is better 

than those of the four comparison approaches. (3) Based on 

Figs. 2-3, the final HDR images of the proposed approach 

are indeed better than those of four comparison approaches. 
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(a)                    (b)                    (c)                     (d)                    (e) 

Figure 2.  The final images of multiexposure image fusion of the “Church” 
LDR image sequence: (a) Mertens et al. [1]; (b) Shen et al. [3]; (c) Zhang 

and Cham [14]; (d) Li et al. [10]; (e) proposed. 

 
(a)                                     (b)                                     (c) 

 
 (d)                                       (e) 

Figure 3.  The final images of multiexposure image fusion of the “Desk 
Lamp1” LDR image sequence: (a) Mertens et al. [1]; (b) Shen et al. [3]; (c) 

Zhang and Cham [14]; (d) Li et al. [10]; (e) proposed. 

TABLE I.  IN TERMS OF SSIM, PERFORMANCE COMPARISONS 

BETWEEN THE FOUR COMPARISON APPROACHES AND THE PROPOSED 

APPROACH FOR THE NINETEEN LDR IMAGE SEQUENCES 

LDR image 
sequences 

Mertens 
et al. [1] 

Shen 
et al. 
[3] 

Zhang 
and 

Cham 
[14] 

Li  
et al. 
[10] 

Proposed 

Aloe 68.2% 70.0% 71.0% 61.2% 89.7% 

Ardeshir 76.5% 78.5% 77.6% 75.1% 84.3% 

Belgium 40.6% 47.6% 46.6% 44.6% 63.4% 

Bridge 80.1% 82.6% 77.9% 79.2% 86.4% 

Church 70.3% 70.7% 70.9% 63.6% 67.7% 

Desk Lamp1 80.8% 81.6% 80.5% 76.0% 79.6% 

Desk Lamp2 77.6% 79.0% 72.5% 72.8% 75.1% 

Flower8 63.5% 64.7% 63.5% 60.0% 72.8% 

GrandCanal 62.2% 64.2% 61.5% 59.3% 73.6% 

Hall 80.9% 81.7% 80.8% 79.4% 81.6% 

HDRLab3 67.4% 67.2% 66.8% 66.5% 80.4% 

House 42.1% 43.2% 41.9% 40.4% 51.1% 

Kitchen 68.4% 71.2% 68.2% 64.5% 76.8% 

Landscape 75.8% 76.4% 72.0% 74.0% 85.4% 

Lighthouse 71.1% 72.8% 70.9% 68.0% 80.5% 

Mountain 80.5% 81.9% 78.7% 76.1% 78.7% 

Sofa 61.2% 61.4% 62.1% 57.5% 64.1% 

Tree 70.1% 70.0% 70.4% 67.0% 65.0% 

Wall 59.9% 61.1% 59.3% 59.4% 67.4% 

Average 68.6% 69.8% 68.1% 65.5% 74.9% 
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TABLE II.  IN TERMS OF SATURATION, PERFORMANCE 

COMPARISONS BETWEEN THE FOUR COMPARISON APPROACHES AND THE 

PROPOSED APPROACH FOR THE NINETEEN LDR IMAGE SEQUENCES 

LDR image 
sequences 

Mertens 
et al. [1] 

Shen 
et al. 
[3] 

Zhang 
and 

Cham 
[14] 

Li  
et al. 
[10] 

Proposed 

Aloe 0.33 0.31 0.38 0.33 0.45 

Ardeshir 0.38 0.32 0.40 0.38 0.40 

Belgium 0.30 0.24 0.33 0.30 0.32 

Bridge 0.13 0.12 0.14 0.13 0.17 

Church 0.64 0.60 0.65 0.64 0.69 

Desk Lamp1 0.39 0.38 0.39 0.39 0.44 

Desk Lamp2 0.28 0.26 0.24 0.28 0.31 

Flower8 0.28 0.24 0.27 0.28 0.32 

GrandCanal 0.22 0.14 0.22 0.22 0.25 

Hall 0.30 0.26 0.31 0.29 0.33 

HDRLab3 0.27 0.24 0.33 0.27 0.32 

House 0.33 0.25 0.35 0.33 0.36 

Kitchen 0.46 0.39 0.47 0.46 0.53 

Landscape 0.18 0.17 0.16 0.18 0.22 

Lighthouse 0.39 0.34 0.41 0.39 0.37 

Mountain 0.15 0.12 0.15 0.15 0.18 

Sofa 0.82 0.78 0.87 0.81 0.87 

Tree 0.15 0.13 0.15 0.15 0.18 

Wall 0.20 0.11 0.19 0.20 0.17 

Average 0.33 0.28 0.34 0.32 0.36 

      
 

 

TABLE III.  IN TERMS OF BIQI, PERFORMANCE COMPARISONS 

BETWEEN THE FOUR COMPARISON APPROACHES AND THE PROPOSED 

APPROACH FOR THE NINETEEN LDR IMAGE SEQUENCES 

LDR image 
sequences 

Mertens 
et al. [1] 

Shen 
et al. 
[3] 

Zhang 
and 

Cham 
[14] 

Li  
et al. 
[10] 

Proposed 

Aloe 57.65 69.12 62.07 39.78 32.16 

Ardeshir 24.31 29.39 21.71 27.41 23.47 

Belgium 18.17 28.97 18.14 12.50 17.97 

Bridge 31.33 32.64 31.53 26.94 23.14 

Church 26.27 31.60 29.49 21.36 19.59 

Desk Lamp1 21.97 27.22 27.23 16.58 17.33 

Desk Lamp2 24.45 27.33 33.38 16.41 17.57 

Flower8 29.51 33.79 29.76 25.07 20.49 

GrandCanal 24.47 29.27 24.20 31.19 23.99 

Hall 18.09 29.80 18.45 26.21 27.39 

HDRLab3 29.90 30.66 31.22 25.26 30.84 

House 27.54 31.66 27.98 32.78 27.80 

Kitchen 26.65 31.42 27.38 22.80 21.22 

Landscape 26.40 25.32 25.59 26.74 27.66 

Lighthouse 11.04 23.64 11.36 13.57 11.98 

Mountain 36.20 41.07 36.66 23.77 17.10 

Sofa 38.55 39.79 32.61 41.20 39.97 

Tree 26.06 27.00 27.91 14.06 13.65 

Wall 23.68 26.71 24.30 24.49 22.26 

Average 27.48 32.44 28.47 24.64 22.92 
 

 

 

TABLE IV.  IN TERMS OF NIQE, PERFORMANCE COMPARISONS 

BETWEEN THE FOUR COMPARISON APPROACHES AND THE PROPOSED 

APPROACH FOR THE NINETEEN LDR IMAGE SEQUENCES 

LDR image 
sequences 

Mertens 
et al. [1] 

Shen 
et al. 
[3] 

Zhang 
and 

Cham 
[14] 

Li  
et al. 
[10] 

Proposed 

Aloe 2.99 2.57 2.88 2.77 2.83 

Ardeshir 3.86 3.18 3.38 3.80 3.38 

Belgium 2.38 2.45 2.24 2.19 2.07 

Bridge 2.42 2.42 2.36 2.20 2.13 

Church 2.09 1.90 1.77 1.98 1.86 

Desk Lamp1 2.61 2.42 2.53 2.27 2.25 

Desk Lamp2 2.70 2.54 2.47 2.34 2.21 

Flower8 1.87 2.02 1.86 1.65 1.66 

GrandCanal 2.33 2.27 2.27 2.16 2.08 

Hall 2.49 2.39 2.41 2.39 2.31 

HDRLab3 2.98 3.21 2.98 2.57 2.74 

House 2.52 2.52 2.53 2.33 2.41 

Kitchen 3.08 3.07 2.74 2.86 2.65 

Landscape 3.06 2.15 3.01 2.79 2.63 

Lighthouse 3.47 2.89 3.44 3.09 3.34 

Mountain 2.07 2.14 2.17 2.03 2.06 

Sofa 3.29 3.13 3.11 3.18 3.05 

Tree 1.93 1.85 1.87 1.79 1.75 

Wall 2.55 2.40 2.15 2.55 2.29 

Average 2.67 2.50 2.54 2.47 2.40 
 

 

TABLE V.  IN TERMS OF SUBJECTIVE EVALUATION, PERFORMANCE 

COMPARISONS BETWEEN THE FOUR COMPARISON APPROACHES AND THE 

PROPOSED APPROACH FOR THE NINETEEN LDR IMAGE SEQUENCES 

LDR image 
sequences 

Mertens 
et al. [1] 

Shen 
et al. 
[3] 

Zhang 
and 

Cham 
[14] 

Li  
et al. 
[10] 

Proposed 

Aloe 5.94 4.72 5.50 7.67 8.94 

Ardeshir 8.00 5.67 5.56 7.33 6.78 

Belgium 7.11 5.11 6.89 7.22 6.83 

Bridge 4.94 6.28 5.78 6.56 8.89 

Church 6.72 5.33 7.11 6.33 8.67 

Desk Lamp1 6.44 5.67 5.61 7.11 9.11 

Desk Lamp2 6.89 5.83 3.44 7.28 8.22 

Flower8 6.17 5.44 6.00 7.11 8.64 

GrandCanal 7.33 5.61 7.50 8.33 6.17 

Hall 7.06 6.11 7.06 7.61 8.14 

HDRLab3 6.17 5.22 7.28 6.50 7.89 

House 8.06 5.28 7.28 8.33 8.06 

Kitchen 7.67 5.28 6.22 7.67 8.78 

Landscape 7.28 6.06 6.50 7.89 7.56 

Lighthouse 7.50 5.56 7.22 8.78 7.00 

Mountain 6.83 5.78 6.67 8.33 8.33 

Sofa 7.50 5.78 6.06 7.17 8.33 

Tree 5.56 5.61 6.22 7.11 8.89 

Wall 6.94 6.67 6.39 7.22 8.61 

Average 6.85 5.63 6.33 7.45 8.10 
 

 

 

19Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-320-9

MMEDIA 2014 : The Sixth International Conferences on Advances in Multimedia


