
106

International Journal on Advances in Life Sciences, vol 9 no 3 & 4, year 2017, http://www.iariajournals.org/life_sciences/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Personalised Health Monitoring by a Multiagent
System

Leo van Moergestel, Brian van der Bijl,
Erik Puik, Daniël Telgen

Department of Computer science
HU Utrecht University of Applied Sciences

Utrecht, the Netherlands
Email: leo.vanmoergestel@hu.nl

John-Jules Meyer
Intelligent systems group

Utrecht University
Utrecht, the Netherlands

Alan Turing Institute Almere, The Netherlands
Email: J.J.C.Meyer@uu.nl

Abstract—By using agent technology, a versatile and modular
monitoring system can be built. This paper describes how such a
system can be implemented. The roles of agents in this multiagent
system are described as well as their interactions. The system
can be trained to detect several combinations of conditions and
react accordingly. This training can be done with specific patient
situations in mind, resulting in a personalised monitoring system.
Because of the distributed nature of the system, the concept can be
used in many situations, especially when combinations of different
sensor inputs are used. Another advantage of the approach
presented in this paper is the fact that every monitoring system
can be adapted to specific situations by varying the number and
types of sensors and the messaging capability. As a case-study, a
health monitoring system will be presented.

Keywords–Multiagent-based health monitoring; Multiagent ar-
chitecture; learning agent.

I. INTRODUCTION

The work in this paper is based on a paper presented
at the Intelli 2016 conference [1] and other previous work.
Monitoring systems are widely used in many situations. Simple
systems collect information that can be inspected by humans or
other systems. More advanced systems have the capability to
react on the data monitored. Smoke detecting systems with an
alarm are examples of these systems. Often a situation arises
where more than one monitored condition should be taken
into account before an action should be performed. Industrial
production systems are examples of complicated situations
where many sensors are used to control the process [2].
Another example of a complicated situation is the health
condition of the human body [3]. Here, alarm conditions may
also depend on individual factors, necessitating the monitoring
system to be trained for the specific individual person.

This paper describes a modular agent-based system [4] that
can be trained by a medical expert and can monitor the status
of a person and react adequately on the conditions encountered.
This system has been built using agent technology, resulting
in a robust and versatile multiagent-based monitoring system.
The concepts presented here can be used in other situations as
well [5].

The rest of this paper is organised as follows: Section II
will describe the concepts of our approach, the reason for
choosing agent technology as well as the architecture of
the multiagent system. The agent types introduced in the

architecture desription as well as other technical aspects will
be explained in more detail in subsecquent sections, starting
with Section III where the design of the sensor agent is
described. The decision agent is the subject of Section IV.
Communication and the communication agents are explained
in Section V and Section VI. The section is followed by
Section VII where the training system will be explained. This
training aspect is an important aspect of the system and is
treated in detail. The proof of concept and results are presented
in Section VIII. Related work will be discussed in Section IX
and a conclusion will end the paper.

II. AGENT-BASED MONITORING

The first part of this section will show the requirements
and explain the use of agent technology, while the second part
will focus on the multiagent architecture.

A. Requirements and technology

A monitoring system should be built to be capable to
handle several input values in combination. Depending on the
combined values of the inputs a specific action should be
executed. The system should be trained to build a knowledge
base and utilise known information to decide on a strategy to
react to the current situation. This resulted in the following list
of requirements:

• the system should monitor different inputs simultane-
ously;

• it should be easy to add extra monitoring inputs;

• the system should be trained in an effective manner;

• the system should have a set of possibilities to react
on certain conditions;

• different types of reaction should be possible depend-
ing on the input values.

As a case study, a system in the medical domain has been
adopted, but the concepts presented here can easily be used in
other domains as well.

For the realisation, agent technology has been used [4].
The reasons for choosing agent technology are:

107

International Journal on Advances in Life Sciences, vol 9 no 3 & 4, year 2017, http://www.iariajournals.org/life_sciences/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Error resistance. By using separate agents, the failure
of an agent responsible for sensor input will not bring
down the whole monitoring system. There is now a
possibility to fall back on a different solution based
on the availablity of sensor inputs.

• Clear separation of responsibilities and goals. In our
design, the sensors will be tied to separate agents that
have a clearly defined goal. This is also true for the
other agents involved, as will be discussed in the next
subsection.

• Modularity. A multiagent system (MAS) is modular by
nature and can be easily expanded with new features
and possibilities.

B. MAS design

The agents involved have roles and responsibilities. When
the different responsibilities are taken into account this will
result in the architecture of a multiagent system as depicted in
Figure 1.

Figure 1. Medical MAS architecture

Three different roles are incorporated in the design result-
ing in three types of agents.

1) monitoring agents: Monitoring agents are responsible
for delivering data to the decision agent. The data is coming
from sensors. The agents themselves have a rather simple
design. It could be possible to tell the agent at what intervals
the data should be presented as well as the format expected
by the decision agent.

2) decision making agent: A central role in the system
is played by the decision agent. This agent decides what
action should be performed under what conditions given by
the monitoring agents. To do so, it has to be trained to build a
knowledge base on how to react on certain conditions. This
training has to be supervised by an expert, in our case a
medical expert. A data acquisition system has been developed
to help the expert to efficiently add data to the knowledge base.
That system will be explained in the next section.

3) communication agent: The system has a set of commu-
nication agents that are responsible to communicate with the
outside world. These agents are used by the decision agent to
send emails, messages for several communication systems, like
SMS, and also putting information on a display or generating
an audible alarm.

Each MAS could contain any number of agents from
the first and third categories (collectively known as utility
agents), as well as one central agent having the capability of
mapping observations from sensor agents to actions performed
by communication agents. This design allows for agents to be
added and removed dynamically while keeping core function-
ality intact. An example medical MAS is shown in Figure 1,
including a number of potential utility agents.

C. Internal communication

The categories of agents described above will operate
together in a single MAS. Though it would be possible to
have agents running outside this MAS and still be able to
communicate with the agent within, this aspect falls outside
of the scope of this research.

The gold standard for agent development is the JADE
developed by Telecom Italia. It provides a set of tools and
an extendable framework for creating agents and MASs using
the FIPA standard. Within JADE, agents exchange information
using the ACL protocol [6] developed by FIPA. The prototype
medical MAS has been developed in JADE and as such uses
the ACL protocol for communicating information. The ACL
protocol allows for a number of languages to encapsulate
data, including XML; as the XML format provides a means
to represent data in a semantic way that is readable to both
humans and computers it appears to be a good choice for
inter-agent communication. A typical exchange of messages is
shown in Figure 2. Two sensor-agents send a stream of mea-
surements to the decision agent, which periodically calculates
its assessment of the situation. When the assessment reaches
a certain defined threshold, it starts to send messages to the
communication agents. The communication agents can respond
with a confirmation or a message indicating either failure to
relay the communication or failure to understand the message.
If the decision-agent receives a message indicating failure, it
tries to alert an operator using the designated fallback.

III. SENSOR AGENTS — BIOLOGICAL FACTORS AND
MONITORING

Sensor-monitoring agents are the simplest and most diverse
agents in the medical MAS. These agents exist primarily to
support modularity: as sensors do not necessarily produce
compatible signals to communicate their results, a small,
dedicated agent could be programmed to read the sensor-data
and communicate it to the decision-making agent in a standard
format. This way, the decision-making agent does not need to
know the way measurements are performed. A sensor could
easily be exchanged by a different kind of sensor, together
with its associated agent, without necessitating mayor changes
to the decision-making agent. Similarly, new sensors could
be added to facilitate patients with diseases requiering certain
types of sensors. Though this would require new data to be
added to the decision-making agent, the process of acquiring
the measurements could easily be added by inserting a new
sensor-monitoring agent to the MAS. This part of the system
will be discussed in Section III.

In order for any system to be able to assess a patients
health, it needs to know about a number of biological
factors. For heart failure and related problems — the focus

108

International Journal on Advances in Life Sciences, vol 9 no 3 & 4, year 2017, http://www.iariajournals.org/life_sciences/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

HeartRateAgent BloodPressureAgent DecisionAgent ScreenAgent MailAgent

INFORM (measurement)

INFORM (measurement)

INFORM (measurement)

INFORM (measurement)

REQUEST (communicate concern)

CONFIRM (message shown)

INFORM (measurement)

INFORM (measurement)

INFORM (measurement)

INFORM (measurement)

REQUEST (communicate alarm)

FAILURE (failure to send message)

REQUEST (notify of broken MailAgent)

CONFIRM (message shown)

Figure 2. Message exchange within the medical MAS.

of this research, the patients heart rate and blood pressure
seem to be obvious choices for factors to be monitored.
For other diagnoses another set of variables might contain
more meaningful information. However, from an artificial
intelligence (AI) point of view, the provision of a decisive
list of factors is not in the AI domain but in the medical
domain. As such, this resulted in a design of a prototype that
is as factor-agnostic as possible. Each factor to be considered
is added during initialisation as a feature to a n-feature
algorithm, and an appropriate sensor is added to the system
to collect the necessary data. By scaling each feature to a
value in the range (−1, 1), as described in Section VII-H,
the specifics of each feature are abstracted away from the
reasoning process: the product does not need to know what a
given value represents, only how it affects the output of its
prediction-function.

Thus, for the system to work with a given set of variables,
three things are needed to add the desired behaviour to the
existing product:

1) a sensor capable of measuring the new feature,
2) a mapping between sensor-output and a value in the

range (−1, 1) and
3) a dataset for the prediction algorithm featuring the

new factor.

To facilitate the development of sensor-agents, an abstract

<<abstract>>
SensorAgent

min : Double
max : Double
reading : Double
- id : String
- name : String
- unit : String
- pollTime : long = 2000
- decisionAgent : AID
(B) pollFeature : TickerBehaviour

+ setup()
performMeasurement() : Double
+ setup(name : String, amin : Double, amax : Double, aunit : String)
+ takeDown()
scaled() : Double
tag(tag : String, value : String) : String
xmlMsg() : String
report(String s)

Figure 3. The SensorAgent abstract class.

class has been written to minimise the required amount of
boilerplate code. All sensor-agents have a similar structure:
a single, repeating behaviour and a standardised method
of communicating measurements to the decision-making
agent. The SensorAgent class, as shown in Figure 3,
provides an abstraction of these similarities and only needs
a setup() method and a performMeasurement()
method to be implemented to create a concrete class. The
setup() method should set any relevant variables (of
which the variables required by the SensorAgent class
can be set by calling the setup(String, Double,
Double, String) methods of the superclass). The
performMeasurement() method should contain any
code needed to perform a measurement, and return its results
as a Double. The default behaviour of the SensorAgent
is to execute the measurement-method every 2 seconds and
to send the measurement to the decision-making agent using
an XML message as shown in Listing 1. The number of 2
seconds can be changed according to the situation and type of
measurements to be made. In the example, a subclass called
HeartRateAgent sends a message containing both the raw
values of the measurement (a real number within the range
supported by the sensor) and the same measurement scaled to
the range of (−1, 1).

Listing 1. A typical message sent from HeartRateAgent

<measurement>
<feature>HeartRate</feature>
<raw>68.950161</raw>
<scaled>-0.080665</scaled>

</measurement>

The SensorAgent itself contains a number of private and
protected attributes to store its specifics such as the name it
uses for communication, the specifics of the associated sensor
such as minimum / maximum / current values, and the Agent
ID of the decision agent. A SensorAgent contains a single
behaviour, represent here as (B).

As described above, the SensorAgent contains two
abstract functions needed to implement a subclass. In
addition, the class contains a few helper-methods to limit
code duplication. The method scaled() uses the minimum

109

International Journal on Advances in Life Sciences, vol 9 no 3 & 4, year 2017, http://www.iariajournals.org/life_sciences/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and maximum values to apply feature scaling (described in
more detail in Section VII-H), tag(String, String)
and xmlMsg() provide a more readable way to generate
the XML and report(String) is a wrapper around
System.out.println(String) prepending the output
with the agent name to make it easier to distinguish messages
when various agents are reporting at the same time.

A. Example: HeartRateAgent

As an example, Listing 2 provides a template for
how a HeartRateAgent would look as a subclass of
SensorAgent. The hardware-specific code can be filled
in when a sensor has been selected to produce a functional
sensor-agent.

Listing 2. A sample SensorAgent subclass
public class HeartRateAgent extends SensorAgent
{ public void setup()

{ super.setup("HeartRate", 0.0, 150.0, "bpm"); }

public Double performMeasurement()
{ try

{ // read sensor
// calculate heart rate from reading
return reading; } // feature scaling happens

catch (Exception e) // when message is sent.
{ // handle exception

return reading; } } } // return old reading

IV. THE DECISION AGENT — AGENT REASONING

The decision agent is the central part of our MAS, and is
responsible for mapping measurements to assessments of the
patient’s situation and to request external communication if
the situation becomes dire. The agent is trained to perform
this task using logistic regression on datapoints provided by
a medical expert. The result of this training procedure is a
variable θ, which is unique for every patient. Its structure
is dependent on the number of factors monitored and the
amount of feature-mapping applied, and its contents vary
slightly to account for differences between patients, even
when the structure is identical. The θ variable and the level
of feature-mapping are stored within the agent, and will
periodically be used to transform the vector of measurements
x into a prediction value representing the certainty the system
has of the patients well-being.

In order to make the agent as generalised as possible
it will be given a set of general behaviours dependent on
variables such as θ, ensuring that most of its behaviour can be
changed by sending updated parameters instead of changing
the code. The agent will need more information than just
the θ variable: it will need a list of “plans” telling it how to
react to certain situations. Furthermore, the agent needs to
know about the order of the variables within x, the level of
feature-mapping, and which agents to contact.

A UML overview of the decision-agent’s structure is
shown in Figure 4. As shown, the decision agent contains a
great amount of variables and operations. The agent contains

DecisionAgent

- interval : long = 5000
- theta : Matrix
- x : Matrix
- x raw : Matrix
- features : Map<String, Integer>
- plans : LinkedList<Plan>
- fallbackAgent : AID
- fallbackRecipient : String
- mapping : int = 0
- operational : boolean = false
- instructions : MessageTemplate
- measurement : MessageTemplate
- error : MessageTemplate
(B) handleFailure : CyclicBehaviour
(B) recvMeasurements : CyclicBehaviour
(B) recvTheta : CyclicBehaviour
(B) makePrediction : TickerBehaviour

+ setup()
+ takeDown()
binomial(n : int, r : int) : int
numMappedFeatures(n : int, r : int) : int
combsWithRep(x : LinkedList<Integer>, k : int) :
LinkedList<LinkedList<Integer>>
mapFeatures(x : Matrix, mapping : Integer) : Matrix
sigmoid(t : Double) : Double
report(s : String)
tag(tag : String, value : String) : String

Figure 4. The decision-agent class.

matrices (or more precisely, mathematical vectors) for storing
θ and x (the latter both scaled and as raw values). A Map is
used to associate the names of features with their position in
x. In addition, it contains a variable interval controlling
how often a prediction is made, an integer telling the feature
mapping function how many polynomials it should generate,
a set of MessageTemplates allowing it to distinguish
various kinds of messages, and a boolean indicating
whether the agent is operational (i.e., has received a valid
set of instructions). The list of Plans and the fallback
communication method are described below in Section IV-D.

A. Methods

In addition to the setup() and takedown() meth-
ods required by JADE as pseudo-constructors / destructors,
the agent contains a number of utility-functions serving to
make the code (mostly contained in its behaviours) more
readable and to improve maintainability. binomial(..),
combsWithRep(..), numMappedFeatures(..) and
mapFeatures(..) are used to perform and verify the
feature mapping on the agent.

B. Behaviours

As the decision-agent is the central part of the medical
MAS, it contains a large set of behaviours: three cyclic
behaviours, which are constantly active, and a ticker behaviour
operating on an interval depending on the interval variable:

• handleFailure listens for messages indicating
failure in any of the communication agents. In such
an event, it will use a designated fallback-agent to
alert an operator that the system might be unable to
communicate.

110

International Journal on Advances in Life Sciences, vol 9 no 3 & 4, year 2017, http://www.iariajournals.org/life_sciences/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Plan

- below : Double
- message : String
- recipient : String
- agent : AID
- limit : Integer
- available : boolean = true
- timer : Timer

+ Plan(b : Double, m : String, r : String, a : AID, t : Integer)
+ toString() : String
+ execute(h : Double)
- msg x() : String
- xmlMsg() : String

Figure 5. The plan inner class

• recvMeasurements listens for messages from the
sensor-agents and saves them in x and x_raw for use
in predictions.

• recvTheta listens for messages containing instruc-
tion sets. This aspect is explored in Section IV-E.

• makePrediction is responsible for periodically
multiplying theta and x to make a prediction re-
garding the patient’s health. This process is described
in Section IV-C.

C. Assessing the situation

Every interval milliseconds, the agent uses its then-
current knowledge of the features, represented in x, to con-
struct a feature-mapped column-vector x_mapped. The inner
product of x_mapped and the row-vector theta is passed
through the sigmoid(double)-method yielding a double
between zero and one, representing the probability that the pa-
tient is still healthy. As this number decreases, the probability
of something being wrong increases. After a prediction has
been calculated, the value is compared to the thresholds defined
for each plan; if the calculated result is below the threshold for
a given plan, the agent will attempt to execute it by messaging
a communication agent.

D. Executing plans

Plans are represented by a special Plan class, shown
in Figure 5. Each time a prediction is made, the agent
attempts to invoke the execute(Double) method for each
plan, passing the predicted probability. Each plan contains a
threshold below, which is compared to the prediction when
execute(Double) is called. Execute will send its message
to its specified recipient via its specified agent, provided two
conditions are met:

1) The prediction passed as an argument to
execute(Double) is lower than or equal to
the threshold for the plan and

2) The boolean available is set to true

The value of available is initialised as true, but is set
to false when the plan is first executed. At the same time, a
timer is started for limit seconds, after which available
is reset to true. This prevents the MAS from flooding its
recipients with messages as a new prediction is calculated, by
default, every five seconds; though it may be meaningful to

provide an occasional update, a realistic poll frequency for
the agent to make predictions is likely always higher than
a realistic notification frequency. By using a plan specific
interval all frequencies can be chosen separately.

E. Receiving instructions

All of the necessary information can be delivered to the
agent within a single ACL message; Listing 3 shows a sample
XML fragment containing instructions for a decision-agent
using two features, including a second-degree feature mapping
and two plans.

Listing 3. An initialisation message as sent to the decision-agent.
<instructions>
<features>
<feature id="SystolicBloodPressure">

<label>Systolic Blood Pressure</label>
<min>0</min>
<max>200</max>
<unit>mm Hg</unit>

</feature>
<feature id="HeartRate">

<label>Heart Rate</label>
<min>0</min>
<max>200</max>
<unit>bpm</unit>

</feature>
</features>
<mapping>2</mapping>
<theta>
<value>2.402548</value>
<value>2.769392</value>
<value>3.467782</value>
<value>-7.500590</value>
<value>-2.189613</value>
<value>-11.995721</value>
<value>-2.301167</value>
<value>2.064028</value>
<value>-2.568114</value>
<value>-2.736256</value>

</theta>
<plans>
<plan>

<below>0.6</below>
<message>Watch out!</message>
<via>ScreenAgent</via>
<to></to>
<limit>30</limit>

</plan>
<plan>

<below>0.4</below>
<message>Panic!</message>
<via>MailAgent</via>
<to>brian.vanderbijl@hu.nl</to>
<limit>3600</limit>

</plan>
</plans>
<fallback>
<via>ScreenAgent</via>
<to></to>

</fallback>
</instructions>

The initialisation consists of five parts:

1) A features node containing information about
each feature. The order the features are presented in
determines the position of measurements within x,
and must be identical to the order of features during
the learning process.

111

International Journal on Advances in Life Sciences, vol 9 no 3 & 4, year 2017, http://www.iariajournals.org/life_sciences/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

<<abstract>>
CommunicationsAgent

name : String
decisionAgent : AID
comReq : MessageTemplate
- testInterval : long = 3600000
(B) testCommunication : TickerBehaviour
(B) relayCommunication : CyclicBehaviour

+ setup()
testCommunications()
communicate(msgText : String, to : String)
+ setup(name : String)
+ takeDown()
report(String s)

Figure 6. The CommunicationsAgent abstract class.

2) A mapping node containing a single integer value
determining the amount of feature-mapping.

3) A theta node containing a series of decimal values
representing θ. As with the features, the order is
important here.

4) A plans node containing a set of plans used to re-
spond to predictions. Each plan includes a threshold,
below which the plan will be executed, a message to
be sent, the name of the agent responsible for relaying
the message, an optional recipient (whether this is
needed depends on the agent: a mail or SMS agent
would require a recipient, whereas a screen agent
would not), and a limit in seconds determining how
often a plan can be executed in order to avoid flooding
messages.

5) A fallback node containing an agent and a
recipient to alert when a communications agent is
not functioning properly and cannot be trusted to
relay important messages.

When the decision-agent receives a set of instructions,
it will confirm whether the length of θ matches the length
of x after feature scaling, throwing an error if the two are
incompatible. As each level of feature-mapping adds a number
of features equal to

(
n+d−1

d

)
, the following equality must hold:

sizeθ =
d∑
i=1

(
sizex + i− 1

i

)
.

V. COMMUNICATING RESULTS TO THE OUTSIDE WORLD

The decision-agent as described in Section IV relies on
other agents to communicate the results to a medical expert
and/or the patients themselves. This choice is deliberate, as it
allows new methods of communication to be added “on the
fly”, without changing the decision-agent’s behaviour. Each
communication agent added to the system represents a new
option to communicate the patient’s health and relay concern.
As with the sensor-agents, an abstract class has been provided
to facilitate the development of additional agents. This class,
CommunicationsAgent, shown as UML in Figure 6.

Each communication agent has a String variable to hold
its name and an AID representing the decision agent. A vari-
able testInterval controls how often the agent performs a

self-diagnostic. Two behaviours are present: one to continually
listen for requests for communication, and another to perform
the self-tests on an interval dictated by testInterval. The
class provides the methods for setup, agent destruction and
reporting to stdout.

Three abstract methods need to be implemented to create
a CommunicationsAgent subclass:

1) setup() should set any relevant variables, at the
very least including the agent’s name.

2) testCommunications() should include the
code needed to run a self-test, if applicable, and throw
an exception if it fails to complete the test. This
exception is caught by the testCommunication
behaviour after which a FAILURE message is sent
to the decision-agent indicating the communication
agent has become unreliable.

3) communicate() should include all code needed
to send a message, such as setting up the necessary
objects for IO in Java (provided this needs to be
done each time a message is sent; if the method
of communication features a persistent object that
can be trusted to remain operable, it can be setup
in the setup() method) and actually sending the
message. It will send a CONFIRM-message back to
the decision agent if the sending process did not
encounter any errors; in case of failure it can send
either a NOT_UNDERSTOOD message to indicate the
XML received was illegible, or a FAILURE indicat-
ing some sort of IO error encountered in trying to
relay the message to its recipient.

VI. COMMUNICATIONS AGENTS — REQUESTS FOR
OUTSIDE COMMUNCIATIONS

Requests for communication from the decision agent are
packaged in a small snippet of XML, as shown in Listing 4.
The message-node contains the body of the email, including
the most recent value for each feature.

Listing 4. A typical message sent to MailAgent

<request>
<to>leo.vanmoergestel@hu.nl</to>
<message>
Patient health in serious condition!
- HeartRate = 54.93483905942176
- SystolicBloodPressure = 86.20808412990199

</message>
</request>

Just as there are various ways to acquire data to facili-
tate the decision-making agent, there are also many methods
to communicate its results. These include telephony, instant
messaging, patient-information logs and on-device IO like
displays, alarms, etc. The preferred methods of communication
may be subject to change over time as the patient’s situation
changes, as doctors come and go and as new forms of
communication are developed, become widely adopted and are
eventually deprecated. Therefore, MAS communication to the
outside world should be modular. Just like with sensor-reading
agents described in Section III, methods of communications
could be implemented by small, trivial single-purpose agents.

112

International Journal on Advances in Life Sciences, vol 9 no 3 & 4, year 2017, http://www.iariajournals.org/life_sciences/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

By abstracting the way information is delivered, the decision-
making agent can communicate its results in a predefined
manner indicating the conclusions to be sent and the perceived
level of panic. Communications agents can pick up these
messages and assume responsibility of relaying the information
to the appropriate recipients.

Using the abstract class approach, any method of commu-
nication can be added to link the system up to existing medical
care, and an existing system can easily be extended to include
new ways of communicating. Depending on the availability
of usable Java libraries this may be done in relatively small,
simple agents.

VII. DATA AQUISITION FOR AGENT TRAINING

In order to interpret the measurements acquired from
the sensors and predict whether the current patient situation
constitutes a cause of alarm, the decision agent needs a
way to classify potentially high-dimensional data. Each
biological factor considered in the model represents an
additional dimension for data points. As this information
is not guaranteed to be available for various combinations
of biological features, it makes sense to explore a way
for medical personnel to easily enter such data into the
system. Not only does this guarantee the required data can
be generated, if not available, it also allows for far greater
personalisation, providing the agent with a data-set tailored to
its patient. Manual entry, or at least confirmation, also allows
an expert intimate knowledge of the agents decision-making
process, potentially increasing trust by removing the “black
box” aspect of machine learning.

Teaching the system to recognise alarming measurements
and differentiate between various levels of threat requires
large amounts of information provided by medical personnel,
preferably tailored to the patient as thresholds might not
be the same for every person. Entering this data can be
challenging: as potentially multiple factors need to be taken
into account together, it becomes progressively harder for
humans to visualise and communicate relevant thresholds. A
better way might be to input a set of data-points, together
with appropriate assessments of the situation associated with
each data-point. These data-points could be used, alone
or in conjunction with more general datasets, to train a
classification algorithm.

In order to train an agent to make accurate predictions,
training data will need to be entered into the system by
a medical expert. This should be as easy as possible: the
focus should be to quickly train an agent without expending
significant time accommodating the system. Unfortunately,
entering possibly poly-dimensional data graphically is a
difficult task. For one or two dimensional data, clicking points
in a scatter plot, as pictured in Figure 7, can be a quick
way to enter points; for three dimensional data this becomes
harder: a scatter-plot is still possible for data-visualisation,
but entry becomes impossible as a mouse or trackpad and
a computer screen are both essentially two-dimensional. For
even more simultaneous features, only a subset of the features
can be plotted at the same time.

An alternative approach would be to require the expert
to manually enter all features, as well as the results that the
system should predict. Not only is this rather work-intensive,
but also prone to omissions: as it is hard for the human mind
to visualise all features simultaneously and large gaps are a
significant risk.

A better solution would be for the system to dynamically
suggest data-points based on the largest knowledge gaps. An
expert would then be provided with the parameters for a new
datapoint by the algorithm. For this datapoint an assessment of
the situation can then be entered. The algorithm continuously
updates its collection of datapoints, as well as the model
derived from the combination of datapoints and expert assess-
ments, and proceeds to suggest the largest empty areas in its
knowledge-continuum as possible locations for new datapoints.
This continues until the expert considers the fit of the model
to be satisfactory, after which the model is accepted. The
expert remains in control of the process of entering datapoints,
and can at any time ignore a suggestion or opt to enter the
parameters for a new datapoint themself.

This section considers an approach to accomplish this.
Each problem will be examined in two dimensions first, as
this makes it easier to visualise and demonstrate the applied
methods. After the solution has been sufficiently exposed a
generalisation can be made in n-dimensions.

To represent gaps in the knowledge-continuum, we create
a triangulation of the known datapoints. Each datapoint is
considered a vertex in an n-dimensional space, and by triangu-
lating over this set of vertices we can detect sparsely populated
areas by the emergence of larger triangles. In contrast, a large
amount of datapoints in close proximity will yield a large
number of smaller triangles.

Triangles and their higher-dimensional analogues (the tetra-
hedron in three dimensions, the 5-cell in four, etc.) are col-
lectively referred to as n-simplex or just simplices (singular:
simplex). As a triangle (2-simplex) is defined by three vertices
of the form (x, y) and and a tetrahedron (3-simplex) is defined
by four vertices of the form (x, y, z), an n-simplex is the most
basic n-dimensional object defined by n + 1 vertices in n-
dimensional space.

Heartrate in bpm

S
y
st

o
li
cP

re
ss

u
re

 i
n
 m

m
 H

g

0 37.5 75 112.5 150

0
5
0

1
0
0

1
5
0

2
0
0

Healthy

Worrying

Figure 7. Scatter plot in two dimensions of a small random dataset.

113

International Journal on Advances in Life Sciences, vol 9 no 3 & 4, year 2017, http://www.iariajournals.org/life_sciences/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Finding the most valuable points for data-querying

When entering data-points to train an agent, some points
are more valuable than others. For example, potential locations
completely surrounded by existing data-points all belonging
to the same class are unlikely to add any new information to
the system. Similarly, points in sparse areas are potentially
more valuable, as are points closer to the centre of the point
cloud. Figure 8 shows the same scatter plot as Figure 7, but
adds a decision boundary and three possible locations for new
data points marked by numbers. Location 1 does not appear to
be a good addition, as it is very close to existing points and is
therefore unlikely to add a great deal of information. Location
2 is not a good suggestion either, as it is very far from the
decision boundary — it will likely have the same category as
the points surrounding it, especially if a large amount of data
has been entered. Location 3 is a better spot for a new data
point: it is not a near duplicate of another point, and it lies
close to the decision boundary. Depending on the category
this point will be assigned to it may significantly change the
decision boundary in either direction.

Heartrate in bpm

S
y
st

o
li
cP

re
ss

u
re

 i
n
 m

m
 H

g

0 37.5 75 112.5 150

1

2

3

0
5
0

1
0
0

1
5
0

2
0
0

Figure 8. Three possible locations for a new data-point.

B. Data-point-distribution

To find sparsely populated areas to add new data-points,
we first create a triangulation containing all data points. For
each of these triangles, the circumcentre is calculated, and the
collection is ordered based on the area of the triangles. These
points can now be evaluated in order to find points close to
the current decision-boundary.

C. Triangulating n-dimensional space in simplices

To triangulate a set of points we utilise the Delaunay Tri-
angulation [7]. Most mathematical libraries include a function
to quickly get the Delaunay Triangulation of a set of points in
n dimensions. Triangulating the example data from Figure 7
yields the triangulation as shown in Figure 9.

D. Calculating the size of each n-simplex

To find the largest simplex we use the determinant of the
matrix constructed by adding each vector representing a vertex
as a single column, and adding a final row of ones [8]. For a
triangle, the absolute value of the result is equal to two factorial
times the triangle’s area. For a tetrahedron, the absolute value

HeartRate in bpm

S
y
st

o
li
cB

lo
o
d
P

re
ss

u
re

 i
n
 m

m
 H

g

0 37.5 75 112.5 150

0
5
0

1
0
0

1
5
0

2
0
0

Figure 9. Triangulation and scatter plot in two dimensions

equals three factorial times the volume. For higher-dimensional
shapes, this method continues to yield a scalar multiple of the
n-hypervolume of the simplex. As the simplex size is only
used for sorting, the scalar multiplication does not influence
the ordering and can safely be ignored. As an example, the size
of a triangle described by a = (0, 0), b = (0, 4) and c = (3, 0)
is given by

abs

∣∣∣∣∣∣
0 0 3
0 4 0
1 1 1

∣∣∣∣∣∣
 = 12 (1)

which is twice the area of the triangle.

E. Calculating the circumcentre of each n-simplex

Once the largest data-gap has been found, we want to
find its centre to suggest as a new data point. A simplex
has multiple definitions of its centre; for this purpose the
circumcentre, the point equidistant from all its vertices [9],
seems a logical choice. Given a n-simplex defined by vertex
v(1),v(2), . . .v(n+1) with a circumcentre c, we know that
the distance between any vertex and c must, by definition, be
equal. For any two vertices v(a) and v(b), this means:

‖v(a) − c‖ = ‖v(b) − c‖

‖v(a) − c‖2 = ‖v(b) − c‖2

(v(a) − c) · (v(a) − c) = (v(b) − c) · (v(b) − c) (2)

We translate each vector by −v(1) so that v(1) becomes
the origin (denoted o) and equate the distance to c of each
remaining vector with the distance of c to o, yielding the locus
for each translated vertex v and the origin o:

(o− c) · (o− c) = (v − c) · (v − c)

c2 = v2 − 2v · c+ c2

2v · c = v2

v · c = 0.5v2

v1c1 + v2c2 + · · ·+ vncn = 0.5‖v‖2 (3)

Doing this for every vertex v(2) to v(n+1) gives us n
equations, allowing us to find the n-dimensional vector c.

114

International Journal on Advances in Life Sciences, vol 9 no 3 & 4, year 2017, http://www.iariajournals.org/life_sciences/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

We can write these equations in matrix form and solve all
equations simultaneously:

Writing

S =

v
(2)
1 − v

(1)
1 v

(2)
1 − v

(1)
1 . . . v

(2)
1 − v

(1)
1

v
(3)
2 − v

(1)
2 v

(3)
2 − v

(1)
2 . . . v

(3)
2 − v

(1)
2

...
...

. . .
...

v
(n+1)
n − v(1)n v

(n+1)
n − v(1)n . . . v

(n+1)
n − v(1)n

c =

c1
c2
...
cn

 r = 0.5

‖v(2) − v(1)‖2
‖v(3) − v(1)‖2

...
‖v(n+1) − v(1)‖2

 , (4)

we have
Sc = r . (5)

Given this, we can multiply both sides by S−1 to get

c = S−1r . (6)

As c was translated by −v(1), all that remains is adding
v(1) to find the triangle’s circumcentre.

F. Avoiding suggesting out-of-bounds points

As shown in Figure 9, Delaunay triangulations are prone
to yielding obtuse simplices, in particular around the edges.
This can be a problem because an obtuse simplex has a
circumcentre outside itself. On the edges, this will result in
the algorithm suggesting points outside the sensor’s bounds.
As these points are meaningless and only serve to distract the
user, we would like to avoid generating obtuse simplices.

We solve this problem by introducing a border of false
data-points around the edge. These data-points are only used
to determine the Delaunay triangulation, and are not present
in the actual training-data being generated. The number of
data-points is determined by a variable β ∈ N1: For β = 1,
only the corners of the graph are added. For larger values
of β, each axis is subdivided into β parts. As β becomes
larger, out-of-bounds points become increasingly unlikely,
and suggestions start to gravitate towards existing data-points.

As Figure 10 and Figure 11 show, too large a value for
β makes the algorithm increasingly unlikely to suggest points
around the edges. Though more central points are preferred,
limiting data-points to a central cluster might not be the way
to go. A solution for this could be to gradually decrease β
over time.

G. Generating the borders

The set of points to be used as a border constitutes of the
following:

• a point for each vertex of the n-cube describing the
range of data-points

Figure 10. Triangulation for β ∈ {1, 2, 3, 8, 12} alongside original
triangulation.

Heartrate in bpm

S
y
st

o
li
cP

re
ss

u
re

 i
n
 m

m
 H

g

0 37.5 75 112.5 150

0
5
0

1
0
0

1
5
0

2
0
0

Heartrate in bpm

S
y
st

o
li
cP

re
ss

u
re

 i
n
 m

m
 H

g

0 37.5 75 112.5 150

0
5
0

1
0
0

1
5
0

2
0
0

Heartrate in bpm

S
y
st

o
li
cP

re
ss

u
re

 i
n
 m

m
 H

g

0 37.5 75 112.5 150

0
5
0

1
0
0

1
5
0

2
0
0

Heartrate in bpm

S
y
st

o
li
cP

re
ss

u
re

 i
n
 m

m
 H

g

0 37.5 75 112.5 150

0
5
0

1
0
0

1
5
0

2
0
0

Figure 11. Scatter plot of the first twenty suggestions for β ∈ {1, 2, 4, 8}.
Note that out-of-bounds points are not plotted.

• (β − 1) points on each edge (1-face)

• (β − 1)2 points on each face (2-face)

• (β − 1)3 points on each cell (3-face)

• . . .

• (β − 1)n−1 points on each (n− 1)-face

The number of points denoted by #P needed given a
dimensionality n and a border-saturation β can therefore be

115

International Journal on Advances in Life Sciences, vol 9 no 3 & 4, year 2017, http://www.iariajournals.org/life_sciences/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

calculated by

#P (n, β) =

n−1∑
i=0

F (n, i)(β − 1)i (7)

where F (n, i) is the number of i-faces on a n-cube [10]:

F (n, i) = 2n−i
(
n

i

)
(8)

The actual value of P (n, β) can intuitively be seen as the
Cartesian product of n instances of interval(β), also known as
its Cartesian Power, of which only those points for which at
least one of its members is equal to −1 or 1 are kept. In other
words, for which the infinity norm ‖x‖∞ equals 1.

P (n, β) = {x | x ∈ interval(β)n ∧ ‖x‖∞ = 1} (9)

‖x‖∞ = max
i
|xi| (10)

H. Feature Scaling

The interval-function creates an interval between −1 and
1 in β steps. This is because all features are scaled to lie
between −1 and 1, even though the actual measurements might
range from 0 to some arbitrary maximum. This feature scaling
is applied to make sure that all features are of the same
importance when applying logit later on.

I. Avoiding symmetry

The algorithm presented above tends to favour generating
a symmetrical data-set: As the range of values is a perfect
n-cube, the first point suggested will be the centre, followed
by a group of points equidistant from the first. This is
undesirable, as symmetrical data points feature will introduce
redundant features when multiplied during the fmap process.
It will not help in generating a better hypothesis but will slow
down the learning algorithm.

To prevent generating such a duplicate set of data, we will
move each suggestion by a small random amount, controlled
by a variable δ, that represents the maximal displacement
for each point in each dimension. In order to ensure that
this displacement will not place points outside the feature
boundaries, this displacement will be opposite to the sign
of the original location. This results in the data point being
moved slightly towards the centre, which generally is the most
interesting area to collect data on. We achieve this by replacing
each vector element ci by the weighted mean of r · 0 and
(1− r)ci, where r ∼ U([0, δ]) is a random variable uniformly
distributed on [0, δ].

VIII. IMPLEMENTATION

For the implementatation of the proof of concept, Java
agent development framework (Jade) [11] has been used.
The Jade runtime environment implements message-based
communication between agents running on different platforms
connected by a network. The reasons for choosing Jade are:

• the system presented is a multi-agent-based system.
Jade provides the requirements for multiagent sys-
tems;

• the agent communication standard ”Foundation for
Intelligent Physical Agents” (FIPA) [12] is included
in Jade;

• Jade is Java-based and it has a low learning curve for
Java programmers; Java is a versatile and powerful
programming language;

• Jade is developed and supported by an active user
community.

The prototype has been developed and implemented on a stan-
dard Linux-based laptop. It should be possible to operate the
system on any small device capable of running Java such as the
Raspberry Pi nano [13]. Though the Jade-platform was selected
for the prototype, this does not preclude development of a
medical MAS in another framework or language. The concepts
explored here can be implemented in any language, though
support for a solid agent-development framework would be a
serious asset. Nevertheless, if better performance is needed,
the same principles could be implemented in a lower-level
language, such as C, reducing much of the overhead at the
cost of lower maintainability.

The prototype has been built and the working has been
tested. In summary the following results have been achieved:

• The concept of a medical MAS consisting of three
types of agents working together to monitor the patient
and communicate the result.

• A method of collecting data from medical experts and
utilising this knowledge to teach an agent to evaluate
readings provided by sensors.

• The beginnings of a generalised framework upon
which to build agents for inclusion in a medical MAS.

The next step will be implementing the system in the real
world and testing the usability.

IX. RELATED WORK

Agent-based monitoring for computer networks has been
proposed and implemented by Burgess. Burgess [14] [15]
describes Cfengine that uses agent technology in monitoring
computer systems and ICT network infrastructure. In Cfengine,
agents will monitor the status and health of software parts
of a complex network infrastructure. In [16], an agent-based
monitoring system is proposed. A so-called product agent is
responsible to monitor the working of a system in several
different phases of its lifecycle. The actions performed by
the agent are limited to prevent disasters or misuse. The
aforementioned concept of a product agent that supports a
product during its lifecycle from production to recycling is
described in [17].

A lot of literature is available regarding health monitoring
systems. Pantelopoulos and Bourbakis [18] give an overview
of wearable sensor-based systems for health monitoring and
prognosis. Their work focusses on the hardware implemen-
tation of the monitoring systems as well as communication

116

International Journal on Advances in Life Sciences, vol 9 no 3 & 4, year 2017, http://www.iariajournals.org/life_sciences/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

technologies that might be used by such systems. The work
of Milenkovic [19] is dedicated to wireless sensor networks in
personal health monitoring. The system they describe collects
data that is transferred to a central monitoring system whereas
the system described in our paper aims for autonomous
operation. Furthermore, monitoring systems that focus on
special health related situations exist, such as the work of
Marder et al. [20] where a system for monitoring patients with
schizophrenia is described. An agent-based health monitoring
as a concept for application of agent technology has been
proposed by Jennings and Wooldridge in [21].

X. CONCLUSION

In this paper, a complex, expandable and agent-based
monitoring system has been proposed and a proof of concept
was built. The system turned out to work as expected. The
design of the MAS has been described in detail as well as the
communication between the different types of agents. Special
attention has been given to the way the system builds its
knowledge-base, resulting in an efficient system that focusses
on the borders of operating space where transitions from one
situation to another situation are possible. In the case of the
medical monitoring system, this could result in a personal
adapted monitoring system that can also be easily changed.
Though the system is designed for use in a medical context,
the concepts can be used in other domains as well.

REFERENCES

[1] L. v. Moergestel, B. v. d. Bijl, E. Puik, D. Telgen, and J.-J. Meyer,
“A multiagent system for monitoring health,” IARIA, Intelli The
Fifth International Conference on Intelligent Systems and Applications,
Barcelona, Spain, 2016, pp. 57–62.

[2] L. v. Moergestel, J.-J. Meyer, E. Puik, and D. Telgen, “A versatile agile
agent-based infrastructure for hybrid production environments,” IFAC
Modeling in Manufacturing proceedings, Saint Petersburg, 2013, pp.
210–215.

[3] J. T. Parer and T. Ikeda, “A framework for standardized management
of intrapartum fetal heart rate patterns,” American Journal of Obstetrics
and Gynecology, vol. 197, no. 1, 2007, pp. 26.e1 – 26.e6.

[4] M. Wooldridge, An Introduction to MultiAgent Systems, Second Edi-
tion. Sussex, UK: Wiley, 2009.

[5] L. v. Moergestel, J.-J. Meyer, E. Puik, and D. Telgen, “Embedded
autonomous agents in products supporting repair and recycling,” Pro-
ceedings of the International Symposium on Autonomous Distributed
Systems (ISADS 2013) Mexico City, 2013, pp. 67–74.

[6] Foundation for Intelligent Physical Agents. FIPA
ACL Message Structure Specification. [Online]. Available:
http://www.fipa.org/specs/fipa00061/SC00061G.html

[7] Wolfram MathWorld. Delaunay Triangulation. [Online]. Available:
http://mathworld.wolfram.com/DelaunayTriangulation.html

[8] P. Stein, “A note on the volume of a simplex,” The American
Mathematical Monthly, vol. 73, no. 3, 1966, pp. 299–301. [Online].
Available: http://www.jstor.org/stable/2315353

[9] Wolfram MathWorld. Circumcenter. [Online]. Available:
http://mathworld.wolfram.com/Circumcenter.html

[10] R. J. McCann, “Cube face,” 2010. [Online]. Available:
http://www.math.toronto.edu/mccann/assignments/199S/cubeface.pdf

[11] Telecom Italia. JAVA Agent DEvelopment Framework. [Online].
Available: http://jade.tilab.com/

[12] Foundation for Intelligent Physical Agents. FIPA. [Online]. Available:
http://www.fipa.org/

[13] E. Upton. Oracle Java on Raspberry Pi. [Online]. Available:
https://www.raspberrypi.org/blog/oracle-java-on-raspberry-pi/

[14] M. Burgess, “Cfengine as a component of computer immune-systems,,”
Proceedings of the Norwegian Informatics Conference, 1998, pp. 283–
298.

[15] M. Burgess, H. Hagerud, S. Straumnes, and T. Reitan, “Measuring
system normality,” ACM Transactions on Computer Systems (TOCS)
Volume 20 Issue 2, 2002, pp. 125–160.

[16] L. v. Moergestel, J.-J. Meyer, E. Puik, and D. Telgen, “Monitoring
agents in complex products enhancing a discovery robot with an agent
for monitoring, maintenance and disaster prevention,” ICAART 2013
proceedings, vol. 2, 2013, pp. 5–13.

[17] L. v. Moergestel, E. Puik, D. Telgen, and J.-J. Meyer, “The role of
agents in the lifecycle of a product,” CMD 2010 proceedings, 2010,
pp. 28–32.

[18] A. Pantelopoulos and N. G. Bourbakis, “A survey on wearable sensor-
based systems for health monitoring and prognosis,” IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
vol. 40, no. 1, 2010, pp. 1–12.

[19] A. Milenković, C. Otto, and E. Jovanov, “Wireless sensor networks for
personal health monitoring: Issues and an implementation,” Computer
communications, vol. 29, no. 13, 2006, pp. 2521–2533.

[20] S. R. Marder, S. M. Essock, A. L. Miller, R. W. Buchanan, D. E. Casey,
J. M. Davis, J. M. Kane, J. A. Lieberman, N. R. Schooler, N. Covell
et al., “Physical health monitoring of patients with schizophrenia,”
American Journal of Psychiatry, vol. 161, no. 8, 2004, pp. 1334–1349.

[21] N. R. Jennings and M. Wooldridge, “Applications of intelligent agents,”
in Agent technology. Springer, 1998, pp. 3–28.

