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Abstract— The Natural-Constructive Approach is proposed to 

describe and simulate the emotions and a sense of humor in an 

artificial cognitive system. The approach relates to the 

neuromorphic models and is based on the original concept of 

dynamical formal neuron. The main design feature of the 

cognitive architecture consists in decoupling the cognitive 

system into two linked subsystems: one responsible for the 

generation of information (with the required presence of 

random component usually called “noise”), the other one  for 

processing the well-known information. The whole system is 

represented by complex multi-level hierarchical composition of 

neural processors of two types that evolves according to certain 

principle of self-organization. Various levels are shown to 

correspond to the functional areas of the human-brain cortex. 

Human emotions are treated as a trigger for switching the 

subsystem activity that could be imitated and mathematically 

expressed as variation of the noise amplitude. Typical patterns 

of the noise-amplitude variation in the process of problem 

solving are presented. The sense of humor is treated as an 

ability of quick adaptation to unexpected information 

(incorrect and/or incomplete forecast, surprise) with getting 

positive emotions. Specific human humor response (the 

laughter) is displayed as an abrupt “spike” in the noise 

amplitude. Thus, it is shown that human emotional 

manifestations could be imitated by specific behavior of the 

noise amplitude.   

Keywords- noise; emotions; explanatory gap;  spike; surprise.   

I.  INTRODUCTION  

Recently, the paper concerning the interpretation of 
emotions and the sense of humor in an artificial cognitive 
system was published and presented at the conference 
COGNITIVE 2016 [1]. This paper represents an invited 
extended version.  

The problem of modeling and imitation of the cognitive 
process is actual and very popular now, especially in the 
context of Artificial Intelligence (AI) creation. Among the 
most popular approaches, there are Active Agent paradigm 
(e.g., the SOAR architecture, see [2], [3]), Deep Learning 
paradigm [4]–[6], Brain Re-Engineering [7], [8], Robotics 
[9], Resonance theory [10], etc. The majority of imitation 
models proposed are aimed to construct the artificial 
cognitive systems for solving certain (even broad) set of 
problems better than human beings do. Hence, those 
systems have to be efficient, reliable, and fast-acting.  

In our works [11], [12], so called Natural-Constructive 
Approach (NCA) has been elaborated, which is focused on 
modeling just the human-like cognitive systems. Therefore, 
the priority is given to the features inherent to the human 
cognition, such as individuality, intuitive and logical 
thinking, emotional impact on cognitive process, etc. This 
approach is based on the Dynamical Theory of Information 
[13]–[15], data from Neurophysiology [16]–[18], and 
Neuropsychology [19], and Neural Computing [20]–[22] 
(with the latter being used in a modified form). Note that 
NCA could be related to the Human-Level Artificial 
Intelligence (so called HLAI track, see, e.g., [23]) and is 
close to some extent to the Deep Learning paradigm [4]–[6], 
but possesses certain important and original peculiarities 
presented below.  

This paper is focused on modeling the manifestation of 
emotions in the cognitive process. The version of the 
human-like cognitive architecture elaborated under NCA is 
presented schematically. The main constructive feature of 
this architecture consists in decoupling the cognitive system 
into two linked subsystems: one responsible for generation 
of information (with required presence of random 

component, i.e., “noise”), the other one   for reception and 
processing the well-known information. The activity of 
these subsystems is proposed to be controlled by the 
emotional mechanism.  Switching the subsystem activity is 
associated with the noise amplitude variation, which could 
be related to the change in neurotransmitter composition. 
This paradigm is applied to simulate the human reactions 
under stress conditions (including “smooth” stress, i.e., 
surprises). A particular case of the noise-amplitude 

behavior,  namely, the abrupt up-and-down change 

(“spike”),  is treated as an analogue to human laughter.   
The paper is organized as follows. Section II presents a 

brief overview of modern approaches to representation of  
emotions in AI. Section III describes basic components of 
NCA. Section IV describes the main constructive blocks of 
cognitive architecture designed under NCA. In Section V, 
we discuss the role and place of emotions in the proposed 
architecture and present the example of application of the  
proposed model to describe the effects of stress/shock. In 
Section VI, typical manifestations of emotions in course of 
solving different problems are considered; special attention 
is paid to representation of the sense of humor in AI. 
Perspectives on practical validation of the results obtained 
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are discussed in Section VII. In Conclusion, main results are 
summarized and future perspectives are discussed.  

II. MODERN STATE OF THE EMOTION REPREENTATION 

PROBLEM   

Simulation of the human-like cognitive process implies 

inherently the integration of rational reasoning and emotions 

into one cognitive system. This problem represents one of 

the main challenges as for AI, as well as for any human-

level cognitive architecture (HLAI, [23]). The main problem 

here is connected with the so-called “explanatory gap” [24], 

i.e., the gap between the “Brain” (cortical and sub-cortical 

structures) and the “Mind” (consciousness). This means that 

there is a lot of information from the Brain side 

(neurophysiology) on the structure and functions of single 

neuron, and even on the neuron ensemble (e.g., [14]). On 

the other (“Mind”) side, there is a lot of information from 

philosophy and psychology (including personal experience) 

on the consciousness manifestations (e.g., [25], [26]). 

However, there is a lack of ideas on how the first could 

provide the second.  
A particular consequence of this fact is surprisingly poor 

and vague definitions of such concepts as emotions, 
intuition, logical thinking, subconscious, etc., which are 
presented in such respective Dictionaries as Miriam-
Webster [27]. However, definitions from the Wikipedia [28] 
seem more meaningful, modern, and reasonable in our view.  

The same “gap” concerns as well the representation of 
emotions. On the “Mind” side, emotions represent, 
according to definition “…subjective self-appraisal of the 
…current/future state” [28]. On the other side, from the 
“Brain” viewpoint (see, e.g., [7], [16]), emotions are treated 
as a composition of neurotransmitters produced by certain 
sub-cortical structures. This value is objective and 
experimentally measurable. But where is the “bridge” 
between the neurotransmitter composition and personal 

feeling of satisfaction, disappointment, etc.  that is the 
question.  

This problem actually attracts attention and evokes a lot 
of studies (see, e.g., [29] –[39]). However, the variety of 
approaches to the problem of emotion representation 
indicates itself that the problem is not solved yet, so that, 
“…emotions still remain an elusive phenomenon” [40].   

Below, we try to collect the interpretations and main 
features of emotions provided by different approaches and 
propose our view on accounting for emotional component in 
the artificial cognitive system. 

The approaches from the “Brain” viewpoint refer mainly 
by the Brain Re-Engineering paradigm (e.g., [7], [8], [29], 
[30], [31]). It is based on the analysis of complementary role 

of cerebral cortex and certain sub-cortical structures  

thalamus, basal ganglia, amygdale, etc.,  directly related 
to the control of the emotions in cognitive process. This way 
looks very close to the goal, but the consideration actually 
seems mostly verbal: the mathematical apparatus used 
seems rather poor. Moreover, the role of emotions is 
attributed mainly to the reinforcement learning process, 
while it is important but far not the only act of cognition. 

Besides, these studies focused on the motor (acting) 
training, leaving aside the cognitive process itself.  

Another, somewhat more abstract “Brain-inspired” 
approach is presented by the works of Lovheim and 
followers (see [32], [33]). Here, the three-component model 
was proposed that involved three systems of monoamine 
neurotransmitters (namely, serotonin, dopamine, and nor-
adrenaline), which provide cubic representation of various 
emotional states. This model is popular and provides good 
results for describing several medical problems (deceases), 
but seems not so well in modeling regular cognitive process.  

From the “Mind” viewpoint, the majority of researches 
refer to the active agent concept ([2], [34], [35]). Here, the 
agents are supposed to have the ability of self-appraisal 
from the very beginning, and the question is: how this 
appraisal does influence their reasoning. There were 
suggested various principles of organization of the 
“emotional space” that affect the cognitive process. 
However, the main problem from our viewpoint is to 
understand the very mechanism that could provide the self-
appraisal ability.   

A similar way is to introduce several discrete emotional 
states that would affect (with certain weight coefficients) the 

model calculations for AI. Their number may vary  from 
two (positive and negative ones) up to 27 in [34]. However,  
clear mechanisms of emotion emergence are not revealed in 
any of these cases.  

The other approach ([36], [37]) involves two sets of 
dynamical variables, emotional and rational ones, so that 
their (nonlinear!) interaction results in various states of the 
system providing certain nontrivial regimes of transition 
between those states. However, the neurophysiology 
interpretation of the emotional, as well as rational, variables 
under this approach remains somewhat dissatisfactory.  

An interesting (but somewhat shocking) idea was put 
forward by Schmidhuber [38]: the ultimate goal of living 
activity that provides the most positive emotions is 
connected with the compression of information. Being 
seemingly not the most actual goal for a human being (as 
compared with, e.g., survival), it could be reformulated in 
terms of “image-to-symbol conversion” (see below). Then, 
this idea surprisingly meets our final inferences.  

The last but not least, let us turn to the concept 
suggested by Huron [39] that emotions are evoked by 
anticipations. In spite of this hypothesis is formulated rather 
verbally than mathematically, it seems the most promising 
and could serve as a basis for mathematical modeling.  

Note that common modern trend consists in associating  
emotions not with particular state, but with certain 
transitions between different states (see [35], [39]). This 
trend seems to be the most promising since it does not fix or 
limit the number of mechanisms (as well as 
neurotransmitters) that provide emotional manifestations, 
but is focused on the variability of the cognitive process. 

This study represents an attempt to merge the “Brain” 
and “Mind” paradigms under NCA by revealing (or 
introducing) proper variables and coupling them into unified 
dynamical system (i.e., “emotional block”, see below).   
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III. BASIC COMPONENTS OF NCA  

The approach NCA is aimed to understand and 
reproduce in mathematical model the human-like cognitive 
features like spontaneity, paradoxicality (the ability to 
formulate and solve paradoxes), individuality, intuitive and 
logical reasoning, integration of emotions and rational 
reasoning. Therefore, certain paradigms typical just for the 
living objects are required. NCA involves one of such 
paradigms provided by the Dynamical Theory of 
Information.  

Being biologically inspired, the approach belongs to so 
called neuromorphic models, which implies that the neuron 
is the basic element (in some sense, the “active agent”) of 
the whole cognitive architecture. Hence, both 
neurophysiology and neuropsychology data should be taken 
into account.   

Neural computer paradigm is used for computation and 
numerical simulations. Under NCA, somewhat modified 
representation of the neuron that was called the “dynamical 
formal neuron” model is employed. 

Thus, NCA combines actually three areas of expertise.  

A. DDynamical Theory of Information   

The Dynamical Theory of Information (DTI) is 
relatively new theory elaborated in the post-middle of XXth 
century, almost at the same time as the well-known theory 
of communication of Shannon (see [41], [42]). However, 
Shannon’s theory was focused on the process of information 
transmission, while DTI analyses the process of its origin 
and evolution. This theory, being the subfield of Synergetics 
(see [13], [43]), was elaborated in the works of Haken [13] 
and Chernavskii [14], [15]. It is based on the idea that the 
information is a specific kind of object that possesses 
simultaneously as solid (material), as well as virtual 
features. The information appears as a result of evolution 
and interaction within certain community of living subjects. 
Let us stress that the brain, being an ensemble of neurons, 
represents a specific case of such community. 

The most constructive and explicit definition of 
Information belongs to Quastler [44]: “The Information is 
the memorized choice of one version of N possible (and 
similar) ones”. This definition provides immediately the 
possibility to reveal different types of information:  

 Objective Information  the choice done by the 
Nature as a result of its evolution, i.e., physical 
(objective) laws reflecting real structure of the 
surrounding world.  

 Conventional (Subjective) Information   the choice 
done by a group of subjects as a result of their 
interaction, communication, fight, agreement, 
convention, etc., that is individual for a given 
community.  

In the first (Nature) case, the choice appears to be done 
according to the principle of minimum energy expenses. In 
the second (people) case, the particular choice should not be 
the best one, but should be done and stored. The most 
widely-known examples of conventional information are the 
following: language, alphabet, traffic signs, symbols, etc. A 

particular language could be neither better nor worse than 
other, but it reflects the mentality (individuality) of a given 
society (see, e.g., [45]).  

Moreover, that definition provides the idea of how the 
information could emerge. There are two mechanisms:  

 Perception  superimposed (externally forced) 
choice associated with the Supervisor learning.   

 Generation  free (random) choice that should be 
done without external control (internally).  

It was shown in [13]–[15], that the information 
generating process requires mandatory the participation of 
chaotic element (so called “mixing layer”) that is commonly 
called the noise.   

The main inference of DTI is that these two mechanisms 
are dual (or complementary), and hence, two subsystems are 
required to perform both these functions.  In analogy with 
two cerebral hemispheres of human brain, let us call these 
subsystem Left Hemi-system (LH) and the Right Hemi-
system (RH), respectively.  

From the positions of DTI, the cognition is considered as 
a process of processing the information. Therefore, the 
cognitive process could be defined as “the self-organizing 
process of recording (perception), memorizing (storage), 
coding, processing, generation and propagation of the 
personal conventional information” [11]. Note that this 
definition does presume the subjective (individual) character 
of human thinking. 

B. DNeurophysiology and Neuropsychology Data   

Let us stress that both, the “Brain” and the “Mind” 
evidences should be taken into account. “Brain” data 
concern the neuron structure and mechanisms of their 
interactions. 

1) Neuron Representation: NCA refers to so called 

“neuromorphic” models. This implies that the basic element 

for any structure is the neuron. In neurophysiology (see, 

e.g., [46]), the neuron model presented by Hodgkin-Huxley 

[47], as well as its somewhat reduced version suggested by 

FitzHugh-Nagumo [48], [49], are considered still as the 

most relevant ones. Starting from the Fitz-Hugh model, we 

have elaborated the dynamical formal neuron concept (see 

[11]) that represents a particular case of this model. 

Accordingly, nonlinear differential equations were used to 

describe the single-neuron behavior and the neuron 

interactions. This enables us to trace the dynamics and 

reasons for symbol formation.  

2) Neuron Interaction Representation: Experimental 

data on interaction in the neuron ensemble show:  

a) Numerous experiments indicate that the perception 
of new information is accompanied by amplification of the 
connections between neurons involved in this process. This 
is called the “Hebbian rule” [17].  

b) Modern experimental data on the neuron structure 
[18] show very intriguing fact: those neurons that participate 
in acquiring certain experience (“skill”) appear to be 
modified as compared to free (unemployed) neurons. This 
inference is based on the experimentally observed 
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distribution for the expression of so called c-FoS gen 
responsible for changing the neuron structure. Thus, the 
proper model representing a neuron should involve the 
possibility of a certain mutation for engaged (trained) 
neurons.  

3) Neuropsychology Evidence: Another challenge for 
any relevant model of a human-level cognitive system is the 
question: why there are just two cerebral hemispheres in the 
human brain – the right (RH) and the left (LH) ones. From 
psychological viewpoint, we take into account the wide-
spread opinion that RH is associated with non-verbal, 
imaginary, parallel thinking and intuition (see, e.g., [26], 
[50]). Correspondingly, LH is associated with sequential 
verbalized thinking and the logical reasoning. However, 
while there is no clear explanation of intuition and logic, 
these statements seem ambiguous.  

Another, more constructive from our viewpoint, idea had 
been put forward by E. Goldberg (practicing psychologist)  
[19]. He infered that RH is responsible for processing new 
information, i.e., learning, while LH has to process the well-
known information. Note that this concept entirely coincides 
with the main inference of DTI, that any cognitive system 
should contain two subsystems, one for generation of new 
information, the other one for reception and processing the 
existing information.  

C. DNeurocomputing   

A cognitive system could be presented as a composition 
of neural processors, i.e., the plates populated with model 
neurons. It should be stressed that, in contrast to common 
neural computing (see, e.g., [51]) based on the simple 
formal neural paradigm suggested by McCulloch and Pitts 
[52], NCA is based on the concept of dynamical formal 
neuron presented in [11]. 

Two types of neural computers are employed: 

1) Distributed memory:  
This concept refers to the Hopfield-type processor (H) 

with cooperative intra-plate (“horizontal”) interaction [20]. 
Any real object is represented as a “chain” of activated 
(excited) neurons, which is called the “image” of this 
object. The main advantage of such type of representation is 
connected with the fact that the damage of few neurons of 
this chain does not lead to the damage of the image as a 
whole. The integrity of the image is secured by trained 
connections between the neurons involved into the image 
formation.  

Note that real objects having similar fragments are to  be 
written by the overlapping chains of neurons, which provide 
associative connections between these objects.  

The model of the H-type processor with dynamical 
formal neurons could be written in the form:  
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where Hi(t) is variable describing the state of i-th dynamical 

formal model neuron, i
H
— activation characteristic time, i 

— parameters that characterize the neuron excitation 

threshold. The functional H{Hi,i} describes the internal 
dynamics of a single H-type neuron, the second term refers 

to interaction with neighbors, with ij being the matrix of 
connections between neurons, i, j = 1.....n. Stationary states 
are: Hi = +1 (active) and Hi = –1 (passive), that provides the 
effect of neuron switching on/off under its neighbor’s 

impact. Note that the parameters  referring to the excitation 
threshold could be modified as the result of learning 
process.   

It should be stressed that the functions performed by the 
H-type plates depend essentially on the principle of the 
connection training. Under NCA, two types of training rules 
are used. The first one that is required for recording 
corresponds to well-known Hebb’s rule [17] of connection 
amplification, which implies that the strength of connections 
between excited neurons increases as  

    )(1)(1)(
4

)( '''

0

'0 tdttHtHt j

t

i

Hebb

ij 






 



,  (2) 

where 0,  — training parameters, (t) is monotonic 
integrable function to provide the saturation effect.   

Another version of the connection-training principle had 
been proposed in original work of J. Hopfield [20] as a tool 
for recognition of the already learned (stored) images. This 
version reads:   
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that corresponds to the “redundant cut-off” principle. This 
means that the “informative” connections between excited 
neurons are initially strong and do not change in the training 
process, while irrelevant (waste) connections should die out. 
This principle corresponds actually not to the choice of 
recording, but rather to the selection of trained connections.  

It should be stressed that such way of training leads to 
the fact that this processor could perceive any (even new) 
image as one of the already learned (stored). This results in 
two effects:  

 refinement of the damaged (noisy) image: due to  the 
hard influence of neighbors, the irrelevant neurons 
would die, while missing ones would be excited;  

 there are problems with re-learning of this processor 
to incorporate new images.  

Thus, the necessity and reasons for exploring two 
versions of the H-type processor are apparent.   

2) Symbolic memory:  
This concept involves the coding (localization) 

procedure combined with possibility of further cooperative 
(Hebbian) interaction. These two functions could be realized 
by means of the Grossberg-type (G) processor [22] with 
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competitive intra-plate (horizontal) interaction, which works 
at the first stage for choosing one neuron to be the symbol 
(representer of the certain group of neurons, i.e., the image). 
At the next stage, competitive interaction should be altered 
to cooperative. The model of processor possessing all these 
abilities could be written in the form:     
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where the variable Gk refers to the state of k-th G-type 

neuron, G
 is activation characteristic time, with its internal 

dynamics being described by the functional G{Gk,k}. The 

term Z(t)(t) stays for the random component, with Z(t) 

being the noise amplitude, 0<(t)<1 is random function. 

Two step-wise theta functions (-0), (-+0) stop the 
competitive process and start the cooperation (depending on 
the argument’s sign).  

Note that this representation differs from given for the 
H-type neuron since the stable state here are equal to: G=1 
(active) and G=0 (passive). Such choice of representation 
enables us to account for both, competitive and cooperative 
interactions depending on the state of inter-plate (so called 

“vertical”)  connections.  
The competitive connections Г provide the symbol-

choosing procedure that requires mandatory participation of 
random component (noise), see [11]. The dynamics of 
connection training is determined by the equation:  
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where Г0  and Г
  are training parameters. This training rule 

provides so-called “localization” reaction, when only one 
neuron from the activated chain wins the round. So this type 
of neuroprocessor serves to convert the chain corresponding 
to the real object (i.e., the “image”) into single neuron 
referred further as the “symbol” (in other terminology, the 
“name”) of this object.  

After the choosing procedure was finished, the inter-

plate (vertical)  connections should formed to link the 
chosen symbol with its image neurons at the previous 
hierarchy level:  
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where 0 and  are characteristic parameters of training. 
Such connections secure the semantic content of the chosen 
symbol; therefore, they are called the “semantic” 
connections. These very connections do realize the Kohonen 
paradigm “Winner Takes All” (WTA) [38], providing a 
possibility to decompose the symbol into distributed image.   

Note that this processor differs from the standard 
versions of ACT procedure (see, e.g., [53], [54]) by at least 
two factors:  

 there is no fixed rule for conversion process, it 
proceeds due to competitive interaction between 
neurons only;  

 symbol-formation procedure in the given processor 
is unstable, thus providing uncertainty and 
“individuality” of the position of chosen symbol.  

Let us stress that this very mechanism of the winner-
choosing procedure is derived not from the neurocomputing, 
but from the analysis of choices done within given society, 
and is known in DTI as the “conventional information 
struggle” (see [14], [15]). It is typical not only for the 
human society, but for all living objects as well.  This very 
choice should not be “the best” (i.e., the most efficient, or 
fast, or reliable, as it is typical for neural computing), but 
should be individual for the given system. Thus, the symbol 
formation procedure under NCA represents an example of 
creating the conventional information.  

After the semantic connections between the chosen 
symbol and its image were formed up to sufficiently 

(“black”) 0 value the competitive interaction stops due the 
presence of step-wise function in (4). Then, the cooperative 
interaction with neighboring symbols could start that 
correspond to the last term in (4). The cooperative 
connections are trained according to the Hebbian principle:  
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These connections provide the possibility to form the 
generalized image, i.e., “image-of-symbols”, which could 
get its symbol at the next hierarchy level. Note that this 
process may be reproduced at each step of the system’s 
evolution. Thus, this processor actually possesses the 
properties of distributed memory as well.  

Note that in our previous works [11], [12] this effect was 
secured by the mechanism of parametric modification of the 
neuron-symbol, which takes it out from the competitive 
interaction, simultaneously providing the possibility of 
cooperative interactions with neighbors. It has been 
proposed that after the given G-neuron got a status of 

symbol and had formed the inter-plate connections  with 
his image neurons, it should leave a competitive struggle for 
the right to be a symbol of another image. This effect could 
be provided by parametric modification of the neuron-
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symbol: kk({ik}). Actually, both mechanisms, 
dynamical and parametric ones, could work together.    

In any case at the time scale t >> Г
, the neuron-symbol 

stops its competitive interaction with neighbors, but 
acquires a possibility to participate in the cooperative 
interactions with the other neuron-symbols by the same 
Hebbian mechanism as H-type neurons do. Note that “free” 
G-neurons (that were failed to become a symbol of any 
image) could compete only. 

 
 

Another very important point should be stressed. 
Encoding (i.e., symbol formation) means as well the 
comprehension of the image information received from 
outside. The very fact of symbol formation implies that the 
system had apprehended the given chain of M active 
neurons at the plate Н as a representation of a single real 
object and had awarded a proper symbol (“name”) to it. 
That is why the inter-plate (vertical) connections between 
the symbol and its progenitor image neurons are called 
semantic ones.  

Let us stress ones more that, the instability of the 
conversion procedure under NCA results in just random 
(free) choice of the symbol among possible “nominant” 
neurons. This means that this procedure represents a 
particular case of generation of conventional information – 
this choice should not be the best (the most efficient), it 
should be individual. Thus, this process does secure the 
individuality of any (even artificial) cognitive system. 

IV. BARCHITECTURE OF COGNITIVE SYSTEM  

The architecture of cognitive system has been designed 
under NCA in the works [11], [12] of Chernavskaya et al. 
Let us recall briefly main peculiar features.   

A. Basic Elements of  NCA Architecture   

The schematic representation of NCA cognitive 
architecture is plotted in Fig. 1. This system represents a 
composition of several neural processors of Hopfield (H) 
and Grossberg (G) types, which are composed into 

hierarchical structure, with  being the number of 
hierarchical level. Each processor is represented as a plate 
populated with n dynamical formal neurons described in 
Section III. The total number of levels (symbolic plates) is 
neither fixed nor limited since they appear “as required” in 
course of the system evolution as a response to the 
operational complexity of the perceptible world.  

Each symbol G

 is linked by semantic connections 

(-1)
 

and 
(+1) 

defined in (6) with its “parent” image at the 
previous level and the “descendant” symbol at the next level 

+1, respectively. Besides, it is linked with its neighbors by 

cooperative connections 
 

(defined in (7)), which create 
new (independent) image. Using imagination, one may say 
that each symbol has its “legs” (to rely to the ground) and 
“hands” (to reach the ceiling). Such “pyramid” is replicated 
at every level of hierarchy, thus forming the fractal-type 
multi-level structure.  

 
 

 

 

Figure 1.  Schematic representation of NCA cognitive architecture. 

According to DTI principles, the system is divided into 
two coupled subsystems, the right hemi-system (RH) and 
the left hemi-system (LH). These terms were chosen to 
correlate these subsystems with cerebral hemispheres, with 

the cross-subsystem connections (t) being an analogue to 
the corpus callosum. These connections should provide the 
interaction (“dialog”) between the subsystems (“up-down” 
arrows in Fig. 1). One subsystem (RH) is responsible for 
learning and processing new information; the other one 
(LH) is dealing with the well-known information. This 
functional specialization coincides completely with that 
proposed (from the “mind” viewpoint) by Goldberg [19], 
that represents a pleasant surprise as well as an indirect 
validation of our approach. Under NCA we can also reveal 
its mechanism from the “brain” viewpoint. It is secured by 
three factors:  

 the presence of random component (noise) in 
RH provides the conditions for generation of 
information, i.e., free choice of the version of 
recording new information; 

 different connection-training principles in the  
different subsystems: the Hebb’s principle of 
active connection amplification [17] in RH, 
and the Hopfield’s principle of the “redundant 
cut-off” [20] in LH;  

 the “connection-blackening” principle of self-
organization, which implies that strong enough 
(“black”) images in RH are replicated in LH. 
Hence, RH acts as a Supervisor for LH.   

Let us consider the connection-blackening principle in 
more details by analyzing the elementary act of system’s 
evolution.  
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B. Elementary Learning Act: “Connection-Blackening” 

Principle  

The elementary act of cognitive process realization (in 

particular, learning) should involve implementation of the 

functions of recording, storing and coding the image of new 

object.  
The functions of recording and storing “raw” images 

could be implemented by means of two H-type cross-linked 
processors (see Fig. 2a), with the connection-training rules 
being different on those plates (Fig. 2b). One of them (called 
H

0
) should be trained by Hebbian mechanism, while the 

other one (called H
typ

)  according to the original Hopfield 
principle “redundant cut-off”. They are correlated by the 

value of well-trained connections 0 (see Fig. 2b).  
Primary (“raw”) images are recorded at the plate H

0
 by 

Hebbian-trained connections, with their strength being vary 
from weak (“grey”) to strong (“black”) state. When the 
strength of trained connections achieves the “black” value 

0, the “black” image should be transferred by direct (one-
to-one) inter-plate connections and replicated at the typical 
image plate H

typ
 for storing. This procedure corresponds to 

the implementation of so called “connection blackening” 
principle.  

 

 

Figure 2.  Schematic representation of recording and memorizing process 

(a) and (b) time dependence of corresponding intra-plate (horizontal) 

connection strength (t).   

The combination of this process with the encoding 
procedure provides the “elementary act” of the system’s 
formation and is presented in Fig. 3. This process again 
corresponds to the self-organization principle of 
“connection blackening” and proceeds in three steps:  

 

Figure 3.  The elementary act of learning. 

a) The First Step: an image formed at the previous-

level (1) in RH, after its cooperative connections 
R
 

become strong (“black”) enough, is delivered by the direct 
(one-to-one) inter-plate (“vertical”) connections to the next-

level plate G

 and, simultaneously, by the inter-subsystem 

connections  to the same level plate G
-1

 in LH  (see Fig. 
3a); LH level is free.  

b) The Second step: NCA conversion procedure image-

into-symbol occurs at the next-level plate G

 in RH (Fig. 

3b); LH level is free. 

c) The Third (Final) Step: New symbol is formed 
together with its semantic (one-to-many) inter-plate 

connections 
R
 and is replicated at the same level in LH, 

where vertical connections 
L
 are forming according to 

Hopfield-type rule. Here again, the “connection blackening” 

principle for 
R
 connections controls the symbol-formation 

process (Fig. 3c).  
This process could be repeated at each level of hierarchy 

thus generating a multi-fractal structure.   
It is important to stress that the raw images in RH with 

relatively weak (“grey”) connections (those that didn’t 
achieve the level typical for LH) are neither transferred to 
the next level in RH, nor replicated in LH. They remain 
only at the given level and not acquire their symbol at the 
next level. Thus, they represent latent (hidden) information, 
which is “auxiliary” for the given system.  

C.  Specialization of Various Hierarchical Levels  

Let us discuss the roles of different hierarchy levels and 
their correspondence to the cerebral functional areas.  

1) Hierarchy-Level Specialization: The whole system 
represents complex multi-level block-hierarchical 

construction that does evolve by itself (in Fig. 1  from the 
left to the right) due to the self-organization principle of 
“connection blackening”. This implies that at each level, the 
elementary act presented in Fig. 3 is repeated. New levels 
(symbol layers) appear “as required”, i.e., after a new image 
was formed at the previous level. In physics, there is special 
term “scaling” for such principle of organization and the 
whole structure is called a fractal.  

The lowest level  = 0 is represented by the H-type 
plates containing the image information. The plate H

0
 in 
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RH carries the whole image information received by the 
given system by means of the “sense organs”, i.e., from the 
receptors. The intra-plate (horizontal) connections vary from 
weak (“grey”) up to strong (“black”) ones. Note that the 
images recorded by “grey” (rather weak) connections, 
according to the connection blackening principle described 
above, are neither delivered to the next level, nor replicated 
in LH. They are stored at H

0
 only, thus representing some 

vague (fuzzy) information. That is why the plate H
0
 

hereinafter is referred to as the “fuzzy set”. This plate is 
responsible for recording new sensor images. 

The plate H
typ 

in LH contains the information selected 
for storing (memorization). This plate is “filling up” in 
course of learning (with the role of Supervisor being played 
by the plate H

0
) with those images that are recorded by 

sufficiently “black” connections (“up” green arrow in Fig. 
1). These images are referred to as typical ones.  This plate 
does play the main role in recognition of already learned 
objects; in some sense, it is a classifier.   

The next level  = 1 is occupied by the symbols of 
typical images, which are formed in RH. These symbols do 
carry a semantic content, that is, a comprehension of the fact 
that the given chain of active neurons represents one real 
object. Semantic content (sense) of such symbol consists in 
its decomposition (by means of semantic inter-plate 

connections ) into its image corresponding to this very 
real object. Only after formation of sufficiently “black” 

connections 
R
, this symbol could be replicated in LH.  

At the same very level, the process of primary 
verbalization starts. This implies that there occur the 
internal words as the names of already learned objects. 
These names occur in RH, i.e., they are chosen arbitrary  
and individually thus are understandable for a given system 
only. If simultaneously LH receive an external information 
(from external Supervisor, see top external arrow in Fig. 1) 
on conventional name for this object, the ‘internal” name 
would be replaced (after certain conflict) by the 

conventional one (by means of inverse training LHRH, 
see “down” purple arrow in the middle part in Fig. 1). Such 
process, that is similar to the process of children speech 
trials,  was considered and discussed in [14], [15].  

At the same level in RH, the symbols could cooperate 
and create the generalized images (image-of-symbols), 

which acquire their own symbols at the next level +1. 
These images are rather primitive, since they correspond to 
concrete real objects. However, even at this level, a Poet 
could create, using primitive words, a pronounced pattern 
(“night, street, lamp, drugstore…” as in a famous Alexander 
Block’s poetry).  

At the next levels >1, this process is repeated with 
increasing degree of “abstraction” of created images. This 
implies that new generalized images could hardly be related 
to any real object and explained at the image level.  

At the higher levels of hierarchy >>1, the abstract 
information emerges, that is, the infrastructure of symbols 
and their connections, which are not mediated by “raw” 
images, i.e., the neuron-progenitors of H-type plates. Here, 
the concept symbols arise, that could not be related to any 

concrete pattern (e.g., conscience, infinity, beauty, 
consciousness, love, etc.). This information appears in the 
already well-trained system as a result of interactions of all 
the plates (not “perceptible”, but “deduced” knowledge). 
This very information could be completely verbalized, i.e., 
expressed in the symbolic form (with relevant grammar and 
syntax) by means of conventional language of a given 
society. These very higher levels provide a possibility of 
communication with similar systems. This implies a 
possibility to propagate personal conventional information 
(“to explain by words”) and understand semantic content of 
external symbolic (verbal) information. Besides, at such 
level LH obtains a possibility to receive new information 
not only from RH, but also from outside, in symbolic form, 
from external Supervisor. In psychology, such knowledge is 
called “semantic”, in distinguish to “episodic” one that the 
system (RH) obtains in process of acquiring its individual 
experience. This knowledge could appear to be active only 
after incorporation into the existing architecture due to 

LH RH connections (“down” purple arrow at the right 
part of Fig. 1). Note that RH itself can get the symbolic 
verbalized information from outside, without Supervisor 
(bottom external arrow in Fig. 1), and this information is 
processing just as internal one, i.e., by forming the Hebbian 
connections between different external symbolic images.  

Thus, the system as a whole does grow up from the 

lower image information levels, over semantic information 

(understandable for a given individual system only), to the 

higher levels of abstract information, which could be 

verbalized and propagated (understood) within the given 

society. At every stage of new level formation, the same 

process is repeated. New connections are forming in RH up 

to the “black” state, and after that, the new-formed symbol 

is transferred to LH. In this process, certain part of 

information (inessential details recorded by “grey” 

connections) appears to be lost. Speaking more exactly, it is 

not delivered to the next level, but is stored at the previous 

one as auxiliary or latent information specific for a given 

individual system.  

Note that the label “emotions” in Fig. 1 refers neither to 

RH nor to LH. Below, it will be shown that emotions are 

directly related to switching the cross-subsystem 

connections  (“up-down” arrows in Fig. 1) providing the 

“dialog” between subsystems.  The color of arrows reflects 

emotional “valence” (green for positive and rose for 

negative ones).     

2) Corresponendence with Cerebral Cortex Areas:    
Let us point out that the geometry of the NCA architecture 
corresponds to the functional areas of the human cerebral 
neocortex (see Fig. 4). The neocortex could be 
(conventionally) divided into areas (“lobes”), which are 
responsible for the vision (occipital lobe), motor activity 
(parietal lobe), auditory activity (temporal lobe), abstract 
thinking (frontal lobes), etc. Temporal lobes embraces 
Wernicke’s and Broca’s areas that are responsible, 
respectively, for language hearing (word perception) and 
reproducing (word production), but not for the speech itself. 
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Figure 4.  Map of the functional areas of human cerebral cortex (extracted 

from [55]) 

The speech function, i.e., coherent and sensible transmission 
of information, relates to the frontal lobe that is associated 
with abstract thinking.  

Note that similar allocation of functional levels is 

realized in the NCA scheme: low levels (=0) provides 

images, i.e., visual patterns; middle levels (>1) contain 
symbol-words, that is, elements of language. 

The correspondence between the abstract information in 

the NCA architecture (>>1) and the “abstract thinking” 
typical for the frontal lobes, is obvious. Thus, the map in 
Fig. 4 actually corresponds to the mirror reflection of the 
scheme in Fig. 1.  

D. Interpreting the Concepts of Intuition, Sub-

consciousness, Consciousness, and Logic  

Now, let us turn to interpretation and revealing the 
mechanisms of specific human features of cognitive 

process,  namely,  intuition, logic, sub-consciousness, etc.  
If the intuition is treated as occasional, spontaneous, 

unreasoned solution, or, following Immanuel Kant [56], 
“the direct discretion of the truth” without any reasons and 
proofs – then, it apparently emerges from RH (more 
exactly, from the noise in RH). Typical feature of intuition 
consists in unconscious way of getting the result.  

Treating the logic as all the cause-and-effect unbroken 
chains (causal relationships), one could infer that all the 
processes in LH are related. In this sense, the inference of 
our early paper [57] (where there was no symbolic structure) 
remains still valid. At this level, the inference of [50] seems 
valid also.  

However, these concepts could be considered in more 
detail. Thus, the logical thinking, according to [28], is 
defined as “correct provable reasoning”. This definition  
immediately leads to the inference that only verbalized 
reasoning (thereby, conclusive and commonly 
understandable) is related. At that, the term “correct” 
implies that these reasons should be based on the 
conventional axioms. Then, between the “pure logic” and 
“pure intuition” there should be a place for some other, 
intermediate, thinking algorithms.  

Similar reasons concern the concepts of consciousness 
and sub-consciousness. Defying the consciousness as “the 
state of being aware of and responsive to one's 
surroundings” [28], we infer that it could emerge after 
verbalization only.  

The sub-consciousness is defined as “…aggregate of 
processes lacking the subjective control” [28]. This implies 
that it should be based on the randomly stored information, 
that had not acquired any symbol and thus, could not be 
activated from outside by means of symbols (i.e., words).  

Keeping in mind previous reasons, we can interpret the 
notions of  intuition, logic, and (sub-)consciousness under 
NCA.   

The architecture described above has large number 
(N>>1) of levels. The lower levels contain auxiliary or 
hidden individual information for a given system, the “thing 
in itself”. Only verbalized information that occurs at higher 
levels of hierarchy could be comprehended in a common 
sense (not individually). Then, we can try to answer the 
question “How the brain makes a thought?” Since a speech 
represents a consecutive set of symbols, this is the very tool 
to form (separate) a pattern called a “thought” from all the 
variety of the brain-activity patterns. There exists a 
picturesque formula “the language is a means for our brain 
to speak with us”. Thereby the consciousness could be 
defined as the system’s ability to draw up the cognitive 
activity into consecutive content set by means of a speech. 
Here, the main role is played by LH.   

As it was shown above, a part of information appears to 
be lost at any transition from previous level to the next one. 
More exactly, it converts into form of “latent” (auxiliary), or 
“hidden” information for a given system. Let us consider 
this in more details.  

The innermost level of latent information is represented 
by weak (“grey”) connections at the fuzzy set, i.e., the image 
plate H

0
. Its role consists in storing the “occasional” (i.e., 

“randomly collected”) information that could appear to be 
important some time later. This information is transferred 
neither to LH nor to the level G

1
,
 
thus, could not be 

associated with any symbol. This means that it remains not 
comprehended and not controlled by the system, i.e., just 
what has been defined as the “sub-consciousness”. Such 
(“grey”) chains could be activated only due to the noise, by 
chance (“to see suddenly by internal view”), that could be 
interpreted as the “aha moment” (see, e.g., [26], [58]).   

At the transition from semantic information to 
verbalized one, there remain a lot of symbols that are not 
associated with any standard word. This implies certain 
“pictures” that could be described only by means of 
decomposition, i.e., one internal symbol can be described by 
several standard words. Verbalization of this information 
requires not an insight, but assortment of necessary words. 
This is always possible, but not always simple. Using the 
terms of recognition theory, this process could be called 
“formalizing the expert knowledge”.  

Thus, the latent information is disposed at various levels 
of depth, and this fact does control the efforts for extracting 
it up to the consciousness level. It seems natural to interpret 
the inferences based on the latent information, as intuitive 
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thinking (insight). It is worth noting that in the proposed 
scheme, the majority of latent information is actually 
concentrated inside RH.  

Logical thinking could be specified as “…unbroken 
sequential thoughts” [27], as well as “…operating by 
verbalized (abstract) concepts and their connections” [28]. 
This process is typical for LH at higher hierarchy levels.  

An abstract information as itself has its own levels and 
infrastructure, which emerges gradually, in course of 
system’s evolution (for human beings, this implies “with 
years”). This developed infrastructure that combines higher 
levels of RH and LH could be associated with the wisdom. 
This implies that the wisdom is broader than logic.   

Specific features of the “latent” elements become rather 
pronounced in the process of solving the problems related to 
fixing the similarity/difference of the objects. These 
problems are solved automatically, at the image levels. The 
similarity is emphasized by shared neurons, while the 
difference is specified by diverse ones, and the system does 
know it. However, this knowledge could not be 
comprehended until those common/diverse neurons were 
not associated with combinations of internal symbols. Then, 
the auxiliary-image knowledge (“feeling”) could be 
converted into semantic one. Further verbalization of this 
knowledge implies ascertainment of the connections 
between internal symbols and the words. The obtained result 
is valuable for a given system (individual), but could appear 
to be fault objectively, since the mode of recording the 
image information is individual as well. The obtained 
solution is intuitive, since it is based on the recorded 
experience, i.e., the individual “worldview pattern”. This 
solution should not be proved (the system itself does not 
need any proof since it just knows that it is so). However, 
being verbalized, this solution could be explained to others 
and argued. If the arguments fit the conventional axioms, it 
would be a proof of its truth. Actually, the method of 
“converting the intuitive expert knowledge into logic one” is 
presented aforesaid. 

E. Master Equations: Mathematics & Phylosophy  

The mathematical foundations for the architecture 
presented in Fig. 1 were discussed in details in [11]. Let us 
recall the key points and present the mathematical basis in 
generalized form:  
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Here, variables Hi and Gk refer to purely “rational” 

components that are associated with neocortex, various ‘’ 
parameters stay for characteristic times. The term Z(t)(t) 
corresponds to the random (stochastic) component (noise) 
which is presented in the subsystem RH only; Z(t) is the 

noise amplitude. The functionals H{H,} and G{G,} 
describe the internal dynamics of corresponding neurons; 

the functionals Y
R
{G


,G

+
} and Y

L
{G


,G

+
} in the 

equations for symbolic plates describe the horizontal and 

vertical interactions of symbols (see [11] for details); (t) 
specifies the cross-subsystem connections.  

Let us present several remarks on the meaning of certain 
terms.  

1) “Brain vs. Mind” Border:  
First two equations relate to the lowest (zero) level of 

hierarchy, while the others (G) variables describe =1,…N 
symbolic levels. Note that the dotted line after two first 
equations indicates the analogy with the dotted line in Fig. 
1. This line symbolizes the virtual border between the Brain 
and the Mind. Indeed, the H-plates (zero-level of the 
hierarchy) containing only the “raw” images, serve to 
represent the sensible information received from the organs 
of sense. This information is (roughly speaking) objective, 
so this level belongs (roughly speaking) to the Brain.  

The level =1, that is, the level of the typical-image 
symbols, already belongs to the Mind, since any symbol 
represents not objective, but conventional, i.e., subjective 
and individual (for a given system) information. The same is 
true even more for all other hierarchy levels, up to the 
highest level associated with the abstract information. Thus, 
we come to  

Philosophical Inference #1: The “bridge” between the 
“Brain” and the “Mind” is made of semantic connections 
between symbols and their images, i.e., by conventional 
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(individual) information generated by the neuron ensemble 
itself.  

2) Reflection of a single-neuron history:  

The functionals H{H,} and G{G,} defined by (1) 
and (4), respectively, describe the internal dynamics of the 
corresponding dynamical formal neurons. This very 
representation provides the possibility to describe the 

parametric mutations of the “trained” neurons,  i.e., those 
neurons that actually participated in creation of images and 
symbols forming the architecture as a whole. This effect 
corresponds to experimental evidences from [18].  

One of the parametric-modification mechanisms consists 
in the influence of high-level symbols on the corresponding 

image neurons: i  i{G


{i}}. First of all, this refers to so 
called symbol of class, that is, the symbol, which was 
induced not by the image of certain object, but by a set of 
common attributes of certain class of objects. Excitation of 
such symbol could not excite all “referring” images, but 
switches them into the “standby mode” by lowering the 

activation threshold of common image neurons i. Thus, 
these images acquire the right of priority for activation, i.e., 
an attention.  

All these arguments refer as well to the parameters 


k 

of symbolic neurons. The k-th neuron at the plate G

, being 

a member of new “generalized” image, plays the role of the 

image neuron for all the higher-level symbols G
+

{k} that it 

is related, thereby its parameter should be modified as: 


k 




k{G
+

{k}}. Besides, as it was considered above, the 
neuron-symbol should be modified parametrically after its 

semantic content (i.e., the inter-plate connections 
(-1)

ik 

with its image) was formed: 


k


k({
(-1)

ik}). This 
modification takes the neuron out from the competitive 
interactions and turns on the cooperative ones. This factor 
secures complex multi-level interactions of the neuron-
symbols and leaves “off screen” those G-neurons that failed 
to become a symbol.  

Thereby, complete modification of a G-neuron reflecting 
the “history” of his relations with other neurons (his “skill”) 

could be presented in the form: 


k


k({
(-1)

ik},G
+

{k}).   
Thus, the model of dynamical formal neuron enables us 

not only to reproduce the fact of mutation of the “trained” 
neurons observed in [18], but also to specify and distinguish 
concrete modifications associated with different “skills”. 

Philosophical inference #2: The account for the neuron 
internal structure enables us to reproduce the effect of 
mutation of the neurons participated in certain “skill” 
acquirement. This provides the interpretation for the effect 
of “neuron memory” concentrated not in the inter-neuron 
connections, but inside the neurons themselves.  

3) What is the tool for switching the subsystem activity?  

The variable (t) controls the dialog between two 
subsystems. This is the only variable presenting in each 
equation, thus ‘sewing’ all the components together. 
Therefore, it deserves special discussion. These connections 
should not be trained, but should provide switching the 
subsystem activity in course of the problem solving. Here, 

the connections 
RL

 activating LH are treated as positive  


RL

 = +0, and vice versa, connections 
LR

 activating 

RH are treated as negative ones 
LR

 = 0. All the 
processes requiring the generation of new information, 

namely  forming either new image, or new symbol  are 
to proceed in RH with necessary noise participation. Then, 
the result of this process should be transferred to LH by 

direct cross-subsystem connections: +0. The reverse 

connections 0 are switching on in the already trained 
system, when an incoming external information appears to 
be unknown, i.e., new. Then, the system should pass over 
the re-training stage by means of RH. Let us stress that the 

mechanism of the (t) switching is not specified in (8) – 
(11) yet; it will be considered in the next Section.   

Note that this system of equations is not complete in 
mathematical sense (as it was also in [11]), since not all the 
variables are determined via their mutual interactions. 
Namely, Z(t) was considered as a model parameter, and the 

mechanism of (t) switching is not clear. Since the 
considered cognitive architecture is in a good agreement 
with functional areas of neocortex (not subcortical 
structures), we come to 

Philosophical Inference #3: Proper system of equations 
that describes the whole cognitive process could be 
completed only after taking into account the participation of 
emotions.  

V. THE ROLE AND PLACE OF EMOTIONS  

The incorporation of emotions and rational thinking into 
cognitive system represents really the challenge, since we 
need to ride over the explanatory gap between “Brain” and 
“Mind”. Under NCA, this implies that two different “tools” 
are required, the one relating to the “Brain” structures, and 
the other one expressed in the “Mind” terms.  Then, mutual 
influence of these “tools” could provide integral  
representation of emotions in the cognitive process.  

 From the evolutionary point of view (see, e.g., [30]), 
emotions represent far more ancient mechanism of the 
analysis of environment, than rational reasoning. Therefore, 
the sources of emotional bursts relate to so called “old 

cerebellum”,  i.e., certain sub-cortical structures like 

thalamus, basal ganglia, amygdale, substance negro, etc. 

(see [7], [30]). Then, the production of these very structures 
could be considered as the required “Brain tool” for emotion 
representation.  

From the other hand, the rational reasoning as rather 
“young” (evolutionary) ability relates  to cerebral neocortex. 
Thus, the required “Mind tool” should relate also to this 
very structure.  

Emotions provide a synthetic (integral) reaction that 
appears before the analysis of concrete reasons and motives. 
For humans, the specification of “emotio” and “ratio” 
becomes meaningful after formation of the common 
language (that is, the developed system of conventional 
symbols) within a certain community (see, e.g., [45]). Let us 
point out that any language-delivered information (speech) 
represents a successive time set of symbols. Hence, the 
reasoning, or rational thinking, represents a consecutive 
method of information processing. Therefore, it seems 
reasonable to assume that not-rational or emotional 
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reactions correspond to the parallel information processing. 
Recalling that these functions are attributed to the left and 
right hemispheres, respectively (see [25], [50]), one may  
come to a big temptation to infer that rational and not-
rational (emotional) thinking correspond to LH and RH, 
respectively. Below, it is shown that that all these arguments 
actually are related to the problem, but realization of this 
program calls for more accurate consideration.   

A. The Problem of Emotion Formalization  

In order to formalize the above arguments, let us 
consider the approaches to emotion classification.   

In psychology, the self-appraisal (emotion) is ordinarily 
associated with achieving a certain goal. Commonly, 
emotions are divided into positive and negative ones, with 
increasing probability of the goal attainment leads to 
positive emotions, and vice-versa. Furthermore, it is known 
that any new (unexpected) thing/situation calls for negative 
emotions (see, e.g., [19]), since it requires additional efforts 
to hit the new goal (in the given case, to adapt to unexpected 
situation). Hence, to the first approximation emotions could 
be divided into positive and negative ones.   

From the neurophysiology viewpoint, emotions are 
controlled by concentration and composition of the 
neurotransmitters inside the organism [7], [25]. All the 
exciting variety of known neurotransmitters (more than 
4000 known species) can be sorted into two groups: the 
stimulants (like adrenalin, caffeine, etc.) and the inhibitors 
(opiates, endorphins, etc.). Note that this fact indicates 

indirectly that the binary emotion classification  positive 

vs. negative ones  seems bearable despite its 
primitiveness. However, there is no direct correspondence 
between positive self-appraisal and the excess of inhibitors 
or stimulants, the problem is more intriguing.    

Anyway, the simplest “Brain tool” to represent the 
emotions is rather apparent: it is the effective (aggregated) 

composition of neurotransmitters (t) representing the 
difference between the stimulants and inhibitors.  

According to DTI, emotions could be divided into two 
types: impulsive (impelling the generation of information) 
and fixing (effective for reception). Since the generating 
process requires the noise, it seems natural to associate 
impulsive emotions (anxiety, nervousness) with the growth 
of noise amplitude Z(t). Vice-versa, fixing emotions could 
be associated with decreasing noise amplitude (relief, 
delight). By defining the goal of the living organism as the 
maintenance of homeostasis, (i.e., calm, undisturbed, stable 
state), one may infer that, speaking very roughly, this 
classification could correlate with negative and positive 
emotions, respectively.  

Thus, we may infer that it is the noise amplitude Z(t) 
(relating actually to the neocortex) that could be treated as 
the required “Mind tool” for accounting emotions.  

B. Main Hypotheses on Emotion Representation in AI 

We propose the following hypothesis on the nature of 
emotions: The random component (noise) in artificial 
systems does correspond to the emotional background of 

living systems, as well as free (random) choice imitates the 
human emotional choice.   

This concept gives immediately three tools directly 
connected with emotions, and all of them are individual for 
any given artificial system:  

Z0  stationary-state background, i.e., the value that 
characterizes the state “at rest”; 

Z(t) = Z(t)  Z0 is the excess of the noise level over the 
background, which reflects the measure of cognitive 
activity;  

dZ/dt  is the time derivative of the noise amplitude, 
which apparently is the most promising candidate to the 
analogue to emotional reaction of human being. The 
absolute value of derivative dZ/dt corresponds to the degree 
of emotional manifestation: drastic change of noise 
amplitude imitates either panic (dZ/dt>0), or euphoria 
(dZ/dt<0), and so on.  

Various combinations of these values reveal a wide field 
for speculations and interpretations. For example, the 
calibrated value Z0 could serve as the indicator of individual 
temperament. The states with Z(t) < Z0  could be interpreted 
as depression, etc. These parameters could be applied to 
construct artificial cognitive systems (robots) of various 
“psychology” types.  

The influence of the “Brain” component should be 
accounted by linking the value of dZ/dt with an aggregated 

variable (t) that represents the effective composition of 
neural transmitters. In an artificial cognitive system and AI, 

an additional (artificial) variable (t) should be introduced 
as an external factor to control the “emotional” state of the 
system. 

Thus, the Main Hypothesis results in the following set of 
basic hypotheses:  

 Hypothesis #1: The impact of neurotransmitters 
should be described by the system of equations 
linking the noise amplitude Z(t) with the aggregated 

variable (t) that corresponds to the effective 
composition of neural transmitters (the difference 
between stimulants and  inhibitors).   

 Hypothesis #2: The apprehended emotional reaction 
of human beings could be described as the time 
derivative of the noise amplitude dZ(t)/dt.  

Note, that this value could be either positive or negative that 
could be (very roughly) related to negative and positive 
emotions, respectively. The absolute value of derivative 
corresponds to the degree of emotional manifestation and 
can take any values to describe various emotional shades.  

 Hypothesis #3: The same derivative should control 
the “dialog” between subsystems: increasing Z(t) 
(negative emotions) corresponds to activation of 
RH, while decreasing Z(t) (positive emotions) 
switches on the LH activity.  

Basing on these hypotheses, we can write the system of 

equations describing mutual interaction of the variables (t) 
and Z(t) in course of cognitive process in the form:   
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where a, , , , , and  are model parameters, the 

functional X{, Gk
R,

} refers to the process of new symbol 
formation (which decreases Z(t) value, see details in [12]). 

The linear in Z and  part in (12), (13) provides the system’s 
homeostasis: stationary stable state corresponds to {Z=Z0, 

=0}. The functions FZ(,Z) in (12) and F(,Z) in (13) are 
written to account for possible nonlinear effects, which may 
arise from mutual influence of “emotional” 
(neurophysiology) and “rational” (referring to the neocortex 
ensemble) variables (see below).  

The last term in (12) refers to processing the incoming 
information. The term D stays for the discrepancy between 
the incoming and internal (stored) information that 
provokes Z(t) increasing. This very situation refers to the 
“effect of surprise”, which evokes human’s negative 
emotions. Vise versa, finding the solution to the problem 
(D=0) results in momentary decrease of Z(t), that 
corresponds to positive emotional splash. Thus, the model 
seems quite reasonable.  

Finally, the hypothesis #3 results in (14), where 0 being 
the characteristic value of the cross-subsystem connections; 

 is the model parameter, which specifies the  dynamics. 
Note that hyperbolic tangent function in (14) provides the 

step-wise behavior at >>1. This implies that = 0 = 
RL

  

at dZ(t)/dt<0 and = 0= 
LR

 at dZ(t)/dt>0, with  being 
zero at dZ(t)/dt=0. Small/moderate variations of dZ/dt 

around zero provide corresponding oscillations of (t) that 
represent permanent (normal) “dialog” between subsystems. 
Besides, the solution to standard problems can be found in 
LH only and commonly does not provide any emotional 

reaction: dZ/dt =0 (any inter-subsystem connections are 
not activated). Hence, this equation fits completely our 
previous psychological considerations.  

Thus, the system of equations (8) – (14) appears to be 
fully complete since all the variables are defined via their 
mutual interactions. Let us stress that linking the cross-

subsystem connections (t) with the emotional variable 
dZ(t)/dt gives quite original and necessary mechanism to 
control the subsystem activity and provides desired tool for 
realization of an artificial two-subsystem schemes (robots).   

C. tApplication of the Model to the Stress/Shock Effect 

Let us consider an example of applying this model to 
reproduce certain observable effect. The effect of “stress 
and shock”, that occurs when people find themselves in a 

stressful situation, was investigated for several years by the 
group of neurophysiologists [59]. Two specific 
characteristics of electrocardiogram were measured, one of 
them being an appraisal of vegetative imbalance, another 
one being the measure of heart-rate variability. It was 
observed that under small or moderate external impact, 
people gradually calm down after several oscillations of 
measured characteristics. But in the case of strong impact, 
initial excitation changes for depression and only after 
sufficiently long time the person can return to ordinary 
(regular) reactions. This type of behavior was identified as 
“stress”. Moreover, there was detected the regime called a 
 “shock”: the probationer, after too strong initial excitation, 
falls down to deep depression (stupor or coma), and cannot 
relax independently, without medical assistance. In the latter 
case, the vegetative balance is controlled by the opiates only 
(pronounced inhibitors), with the variability index comes to 
zero. It is worse noting that the levels of initial excitation 
resulting in “irregular” regimes of behavior were detected to 
be individual. All these regimes could be reproduced in the 
proposed model by choosing an appropriate parameter set.   

The first attempt to describe these effects was done in 
[12], where two different sets of parameters had been used 
to reproduce the “normal\stress” and “shock” regimes   
respectively. This means that, the transition between the 
stress and shock states was treated as parametric 
modification of the system. Alternative version of this 
model (different choice of parameters) is presented in this 
article. It enables us to reproduce all the regimes within 
single combination of parameters, by varying the initial 
conditions. Besides, modern description of the stress-to-
shock transition seems to be more interesting and relevant 
(see below).  

In Fig. 5, the phase portrait for the model (12) – (13) is 
presented, where the parameters are chosen to provide the 
N-shape isoclinic curve dZ/dt = 0 with just two stable statio- 

 

 
 

Figure 5. Model phase portrait in terms of “noise amplitude Z(t) vs. an 

aggregated neurotransmitter composition (t)”.  
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nary states. The normal stationary state {Z=Z0, =0} 

corresponds to homeostasis. The second one {Z=Z*, =*} 
corresponds to abnormal state (pathology), where the noise 
is deeply suppressed (Z*<0), and the neurotransmitter 

imbalance is shifted to deep inhibitor region (*<<0). This 
state just corresponds to that of the “shock” — this implies 
deep depression with possible transition into a coma. Both 
stationary states represent stable focuses.  

Normally, the dynamical regime represents damping 
oscillations around the homeostasis point {Z0,0}. Initial 

excitation (t=0) (that imitates an external impact) provokes 

growth of Z supplied by the following decrease of  down 
to negative values, which then changes for decreasing Z 

with  growth, and so on. Thus, the values of Z(t) and (t) 
gradually (over several cycles) trend to their stable points 
(solid green curve). But if the trajectory, starting from 

somewhat larger initial value (0), would pass beyond some 
bifurcation value Zbif, the dynamical regime changes 

(dashed red curve). The trajectory falls down to negative  
(inhibitor) zone where spends a long time. Then it slowly, 
over the depression zone Z<0, returns to regular 
(oscillatory) mode. This regime qualitatively corresponds to 
the “stress” behavior.  

The yellow curve in Fig. 5 represents the separatrix 
between the attraction zone of abnormal stationary state 

{Z*,*} and other behavioral modes. Since this state is also 
a stable focus, the affix, ones getting inside the attraction 
zone, will be “sucking” up (over several damping oscillation 
around) to the abnormal stationary state, and cannot leave 
this zone independently, without serious external impact. It 
should be stressed that normally, the trajectory cannot cross 
the separatrix from outside; this could occur only 
occasionally (due to some small excitation when the affix is 
near the separatrix). This implies that commonly, the stress 
regime returns to a normal mode and should not result in the 
shock state. But, since at certain stage of the process the 
trajectory comes very close to the separatrix, the least 
excitation could result in hitting the shock zone and fall 
down to the coma state. Thus, this model enables us to infer 
that the stress regime is dangerous for human beings, since 
this process includes the stage (just before the stress mode 

turns to increasing  values, i.e., to rather normal behavior) 
when the weak external excitation could provoke 
momentary stress-to-shock transition. This is novel model 
prediction, which could be tested experimentally. Note that 
certain evidences in favor of this effect were already 
detected [59].  

This model could be applied to analyze possible results 
of use of different medical impacts, such as adding certain 
stimulants at different stages of the stress process. Such 
research could lead to pronounced applied results.   

The described effects are in good qualitative agreement 
with the experimentally observed ones [59]. Quantitative 
correspondence is intricate, since the characteristics that are 
measured experimentally are close per se to Z(t) as a 

measure of irregularity, and (t) as a measure of mediator 
imbalance. However, there is no direct correspondence 
between theoretical and experimentally measured variables.   

VI. EMOTIONAL MANIFESTATIONS IN COURSE OF 

INFORMATION PROCESSING  

Let us discuss the role of emotions in solving the 
problems of recognition and prediction, which could be 
accompanied by certain dynamical variation of the noise 
amplitude Z(t). Typical patterns of Z(t) behavior will be 
presented below.   

A. Recognition  

Note that he extended set of images with distinguished 

“borders” is needed for good quality of recognition 

(classification). Usually such classifier is built in course of 

training the recognition system. Under NCA, RH plays the 

role of Supervisor for LH, and that is trained LH that 

implements the function of the object recognition 

(classification).  
The problem of object/phenomenon recognition is 

solving in already trained system (with at least two trained 

lower levels =0, 1) by means of image plates.  
The incoming information is perceived by both 

subsystems. If this information is well known, the problem 
is solved in the subsystem LH by means of Hopfield-type 
mechanism of refinement: all the images are treated as 
already known ones — by fitting them to coincide with 
already stored patterns. In the case of insufficient 
recognition (when the fitting procedure fails), the 
participation of RH becomes necessary. An unrecognized 
image is treated as a new one and undergoes the common 
procedure of new symbol formation.  

The problem setting consists in excitation of certain 
group of neurons (“examinee object”) in the fuzzy set Н

0
 in 

RH. Here, this “object” is processing “as it is”, i.e., by 
blackening connections between all the examinee neurons. 
This neuron group could contain several “skilled” neurons 
(that belong to certain already known image), with already 
black connections between them. This means that the 
examinee object is (to some extent) similar to some familiar 
(already learned) one.  

Then, this image is transferred (by direct cross-sub-
system connections ) to the typical-image plate Н

typ
 in 

LH. Further procedure is controlled by the value of the 
discrepancy D, which could be defined as  

typ

ii

M

i

HHtD  0)( ,         (15) 

where summation is performed over M excited examinee 
neurons.   

There are several possible cases.  
1)  Familiar object: If the examinee object is well-

known to the system, i.e., its image completely coincides 
with one of typical images in LH, so that D(0)=0, it would 
be straight away (quickly!) associated with corresponding 
symbol, with all the following consequences concerning its 
position in the hierarchy. In this case, RH does not 
participate further in the process. Accordingly, dZ(t)/dt=0,  
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so this (practically automatic) procedure do nor call for any 
emotions.  

2)  Examinee object is close to familiar one: The 
examinee object can be sufficiently similar to one of the 
known typical images (fits its “attraction area”), i.e., 

D(0)0<Dcr, where Dcr represents certain critical value of 
discrepancy. Then, it is treated as familiar one together with 
its symbol at the next level G

L,1
. However, in this case the 

recognition propriety requires verification. For this purpose, 
the symbol should be transferred to RH for decomposition, 
and the result should be compared with the examinee image. 
Thus, there arises the loop, i.e., iterative process presented 
in Fig. 6: 

 

Figure 6.  Schematic representation of the iterative recognition procedure 

If the result of comparison was satisfactory (it could be 
estimated by running D value), the examinee object would 
be associated with an existing symbol. If not, the 
discrepancy provokes repeating, and the procedure should 
pass over several iterations. At that time, the image in the 
fuzzy set H

0
 gradually blackens.  

3) Examinee object is far from familiar one: If 
D(0)>Dcr, at some moment the connections recording the 

object in RH turn to be sufficiently “black” (
0

ij0), but 
the typical-image plate do not recognize the object, — then, 
it turns out to be the new typical image and should take its 
place at the plate H

typ
, so that D(tD=0) = 0. Then, the 

common procedure of new symbol formation should 
provide its own symbol, which should be linked to high-
level symbols, and so on. The moment tD=0 is accompanied 
by Z(t) decrease — the system had solved the recognition 
problem and could relax. Typical pattern of Z(t) dynamics in 
course of recognition procedure is presented in Fig. 7a.  

 

 

Figure 7. Typical patterns of the noise-amplitude behavior in the cases of 
(a) recognition procedure; (b) prognosis and incorrect prognosis at the time 

moment t* (illustration for the sense of humor).  

Thus, we can infer that the given system is capable to 
process and recognize even new objects, yet only with 
participation of the fuzzy set H

0
.  

B. Prognosis   

The prognosis (forecast) can be treated as a “recognition 
of a time-depending process”. It proceeds in LH after the 
symbol of the given process is formed. This generalized 
symbol collects all the information about the “process 
pattern” (image of symbols) in a compressed form. Then, 
the information on some middle stage of the given process 
activates it’s symbol, providing the activation of the entire 
chain of symbols enclosed in this process. 

Therefore, emotional manifestations, as well as the 
pattern of noise-amplitude Z(t) behavior here is similar to 
that in the case of recognition (Fig. 7b). Note that this 
statement is true up to the moment when the prediction is 
failed. This means that the information coming at some 
moment t* appears to be unexpected. This case refers to the 
problem of the sense of humor (see below).   

C. Interpretation of the Sence of Humor    

Under the presented concept, the sense of humor could 
be interpreted as an “ability to adapt quickly to unexpected 
information with getting positive emotions”. This process is 
illustrated in Fig. 8.  

Let the incoming data represent a time sequence of 
symbols that is perceived consequently by LH, as it is 
shown in Fig. 8. At the initial stages, the information 
perceived is usually not concrete enough to correspond to 
one symbol of process at G

2
, thus the system makes no 

predictions. A prognosis could be done when accumulated 
information enables the subsystem to choose one symbol 
among the others (in Fig.8, “black” symbol at G

2
 plate, 

which has more strong connections than the “green” one, 
i.e., it corresponds to more “common” process). Then, the 
system waits for further details of the predicted process (this 
means activation of the “black”-symbol chain at G

1
 plate).  

 

 

Figure 8. Illustration of the process of perception of incoming information 
in the well-trained system. 
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Up to certain moment t*, the incoming information 
(“violet” chain in Fig. 8) fits these expectations. At the 
moment t*, the prognosis on further information could 

appear to be incorrect,  the next symbol at G
1
 plate 

belonging to “violet” chain, actually is not involved into the 
“black”-symbol chain, and thus unexpected. Then the 

system has to appeal to RH (down -arrow in Fig. 8); in 
this process, the emotions are negative: dZ/dt > 0. However, 

the system may rapidly find a new solution  this implies 
that there already exists the symbol of another process that 
matches completely both, former and current information 
(“green” symbol at G

2
 plate in Fig. 8). This leads to positive 

emotions (“aha” moment) and hence switches the 

connections 
RL

 (up arrow in Fig. 8).  
According to this concept, a good anecdote should be a 

story that, up to certain moment t*, permits a well-known 
interpretation. The next information block should not deny 
the previous version, but suggest another (alternative) also 
well-known interpretation. In this case, the system has to 
return to the turning point at t* and then choose the “right” 
chain of symbols fitting all the incoming information. The 
very process of returning and jumping to the “right” 

trajectory requires definite specific efforts  so again it 
leads to the spike of the noise amplitude that simulates 
laughter.  

Let us stress that all this is possible, if the system is 
reach enough with symbols of processes, i.e., has large 
enough “repertoire” of various symbols and images. Then 
this process is rapid, both trends appear to be superimposed: 
the value Z(t) undergoes abrupt increase-and-decrease 
(“spike”) that could be interpreted as an analogy to human 
laughter (abrupt involuntary reaction). Thus, we infer that a 
sense of humor could be inherent to the well-trained 
(erudite) system only, just as it is for human beings.  

D. Interpretation of Aesthetic Emotions (annons)  

NCA could be applied to the problem of analysis of the 
nature of so called aesthetic emotions. Emotions of this type 
are not connected with any rational (pragmatic) reasons, but 
are evoked by pure Nature phenomena (rainbow, fire, etc.), 
pieces of Art, etc. Under NCA, one may suppose that these 
emotions are associated with the recognition paradox: these 
phenomena seem familiar and surprising simultaneously. In 
this case, Z(t) should display small variations (vibration) 
around the normal level Z0, that correspond to the human 
feeling called the “goosbumps”. In many aspects, the 
mechanism of aesthetic emotion production is similar to the 
incorrect\undone prognosis, therefore to the sense of humor. 
That is why pronounced emotions are often accompanied by 
the laughter (or tears). However, there is important 
difference: the unexpectedness in the case of aesthetic 
emotions could not be “resolved” by switching to another, 
already known symbol. Nevertheless, this problem deserves 
further  study [60].  

VII. PERSPECTIVES ON PRACTICAL VALIDATION  

This theoretical study has per se fundamental character 
and could be related to the human-level AI (HLAI) trend. 

However, its experimental verification represents the most 
interesting problem.  

The comparison of our model predictions with the 
experimental results on Electro Cardiogram (ECG) analysis 
under the stress/shock conditions [59] has shown good 
qualitative agreement. Note that these experiments were 
based on the analysis of ECG, with model-dependent 
interpretation of the correspondence between ECG pattern 
and the activity of certain brain areas.  

However, the model variable corresponding to the noise 
amplitude Z(t) has no direct analogues within the 
experimental technique used. This requires special efforts to 
extract this information from experimental data on the 
neocortex activity.  

The model predictions concern certain peculiarities in 
the brain activity, including the cerebral cortex and 
subcortical structures. The sub-cortical production could be 
estimated indirectly, by analysis of certain vegetative 
indices, as it was done, e.g., in [59]. However, meaningful 
experiments should involve combined study using ECG, 
Electro Encephalogram (EEG), and functional Magnetic 
Resonance Imaging (fMRI). In this process, the main 
attention should be paid to the dynamic variations in the 
brain-structures activity, thus good enough time resolution 
of the experimental devices is required.  

These techniques are actually available now [61]. We 
plan to perform such experiments in collaboration with the 
group of V. L. Ushakov in Kurchatov Research Center, 
Moscow, in the nearest future. In particular, we plan to 
perform combined analysis of ECG, EEG, and fMRI data 
for people under the “light stress” experimental conditions 
(e.g., time trouble in solving specific cognitive problems). 

VIII. CONCLUSIONS AND FUTURE WORK 

In summary, the main inference of the paper is that NCA 
architecture inherently contains the possibility and even 
necessity to incorporate the emotions into the cognitive 
process.  

The main constructive feature of this architecture is 
representation of the whole system as a combination of two 
linked subsystem, RH and LH, with the presence of random 
element (noise) in RH only. These subsystems could be 
associated with cerebral hemispheres, with the connections 

(t) between them representing corpus callosum. It was 
shown that RH is responsible for processing the new 
(therefore, unexpected) information, while LH stores and 
processes the well-known one. This functional specialization 
is in entire agreement with the practical inferences of 
Goldberg [19]. The coincidence of theoretical (DTI-based) 
and practical (practicing psychologist E. Goldberg) 
inferences represents a pleasant surprise and indirect 
verification of NCA.  

However, this design requires a specific mechanism to 
control the subsystem activity. It is quite natural to associate 
this mechanism with the emotional response to incoming 
information.  

It is shown that emotional self-appraisal in an artificial 
cognitive system could be associated with the variation of 
the noise amplitude. In order to reproduce human-level 
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emotional process, which is regulated by the neural 
transmitters, it should be linked to certain additional 
variable reflecting aggregated composition of 
neurotransmitters. Their mutual dynamical interaction in 
course of cognitive process provides the tool for regulating 
the activity of subsystems. Thus, the problem of 
“Explanatory Gap” between the “Brain” and “Mind” 
approaches to representation of emotions is solved.  

Returning to the wide-spread and somewhat “vulgar” 
idea that RH is a “container” for emotions while LH 
provides rational reasoning, we may infer that emotions 
actually lie deeper (in all senses). They belong neither to 
RH nor to LH, but actually control their activity. That is 
why in Fig. 1, “emotions” are virtually displayed beyond 
both subsystems (associated with neocortex). 

The emotional response is described by the derivative 
dZ/dt of the variable that indicates the level of the noise Z(t). 
Negative emotions imitated by the noise increasing 
(dZ/dt>0) correspond to unexpected incoming information 
(incorrect and/or undone prognosis, surprise); in this 
process, RH should be activated. Vice-versa, solving any 
problem results in positive emotions and, correspondingly, 

decrease of the noise amplitude (dZ/dt <0)  then, only LH 
remains active, while RH gets an opportunity to be “at rest”.  
Specific case of an abrupt up-and-down jump (“spike”) of 
the function Z(t) could be associated with specific human 
manifestation of emotions (the laughter).  

Realization of this program in AI could be accompanied 
by certain sound effects, such as artificial “laughter” in the 
case of abrupt spike of Z(t). In addition, variation of the 
noise amplitude during the process of problem solving could 
be accompanied by the display of visual “symbols”, such as 
cheery or sorrowful “faces”, etc.  

This approach opens a wide field for imitation and 
model analysis of various human peculiar features. This 
implies, e.g., that various types of temperament could be 
associated with certain values of the rest-state noise 
amplitude Z0 and thus classified. Furthermore, the model 
described the stress/shock effect could be employed for 
working up new medical-treatment techniques for specific 
(neural) diseases. All these tasks require further study.   

It should be stressed that all these possibilities emerge 
from the human-like cognitive architecture proposed under 
NCA. Let us accentuate several key points of NCA that 
distinguish it from other neuromorphic approaches and 
could be applied successfully to artificial cognitive systems 
(particularly, in Robotics):  

 Continual representations of neural processors 
involving nonlinear differential equations.  

This representation enables us to interpret and reproduce the 
experimentally observed effect of mutation of the “skilled” 
neurons (participated in acquisition of certain experience) by 
the parametric modification.  

 The whole system represents a combination of two 
linked subsystems (RH and LH) – for generation and 
reception of information, respectively. 

 Different training principles in RH and LH secure 
the hemisphere specialization.  

New information processing requires the amplification of the 
new connections (Hebbian principle), while the processing 
of well-known information (recognition) requires the 
selection principle “redundant cut-off” (Hopfield’s rule).  

  Account for random component (“noise”) presented 
in RH only.  

This fact immediately specifies the role of RH in the 
response to unknown/unexpected conditions and leads to:  

 Interpretation of emotions as a tool for controlling 
the subsystem activity, that could be realized via the 
noise-amplitude derivative dZ/dt. 

 Instability of the image-to-symbol conversion 
process that leads to unpredictable patterns.  

This very factor could secure the individuality of an artificial 
cognitive system.  

 The “connection-blackening” principle of self-
organization, which provides the possibility for RH 
to acts as a Supervisor for LH; no external 
supervising is needed for permanent learning.  

Thus, these design features make it possible to reproduces 

the peculiarities of human cognition  that is, unpredictable 
character, individuality, permanent learning, ability of 
logical and intuitive thinking, etc. Note that these problems 
are actually not considered in other approaches.  

It should be stressed that under NCA, the noise (random 
element) is treated not as unavoidable obstacle (as it is in 
radio physics, information-delivery tasks, etc.), but as 
necessary full member of all the processes referring to 
generation of information. Note that the noise (concerning 
the living systems, this implies fortuitous, spontaneous, 
sudden act), represents the survival mechanism that prevents 
precise and speed acting (particular for robots) in common 
situations, but provides an ability to find occasionally quite 
sudden and unpredictable exit from a critical situation. This 
very factor could provide the human-like features in an 
artificial system.  

Actually, modern AI systems correspond to LH under 
NCA, but this is the RH that secures the emergence and 
individuality of such intellect.  Moreover, even in the well-
trained cognitive system, the combination of LH and RH 

provides rather broad spectrum of abilities than LH only  
without RH, the cognitive system appears to be poor. Thus, 
we can infer that the NCA architecture, in spite of its 
seeming complexity and awkwardness, has several 
advantages comparing with popular AI architectures.  Some 
loss of materials for doubling the system could gain a profit 
in system’s self-development.  

It is worth noting that the idea of using two subsystems, 
with the noise being presented in the one, has already 
attracted an attention in Robotics [62]. However, this idea 
requires specific mechanism for switching the activity of 
certain subsystem depending on the process stage. Under 
NCA, this mechanism is actually proposed. According to 
our main hypothesis, it should be controlled by emotions 
displayed as the noise-amplitude variation.  

Thus, it is shown that under NCA, emotional response to 

external information (including unexpected, i.e., surprising 
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one) could be imitated by specific behavior of the noise 

amplitude.  

These ideas deserve further research and experimental 

verification.  
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