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Abstract— In recent years, many techniques have been 

proposed so as to enable resource-constrained devices to 

consume or deliver live multimedia streams. The majority of 

the existing techniques use distributed multimedia services and 

powerful servers to handle streams on behalf of clients. This is 

due to the fact that, multimedia streaming, when smartphones 

act as both clients and servers, can generate many challenges 

due to the heterogeneity of the multimedia streaming 

protocols, the media formats and codecs supported by today's 

smartphones. In addition, multimedia processing is resource 

consuming and, in many cases, unsuitable for a plethora of 

resource-constrained devices. To overcome these challenges, 

we present MobiStream a device-to-device multimedia 

streaming system for resource-constrained devices that 

achieves efficient handling of live multimedia streams. The 

design of MobiStream architecture provides solutions to 

several issues including resource constraints, streaming among 

heterogeneous operating systems and platforms, generation, 

synchronization and presentation of multimedia streams. We 

have developed the MobiStream prototype system on Java 2 

SE and Android platforms; this paper presents the 

implementation details and the experimental evaluation of our 

system.  

 
         Keywords-live multimedia streaming; Android platform; 

streaming protocol; resource-constrained devices. 

Ι.  INTRODUCTION  

In recent years, the demand for real-time multimedia 
services, including voice over IP (Internet Protocol), audio 
and video streaming, has been growing rapidly so that 
multimedia streaming applications have become dominant in 
present communications systems. Furthermore, the explosive 
development of mobile networks and the availability of 
mobile devices in the hands of the masses, have made real-
time multimedia delivery popular on mobile devices, such as 
smartphones and tablets, which have now become a major 
part of everyday life. It is an indisputable fact that cellular 
traffic is growing tremendously, with a share of video traffic 
increasing from 50% now to an expected 66% by 2015 [2]. 
Consequently, the demand for innovative smartphone 
applications that allow users to receive and deliver live or 
on-demand rich content has increased dramatically. 
     Today’s smartphones are equipped with significant 
processing, storage and sensing capabilities, as well as 
wireless connectivity through cellular, Wi-Fi and Bluetooth. 

They provide ubiquitous Internet access, primarily through 
their cellular connection and secondarily through Wi-Fi, and 
enable a plethora of distributed multimedia applications. 
However, the acquisition and transmission of large amounts 
of video data even on modern mobile devices create 
important challenges. Issues like resource allocation, energy 
consumption, CPU, memory and bandwidth constraints, as 
well as the software development platform must all be taken 
into consideration. It is, therefore, essential to address these 
challenges by efficiently managing the resources and 
employing effective streaming techniques. 
     Current solutions for mobile multimedia streaming 
assume a centralized architecture where a resource-powerful 
server can support heterogeneous sets of media encoders, 
decoders and streaming protocols and is able to adapt 
content on behalf of clients to provide multimedia streams 
to resource-constrained mobile devices [6][12]. On the other 
hand, solutions for multimedia streaming over ad hoc 
networks assume the existence of distributed multimedia 
services and require cooperation between mobile devices for 
content dissemination; however, these either do not consider 
the scenario of content adaptation [7] or are cross-layered 
[8]. Din and Bulterman [11] demonstrate the use of 
synchronization techniques for distributed multimedia, but 
without addressing the issue of energy reduction. Recently, 
lightweight middleware targeting mobile multimedia 
applications have been proposed to address the issues of 
heterogeneity on modern smartphones. One of the latest 
efforts is the Ambistream middleware [9], which provides 
an additional layer as an intermediate protocol and the 
associated container format for multimedia streaming 
among heterogeneous nodes. For the generation and 
presentation of the multimedia streams, PacketVideo 
OpenCore [13] and Stagefright [14] multimedia frameworks 
are used, respectively. Moreover, these multimedia 
frameworks are based on cross-platform solutions. One of 
them is FFmpeg (Fast Forward MPEG) [15], which is an 
Open Source lightweight multimedia framework that allows  
encoding, multiplexing and streaming of videos in different 
formats. However, FFmpeg has several limitations; it does 
not support a wide range of audio/video codecs, especially 
for Android devices and is better suited for streaming from a 
single source. 

     Multimedia streaming is a challenging problem when 

smartphones act as both clients and servers. This is due to 
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the fact that, the framework needs to be integrated into 

multiple mobile platforms to provide live streaming among 

multiple smartphones because of the variability of the 

supported media formats, codecs and streaming protocols. 

In addition, multimedia processing, especially in the case of 

handling streams of high-quality content, is resource-

consuming and needs to be carefully handled in the case of 

mobile devices. To address the above challenges, in this 

paper, we present MobiStream, a mobile-to-mobile live 

multimedia streaming system that enables mobile devices to 

easily handle live multimedia streams leveraging the 

available multimedia software stack of the applied platform. 

We assume the scenario of a mobile device that requests to 

deliver a live multimedia stream to one or more peers. In 

fact, MobiStream enables mobile devices to act as both 

clients and servers and allows clients to process and deliver 

live multimedia streams to mobile devices or desktop 

servers, while considering resource constraints. An 

important feature of MobiStream is that it can also 

materialize the scenario of live multimedia streaming over 

an ad hoc network. For example, the Android Ice Cream 

Sandwich devices provide peer-to-peer (P2P) connectivity 

using WiFi Direct [10], so, either a laptop or an Android 

device can easily act as a virtual access point (AP). Thus, 

the system using nodes that act simultaneously as servers 

and clients can support this kind of scenarios. The streaming 

client in our approach does not act as a relay client for other 

phones. Taking all the above into account, we envision a 

system that provides sustainable solutions to a wide range of 

applications, such as streaming a live event directly to other 

devices reachable on the network, voice and video call 

applications, private audio-visual communication between 

peers without involving third party servers, sharing live 

multimedia content in cases of unavailable infrastructure, 

etc. We have implemented our prototype system that is 

running on both Android and Java 2 SE platforms to 

demonstrate the feasibility of our approach.  

       The rest of the paper is structured as follows. In Section 

II, we describe the system design in detail and discuss 

several design issues concerning the generation, 

transmission, synchronization and presentation of the live 

multimedia streams and the choices we made to address 

them. Section III demonstrates our approach on the 

synchronization of the streams. In Section IV, we present 

the prototype system we have implemented and discuss 

implementation details, including challenges specific to 

Android phones. In Section V, we present the system 

performance evaluation results of our testbed for a range of 

scenarios and conclude the paper in Section VI. 

 

II. SYSTEM DESIGN  

A. System Overview 

    MobiStream is structured in a client-server model, where 

devices are able to act as servers and clients simultaneously. 

These can communicate over cellular or WiFi. Each device 

can assume both roles, as it can be a 

client, when uploads content to a server, or a server, when it 

receives one or multiple media streams from the clients.   

The Client consists of the Dispatcher component, the 

Synchronization Module and the Media Recorders. The 

Dispatcher is responsible for communicating with the Server 

and packaging and transmitting the generated Media Units 

(MUs). The MUs are produced by the Audio and Video 

Recorders which are independent sub-applications of the 

Client. The Synchronization Module is responsible for 

synchronizing the generated media units before the final 

stage of transmission. The Server is designed to run on 

mobile devices as well as desktop computers. It comprises 

the Receiver component, the Sync Manager and the Media 

Players. The Receiver component is used to listen for 

incoming client requests, using a built-in TCP Server which 

is running independently in the background, and depackages 

and separates the received MU packets. The Sync Manager 

is responsible for the synchronization of the received MUs, 

while the Audio and Video Players are in charge of the 

presentation of the final synchronized multimedia stream. 

Both clients and servers are multithreaded so as to enable 

the server to receive multimedia streams from many clients 

and the client to transmit to multiple destinations. Fig. 1 

illustrates the overall system architecture. 

    In the remaining of this section, we give an overview of 

the building blocks and the interaction between them. 

 
Figure 1.  MobiStream Framework Architecture. Streaming Client (left) – 

Server (right) 
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B.       Streaming Client 

     The Streaming Client is in charge of generating 

multimedia streams and transmitting them to the Server. 

More specifically, it comprises the following main 

components: 

      Media Recorders: one of the first design challenges we 

faced was the design of media components for Android 

devices that would enable the generation of live video 

streams. Currently, the available APIs (Application 

Programming Interface) of the latest Android SDK do not 

include specifications to allow developers to capture 

fragments of live video streams. To circumvent these 

problems, we designed and developed our media 

components, which are able to produce and consume media 

units of specific formats. Thus, for the audio recording, we 

designed the Audio Recorder, a component that records 

uncompressed PCM (Pulse-code modulation) frames of 

fixed size from the input hardware device and stores them in 

a concurrent data structure used in parallel with the 

Synchronization module (discussed below). For the video 

recording, we designed the Video Recorder, a component 

that obtains an instance of the hardware input camera, sets 

camera parameters, frame rate and preview resolution, starts 

updating the preview surface and simultaneously capture the 

preview frames and stores them.  The module that captures 

preview surface frames actually captures a sampling of the 

video, consequently a lower-quality video than the expected 

is being produced and second, during the video recording, 

the FPS (frames per second) vary, and that would 

significantly affect the smoothness of the video play out.  

       Synchronization module: we designed the 

Synchronization Module in order to eliminate the variability 

of video capture rate and synchronize the audio and video 

streams. The Synchronization Module is responsible for 

monitoring video and audio in order to capture the rate, 

based on the formulas we discuss in the next section, and 

propagate the frames and the samples to the packaging stage 

at the Dispatcher application.        

 Dispatcher: the main responsibility for the Dispatcher 

is to establish a connection, setup a multimedia session and 

packetize the media units, that polls from the local buffers. 

The co-operation of Dispatcher and Synchronization module 

results in the transmission of the synchronized multimedia 

streams. The overall technique for the synchronization at the 

client side is described in details in Section III. 

C. Server 

    A significant feature of our proposed Server design is that 

it is modular and platform-independent. The Server is multi-

threaded in order to be able to present more than one 

multimedia streams from different sources. This component 

is responsible for handling client requests, configuring the 

requested multimedia sessions, receiving and reconstructing 

the multimedia streams, and displaying feedback during the 

experiments.      

Receiver: the Receiver is in charge of handling 

incoming connection requests, de-packetizing the incoming 

RTP packets using a packet Validator module, and 

separating the streams by drawing information from the 

header. Then, the receiver provides Sync Manager with the 

received MUs in order to proceed to synchronization stage. 

       Sync Manager: the Sync Manager is one of the most 

significant components of our system as it is used to address 

several major problems related to synchronization of the 

media units and the presentation of the final stream. It 

consists of a multimodal functionality as described below. 

In case of an unreliable link for the uploading of the 

multimedia streams, the Receiver enables the entire 

functionality of the Sync Manager in order to execute the 

audio/video synchronization algorithm we discuss in 

Section III, so as to prevent the out-of-order presentation of 

the MUs and the lack of synchronization between audio and 

video. Given the video frame rate, the Sync Manager is able 

to compute the video and audio playback time in order to 

achieve the same temporal correlation of MUs as at the 

transmission point and synchronize them in order to be 

played by the Media Players without letting network delays 

affect the video presentation. In the case of a reliable 

connection, the Sync Manager assumes that the packets 

arrive in order, as the underlying protocol is TCP, so, it 

decides not to use the synchronization algorithm and only 

adopts a buffering technique in order to synchronize the 

media streams and provides them to Media Players in a 

constant rate which represents the playback rate of the 

multimedia stream at the origin. The proposed buffering 

technique is presented in the next section in detail. 

     Media Players: we designed these components in order 

to enable the presentation of multimedia streams of PCM 

and JPEG units at the receiver end. For both players we 

followed a producer-consumer design, using concurrent data 

structures. The Sync Manager is the producer that produces 

the MUs in order and the players are the consumers that 

consume the available media units. For video presentation, 

we created a user interface handler that updates the video 

screen when a new video frame is available. For audio play 

out, we designed an Audio Player that is able to play audio 

samples in a specific frame format and sampling frequency 

(discussed in details in the next section).   

III. PROPOSED APPROACH 

     The system follows a client-server model of two 

independent audio and video decoders. Using multi-
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threaded software, we managed to accelerate the process of 

video reconstruction by separating the multimedia streams, 

synchronizing them whenever required, at negligible CPU 

overhead, as we show in our experimental evaluation, and 

executing parallel decoding of each stream. This way, an 

application based on this system is able to run efficiently on 

resource-constrained devices minimizing the processing 

overhead and reduce processing delays, which are critical 

for real-time multimedia applications. Apart from software 

architecture and computer performance, another significant 

contributory factor to live multimedia streaming is the 

network availability. The Internet, like other packet 

networks, occasionally looses and reorders packets and 

delays them by variable amounts of time. To overcome 

these impairments, we designed a protocol for real-time 

communication following the Real-Time Transport Protocol 

(RTP) specifications [1] that provides end-to-end delivery 

services for data with real-time characteristics, such as 

interactive audio and video. 

A. Proposed  Real Time Protocol 

One important feature of our real-time protocol was to 
provide a way to reconstruct audio and video streams with a 
controlled delay for play out. To achieve this goal, we use 
the RTP header to packetize MUs in order to provide the 
receiver with payload identification, timing information and 
a sequence number, the last two allow receivers to calculate 
packet losses and jitter as well. Although the proposed 
protocol follows the general design of RTP, it does vary in 
several major ways. 

      First, RTP does not provide any mechanism to ensure 

timely delivery or provide other Quality-of-Service 

guarantees i.e. prevention from out-of-order delivery. It 

actually uses underlying protocols, usually UDP, for 

transport and multiplexing functionality. In an audio/video 

session [3] as opposed to [5] where an algorithm is proposed 

for synchronizing of streams carried in separated sessions. 

This type of streaming is acceptable over low bandwidth 

communication channels. Thus, to begin live streaming, the 

establishment of one end-to-end connection over either TCP 

or UDP is required. In addition, each device is able to start 

multiple sessions to transmit video to different destinations. 

To achieve multimedia streaming in one session, we had to 

keep the payload type constant and allocate different values 

to the synchronization source identifier (SSRC) field 

regarding the media type of the payload. In comparison to 

RTP specifications where if both audio and video media are 

used in a conference, they are transmitted as separate RTP 

sessions, therefore SSRC identifier is a randomly chosen 

value meant to be globally unique within a particular RTP 

session. In Table I, we describe the attributes of the header 

we use to packetize the media units. Our goal in the 

streaming protocol is to support live multimedia services 

either over TCP or UDP.  

TABLE I.  PACKAGING ATTRIBUTES 

Name Size Description 

payload 

type 
1 byte 

This field identifies the format of the RTP 

payload and determines its interpretation by the 

application. It holds the same value for all 

packets regardless of the media payload type, 

because all packets represent one multimedia 

stream. 

sequence 

number 
2 bytes 

The sequence number increments by one for 

each data packet sent, and may be used by the 

receiver to detect packet loss and to restore 

packet sequence 

time 

stamp 
4 bytes 

The timestamp reflects the sampling instant of 

the first octet in the RTP data packet. The 

sampling instant MUST be derived from a clock 

that increments monotonically and linearly in 

time to allows synchronization and jitter 

calculations 

SSRC 4 bytes 

The SSRC field identifies the synchronization 

source. This identifier should be chosen 

randomly, with the intent that no two 

synchronization sources within the same RTP 

session will have the same SSRC identifier 

Payload N bytes Data 

 

     We implement a buffering technique that we discuss in 

the next section, consisting of two major parts. The first 

part refers to a dispatcher-side buffering in order to 

facilitate the synchronization of the generated MUs and the 

second part concerns the adoption of a receiver-side buffer 

to accommodate initial throughput variability and inter-

packet jitter. The experimental results we conducted shown 

that the proposed buffering technique can be integrated 

into applications using TCP-Friendly transmission of 

multimedia streams, and benefit from TCP mechanisms as 

it is reliable and guarantees delivery of packets in order. 

However, using TCP as transport layer may induce long 

delays because of the TCP retransmission mechanism. This 

actually leads to long video pauses at the receiver-end, 

which highly degrade the real-time communication. To 

cope with this issue, we monitor the transmission delay 

between successive incoming packets and drop those that 

are late with respect to specific thresholds, we discuss 

later, related to the actual time user conceives. As far as the 

scenario of using a UDP-based streaming protocol is 

concerned, we adopt the proposed streaming protocol over 

UDP using the buffering technique, we discuss in the next 

session, and the time-oriented audio and video 

synchronization algorithm that we present in Section C.   

B. Buffering Technique 

     One of our major design challenges was how to create a 

synchronized multimedia stream with a constant playback 

rate produced by two different media sources, as the 

capturing and coding rate on each source is different and 

induces variable delays. To address this problem, we first 

synchronized the camera and microphone capture rates by 

setting up our system’s audio recorder appropriately so as to 
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capture audio samples depending on the capture frame rate 

of smartphone’s camera. Moreover, we provide a client-side 

buffering so as to adjust multimedia stream capture rate by 

prefetching multimedia data into a buffer in a controlled 

rate, which represents the playback rate at the receiver. This 

assures the elimination of the variable delays induced by 

sources. Thus, media streams have well-defined temporal 

relations among themselves and can be sent synchronized to 

the server. More precisely, the relation among the audio 

samples, video frames and playback time is given by the 

following formulas: 

VPi  = Vi  / VR (1) 

 

     where VPi is the video playback time of the i
th

 video 

frame in seconds, Vi is the i
th

 video frame number which is 

an integer that increases by one representing the i
th

 

generated video frame and VR represents the video frame 

rate (Frames per second) of the source. In practice, applying 

the (1), the system is able to accurately calculate the 

playback time of a particular video frame in seconds. To 

calculate the audio playback time, APj, of an audio frame, 

we use (2), where the num_samples represent the number of 

the encoded audio samples of 16-bit each of the produced 

PCM frame. In our approach, in stereo mode, a PCM audio 

frame contains 512 samples and, in mono mode, a frame 

contains 1024 mono samples, thus, it follows that each 

audio frame consists of 2048 bytes minimum. This size 

applies to all fragments of the audio stream. Note that using 

Android Media package, data should be read from the audio 

hardware in chunks of sizes subject to the total recording 

buffer size. In (2), Aj is the j
th

 audio frame number which is 

an integer that increases by one representing the j
th

 

generated audio frame and sampling frequency corresponds 

to the produced samples per second (Hz). 

 
   APj = num_samples × (1 / sampling frequency) × Aj (2) 

 
      Taking the above-mentioned into account, we conclude 
to (3), which calculates the audio frame that must be 
presented in the VPi

th
 second in order to achieve 

synchronization. 
 

Aj  = VPi  × sampling frequency / num_samples (3) 

 

      Using the above formulas, the Synchronization module 

of the Client application is able to estimate the correlation 

among the produced MUs and provide the Dispatcher with a 

synchronized multimedia stream so as to transmit the MUs 

in the right order so as to be presented in sync at the 

Receiver, in case of transmission under ideal circumstances, 

no further processing would be required at the Server in 

order to present a synchronized multimedia stream. 

Nevertheless, a critical aspect lies in the lack of 

synchronization that may exist between audio and video 

streams at the receiver-end due to the fact that the 

characteristics of IP-based network, delay and jitter, affect 

the temporal relations present in multimedia streams. To 

circumvent these problems, we use a receiver buffer for the 

temporary storage of incoming media units comparing (1) to 

(2). In practice, the Sync Manager of the Server checks 

whether the playback time of a newer video frame is the 

same with the playback time of the corresponding audio 

frame. If this is the case, it follows the presentation of MUs 

at the proper time. The use of a MU buffer introduces some 

delay in the application, which is directly proportional to the 

size of this buffer. The objective of the process is to provide 

a presentation that resembles as much as possible the 

temporal relations that were created during the encoding and 

multiplexing process at the Client. 

C. Audio/Video  Synchronization Algorithm 

     In our system, the real-time delivery of the packets can be 
accomplished by using either TCP or UDP as the transport 
layer. Taking for granted that the media streams are 
synchronized at the origin, we need to achieve the same 
temporal correlation for playback at the receiver. This can be 
a quite difficult issue when the system performs transmission 
over UDP, which is unreliable and does not provide Quality-
of-Service mechanisms, such as prevention from out-of-
order delivery of packets. To cope with this challenge, we 
propose the following synchronization algorithm which 
imposes negligible CPU overhead, as shown in experimental 
results below, which is important as we have to deal with 
resource-constrained devices and real-time communication. 
In order to ensure a better quality of the reconstructed 
material, priority is given to audio information. We chose 
audio stream to be played regardless of the state of the video 
because human perception is more sensitive to degradation 
in audio quality than in video [4]. This means that audio 
would be played upon arrival as long as it is in order, 
regardless of the state of the video stream. In practice, if the 
audio stream anticipates the video stream, the receiver 
simply discards the video packets. 
     In the case of receiving a video packet, first, the 

audio/video synchronization algorithm checks the SSRC 

field of the packet header in order to determine whether the 

payload contains audio or video data. Then, it checks if the 

received video frame is newer than the displayed one by 

comparing the new timestamp with the old one. If this is the 

case, it calculates the video and audio playback times, using 

(1) and (2), respectively. If the audio is ahead of the video, 

the algorithm calculates the difference between their 

playback times, APi – VPi. In the case of APj– VPi > 

threshold, where threshold is the maximum level at which 

humans detect frames as being in sync, the video is 

considered too old to be displayed and it is dropped, 

otherwise it is rendered. The threshold is tuned based on the 

application characteristics. In [4], a detailed study of the end 

user capability to detect harmful impacts of de-

synchronization on QoE (Quality of Experience) is 

provided. The author indicates that an absolute skew smaller 

than 160 ms is harmless and greater than 320ms is harmful 

for QoE. The author identifies a double temporal area [-

160,-80] and [80,160] called transient, in which the impact 
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of the skew heavily depends on the experimental conditions. 

IV.      IMPLEMENTATION 

     Our software architecture was motivated by the need to 

have a simple and platform-independent implementation. 

We chose Java as the development language. The object 

oriented features of Java and its simplicity enables our 

system to be simple and modular. Thus, MobiStream can 

run on any platform that supports Java and requires a real-

time streaming protocol for multimedia services. The 

software for the smartphones is an Android application that 

enables the device to act simultaneously as client and server 

and runs efficiently on Android v2.3 or later versions. For 

the laptop server, we used in some experiments, the 

software runs on Java 2 SE. We have also developed a 

graphical user interface (GUI) and the code for the media 

components.  

      In this section, we describe the implementation details, 

the major challenges we faced specifically on Android 

phones, and the design choices we made to address them. 

A. The Streaming Process 

      The phases required to complete the streaming process 

between two devices are media capture, media transmission 

and media presentation. In this section, we describe the 

implementation details of each phase and the technical 

problems we encountered. 

1) Media Capture 

     Media content originates from hardware input devices, 

that is, camera and microphone. In most multimedia 

applications, the media capture phase is implemented using 

available APIs that provide access to built-in Multimedia 

Recorders that supports several media formats, encoders and 

streaming protocols in order to provide playable stream 

formats to Media Players. Developing on Android platform, 

we faced two major issues. First, the lack of hardware 

accelerated codec APIs when we implemented the prototype 

system and, secondly the fact that the exposed APIs do not 

provide the ability to stream live multimedia content from 

the built-in Media Recorder in a format playable from the 

built-in Media Player. To overcome these issues, we have 

implemented two independent Media Recorders. Each one 

is able to draw input from a different hardware device and 

use media formats and encoders supported by all platforms. 

       For the video recording, we used the Camera APIs to 

set image capture settings, start/stop preview and retrieve 

frames for encoding for video. An instance of the camera is 

actually a client for the Camera service, which manages the 

actual camera hardware. We install a callback to be invoked 

for every preview frame, using pre-allocated buffers, in 

addition to displaying them on the screen. The callback will 

be repeatedly called for as long as preview is active and 

buffers are available. The purpose of this method is to 

improve preview efficiency and frame rate by allowing 

preview frame memory reuse. The image format for preview 

pictures is either NV21 or YV12, since they are supported 

by all camera devices. To reduce the size of the video 

images, we use a JPEG encoder. The video frame size 

depends on the video resolution and the quality of the 

compressed data.  

      For the audio recording, we used the AudioRecord class 

of the Android SDK which manages the audio resources for 

Java applications to record audio from the audio input 

hardware of the platform. This is achieved by reading the 

data from the AudioRecord object. Upon creation, an 

AudioRecord object initializes its associated audio buffer 

that it will fill with the new audio data. The size of this 

buffer, specified during the construction, determines how 

long an AudioRecord can record before "over-running" data 

that has not been read yet. Data should be read from the 

audio hardware in chunks of sizes inferior to the total 

recording buffer size. Thus, the Audio Recorder captures 

uncompressed PCM samples of a specific sampling rate and 

size. In our prototype system, we set the sampling rate and 

the size of the recorded samples accordingly to the video 

frame rate in order to facilitate the synchronization process, 

as described previously. The captured MUs are stored in 

concurrent data structures so as to enable the co-operation of 

the modules involved in capture and transmission phases.  

2) Media Transmission 

     At the end of the capture phase, since the MUs cannot be 

directly transmitted over IP-based networks, they are 

wrapped within media containers that provide the necessary 

meta-information to facilitate the decoding and correct 

presentation at the receiver end. This task is assigned to the 

module that packages the media units following the 

specifications of the real-time streaming protocol we 

discussed previously. At the server side, the receiver 

performs the de-multiplexing and de-packaging process and 

provides the separated media streams to the Sync Manager  

in order to synchronize them before the presentation phase. 

A contributory factor to the efficiency of the collaboration 

among the modules of the different phases is the use of 

Android Services, which are independent application 

components that host the main processes of our system and 

execute long-running operations while not interacting with 

the user. 

3) Media Presentation 

    Using the above-mentioned Media Recorders, the 

proposed real-time streaming protocol and the 

synchronization algorithms we discussed previously, the 

system is able to reproduce the initial media streams and 

proceed to the presentation phase. In order to present the 

MUs, we developed two independent Media Players. For the 

video playback, first the decoding of the compressed data 

from the playback buffer takes place and then the User 

Interface Handler which extends the Handler class of 

Android SDK updates the video view. This process is 

executed as soon as there is a new video frame in the 

playback buffer. For the audio playback, we developed an 

Audio Player, using the AudioTrack class of the Android 

SDK which manages and plays a single audio resource for 
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Java applications. It actually allows streaming PCM audio 

buffers to the audio hardware for playback.  

B. Streaming Protocol 

    We used the java.net library to implement a library that 

provides a streaming protocol for real-time applications, 

based on Real-time Transport Protocol, for multimedia 

services and can be ported to any platform supports Java 

and its network libraries. Using this library, the system is 

able to set up, start and handle multiple unicast sessions 

using UDP or TCP as the transport layer, and transmit 

multimedia data supporting a wide range of media formats 

for the packaging and de-packaging stages, even though in 

the prototype system we used specific formats in order to 

facilitate the porting of the live multimedia streaming 

process to different platforms. 

V. EXPERIMENTAL RESULTS 

A. Experimental Setup       

We have conducted a set of experiments in order  to 

evaluate the efficiency and performance of MobiStream. 

The testbed of the experiments is presented in Table II. 

Additionally, we provide screenshots of the android 

application in Fig. 2. This setup can be used in various 

scenarios, for example, in streaming video, in mobile video, 

e-health, assistive technologies. First, we assume a 

Streaming Client running on an Android-powered device 

that uploads live multimedia streams to a Server. We 

conducted a series of experiments using different levels of 

signal strength - weak, medium and strong using TCP, 

monitoring the five bar scale of the smartphones which 

basically measures radio signal levels maintained by the 

wireless network adapter, in decibels (dB) on a more linear 

scale.  For each experiment, we report the averaged results 

of five runs. We also repeated the process using UDP and 

compared the results. To run this test we used the Xperia 

Neo V Android smartphone as Streaming Client and the 

Samsung Windows 7 laptop as Server. The second scenario 

concerns a Streaming Client delivering a live multimedia 

stream to multiple receivers of the network. The network 

comprises a wireless access point (i.e., router), a streaming 

client   (Xperia Neo V) and 5 to 20 receivers. We executed 

the experiment using a different number of receivers so as to 

record the end-to-end delay and the jitter, in order to 

investigate how these measurements affect the quality of the 

video at the receiver. In all cases, no external peers injected 

traffic in the network the server allows a few seconds (3s to 

5s regarding the signal strength) startup delay, which is a 

common practice in commercial streaming products. All 

packets arriving earlier than their playback times are stored 

in the server’s local buffer. In comparison to Ambistream in 

which a 30s start-up delay is introduced by the middleware 

layer to allow protocol translation. This aspect restricts the  

 

TABLE II.  TEST DEVICES 

Test Sony  Ericsson HTC Samsung 
Devices Xperia  Neo  V Explorer NP300V5A-S05 

Role Client/Server Client/Server Server 
Platform Android 4.0.4 Android 2.3.5 Windows 7 

CPU 1 GHz 600MHz I5-2450M 2.5GHz 
Memory 420MB 256MB 4GB 

 

use of the middleware for real-time applications. The 

multimedia stream has a QCIF (176 by 144) frame size in 

200kbs and 400kbs video bitrates, whereas in 600kbps, 

800kbps and 1000kbps we apply a CIF (352 by 288). The 

stream duration is 180 seconds and the video capture rate 

varies accordingly to the video bitrate presented in the 

experimental results; in total, more than 12 hours of 

streaming required among the testing devices.  

D. Experimental Results 

1) System Evaluation 

     We first present the experimental results of the mobile-

to-server scenario. We focus on the following Quality of 

service metrics: end-to-end delay (i.e., the time taken for a 

packet to be transmitted from the client to the server), the 

jitter (i.e., packet delay variation measured at the server) and 

the download rate (i.e., the transmission bitrate measured at 

the server). In Fig. 3 and Fig. 4, we present the download 

rate of the desktop server using TCP and UDP respectively. 

We chose a high video bitrate of approximately 1100kbps, 

in order to evaluate network throughput. In case of using 

TCP, Fig. 3 clearly depicts the behavior of the transport 

protocol in the weak signal strength case, as it shows intense 

variability of the download rate induced by the 

retransmission mechanism of TCP. In the medium and weak 

signal strength cases, the download rates recorded were 

4,96% and 17,97% lower than the rates observed in strong 

signal strength case. In case of using UDP, we observe from 

Fig. 4 that the download rates in medium and weak signal 

 

 
Figure 2.  (a) The mobile screen while recording a live event and the video 

window of the server running on a desktop, (b) Server Configuration 
screen, (c) Session Configuration screen, (d) Statistics screen. 
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download rate is higher regardless of the signal state due to 

the client-side buffering employed in the framework. Fig. 

5illustrates the jitter for different packets using TCP. In 

weak signal strength we recorded high values of jitter, e.g., 

786ms, at 387
th

 packet. This fact entails long pauses at the 

video presentation. Nevertheless, our proposed approach 

discussed in Section III accomplishes a good quality of the 

video stream without degrading the real-time 

communication. In medium signal strength, the highest 

absolute values of jitter are smaller than the values recorded 

in weak signal state. In strong signal strength, the highest 

positive value of jitter recorded was 40ms. Regarding the 

second scenario of the use of multiple server applications 

running on the network, we measured the end-to-end delay 

in case of 5, 10, 15, 20 receivers using TCP. Fig. 6 presents 

the mean end-to-end delay for different numbers of servers 

running in the network. The end to end delay remains within 

acceptable bounds in terms of video quality and Quality-of-

Experience and increases proportionally to the number of 

receivers, approximately 28% from 5 to 10 receivers, 30% 

from 10 to 15 receivers and 48% from 15 to 20 receivers.  

2) Evaluation of Memory and CPU usage 

    We also measured the resource usage of our approach. 
We run the experiments using the HTC Explorer 
smartphone described in Table II. Fig. 8 illustrates that the 
memory usage at the Server side remains constant. For 
higher data-rates, the memory usage may increase slightly 
because of the higher buffer sizes required. In the case of 
the Client application, the memory usage increases 
proportionally to video capture rate (including only JPEG 
data). In both applications, the framework re-uses the pre-
allocated space in RAM in order for the multimedia 
application to be able to run under memory constraints, as in 
this scenario we run the experiments using a smartphone 
with 256MB RAM. Fig. 9 depicts the CPU overhead on 
both client and server mobile applications versus the video 
bitrate. In all experiments we observed slightly higher 
percentage of CPU overhead in Client application, this is 
due to the use of the hardware input camera and the YUV 
compression module. Nevertheless, in both applications 

when the video bitrate is greater than 700kbps the CPU 
overhead tends to be the same. In order to accurately 
estimate the CPU usage of the framework during the live 

streaming process, we divided the CPU monitoring into 

three phases; (I) initialization of media components, (II) 
streaming process, (III) media components finalization. In 
both client and server applications the CPU usage during the 

first phase were 67% and 55%, respectively. The second 
phase is illustrated by Fig. 9 and includes, from the client 
point of view, the recording, storing, packaging and 

transmission of the media units. Regarding the server 
application, the second phase includes the de-packaging, the 
synchronization, the storing and the presentation of the 
received media units. For the third phase, the server and 

client required approximately 55% and 68% CPU usage, 
respectively. 

 
Figure 3.  Download rate (kbps) - Signal Strength, using TCP. 

 
Figure 4.  Download rate (kbps) - Signal Strength, using UDP. 

 
Figure 5.  Jitter(ms) - Signal Strength, using TCP. 

 
Figure 6.  End to end delay (ms) – Number of Receivers, using UDP. 

3) Evaluation of Energy Consumption 

     In the last set of experiments, we measured the energy 

consumption of our approach. We executed the scenario of 

mobile-to-mobile server running on smartphones and before 

the experiment both smartphones were fully charged. 

During the experiment, the battery states are recorded every 

10 seconds. Fig. 7 presents the battery state as a function of 

time. The 100% percent corresponds to the fully charged 

battery. We chose a high video bitrate of 1100kbps and run  
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Figure 7.  Battery Level (%) – Video bitrate (kbps) 

 
Figure 8.  Memory (MB) – Video bitrate (kbps) 

 
Figure 9.  CPU Usage (total ratio) – Video bitrate (kbps) 

each experiment for 16.6 minutes. Fig. 7 depicts that the 
Server hardware input Camera and framework’s Audio 

Recorder compared to the Server application in which the 

main energy consuming component is the Audio Player. 

ΙΙ. CONCLUSION AND FUTURE WORK 

    In this paper, we designed, implemented, and evaluated 

a mobile multimedia system, MobiStream that enables 

resource-constrained devices to handle real-time multimedia 

streams. We designed a platform-independent framework so 

that we can support live multimedia streaming among 

heterogeneous mobile devices. We present our approach on 

the synchronization of the media streams and the streaming 

process we employed. Our experimental results demonstrate 

significant performance benefits in terms of the usage of the 

mobile devices’ resources and video quality.  For our future 

work, we plan to evaluate the working of our approach 

using a larger number of heterogeneous mobile devices. 
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