Potential Antibacterial Targets in Bacterial Central Metabolism

Nichole Louise Haag, Kimberly Kay Velk, Chun Wu Division of Natural Sciences Mount Marty College 1105 W 8th St. Yankton, the United States nichole.haag@mtmc.edu kimberly.velk@mtmc.edu cwu@mtmc.edu

Abstract—The emerging antibiotic resistant bacteria and their abilities for rapid evolution have pushed the need to explore alternative antibiotics less prone to drug resistance. In this employed study. methicillin/multidrug-resistant we Staphylococcus aureus (MRSA) as a model bacterial system to initiate novel antibiotic development. An in silico identification of drug targets in MRSA 252 strain and MRSA Mu50 strain respectively was described. The identified potential targets were classified according to their known or putative functions. We discovered that a class of essential non-human homologous, central metabolic enzymes falls into the scope of potential drug targets for two reasons: 1) the identified targets either do not have human counterparts or use alternative catalytic mechanisms. Based on major differences in active site structure and catalytic mechanism, an inhibitor of such a bacterial enzyme can be designed which will not inhibit its human cousin. 2) attacking bacterial energy-making machinery bypasses the usual drug resistance sites, paving the road to multi-faceted approaches to combat antibiotic resistance.

Keywords-antibiotic resistance; Methicillin/multidrug-resistant Staphylococcus aureus; essential genes; drug targets; central metabolism.

I. INTRODUCTION

This paper is an extended version of the previously published conference paper [1]. The earlier paper detailed *in silico* identification of drug targets in MRSA 252 strain and MRSA Mu50 strain respectively and proposed that the development of a new class of antibiotics may be a potential solution to avoid bacterial antibiotic resistance.

One of the biggest medical breakthroughs of the twentieth century is the discovery of antibiotics [2], which was immediately followed by the unfortunate emergence of bacterial antibiotic resistance [3].The rapid rate of bacterial evolution to overcome the antibiotic action, the ability of a single pathogen strain to resist multiple drugs, as well as the stunning frequency of resistance occurring constitute a major challenge to the medical profession [3] and thus raised retrospective discussions of currently existing antibiotics [4-6]. Although there are hundreds of antibiotics on the market, it remains a fact that almost all existing antibiotics target only four cellular functions: protein

synthesis, nucleic acid synthesis, cell walls synthesis or folate synthesis [6, 7, 8]. Bacterial resistance usually arises as the result of evolutionary adaptation of the target proteins that are subject to direct antibiotic attack [3]. Repetitively striking the same cellular sites leads to defensive bacterial gene mutation, which remains the primary cause of the prevalence of antibiotic-resistant bacteria [9], such as Methicillin/multidrug-resistant Staphylococcus aureus (MRSA) [10], Multidrug or Extensively Drug-Resistant Tuberculosis (MDR TB or XDR TB) [11,12], NDM-1 induced antibiotic -resistant Escherichia coli [13], etc. Hence, exploration of novel antibiotics with alternative modes of action is of great urgency [8]. The task falls on the shoulders of academia due to the fact that the pharmaceutical industry has ceased investing in antibiotic discovery owing to high cost, lengthening developing cycles, complexities and low profits along with failure of several recent investments in target-based approaches [14].

In this study, we employed MRSA as a model bacterial system because it is the most common bacterial pathogen isolated from humans [15, 16] with a significant morbidity and mortality [17]. The first MRSA case presented in the United Kingdom in 1961[18]. Shortly after, more variations were identified to be immune to β -lactam antibiotics (including penicillin, methicillin, oxacillin, and cephalosporins [19, 20]). Newly discovered MRSA strains have evolved to survive sulfa drugs, such as tetracyclines, and clindamycin [21]. Glycopeptide antibiotics, such as vancomycin and teicoplanin, considered drugs of "last resort", were used for the treatment of MRSA infections [22, 23]. However, recently discovered MRSA strains showed resistance even to vancomycin and teicoplanin [24, 25]. As of 2007, one variant found was resistant to six major kinds of antibiotics [26]. The beginning signs of MRSA infections are skin infections that resemble pimples, boils or spider bites. In immune-deficient patients, localized skin infections quickly spread through the bloodstream causing vital organ infections and possible death [27]. In a 2007 Centers for Disease Control and Prevention press release, there were about 94,000 cases of MRSA infections, contributing to around 19,000 deaths in the United States, which implies a mortality rate higher than that caused by HIV [28, 29]. The current treatment for MRSA infections is still traditional broad-spectrum antibiotics such as lincosamides, sulfa drugs, glycopeptides [30-32], among which linezolids [33] daptomycin [34], Trimethoprimsulfamethoxazole and MoxifloxacinHCl were considered relatively more effective [35, 36] though MRSA infections have become increasingly difficult to treat [31-33]. Thus, alternative treatments precisely targeting the root cause of MRSA infections needs to be established.

Novel antibiotic development starts with target screening [37]. In this paper, we reported the preliminary results of anti-MRSA drug development, *i.e.*, a systematic *in silico* approach for the identification of drug targets in two MRSA strains, MRSA 252 and MRSA Mu50 based on the following two criteria: essentiality to pathogen survival and absence from the human genome [38, 39]. A special list of enzymes targeting bacterial metabolism was identified, shedding light on a potentially new approach for antibiotic development.

II. METHODS

The objective of this study was to determine potential drug targets for alternative treatment of MRSA infections, to predict their enzymatic functions and to further shorten the list. We employed a reported *in silico* approach through a systematic and justified method [39, 40] for the identification of drug targets of MRSA infections following two criteria: essential to the survival MRSA and absent in the humans [38, 39].

MRSA genome National Center for Biotechnology Information (NCBI) gene bank contains at present complete genomic sequences of 13 MRSA strains. In this study, genomic sequences of MRSA 252 strain and MRSA Mu50 stain were studied respectively.

Sequence retrieval The genomic sequences of MRSA 252 and MRSA Mu50 were retrieved from the NCBI database respectively [41]. A total of 2656 genes from MRSA 252 strain and 2697 genes from MRSA Mu50 stain were purged at 90 % and 60% using CD-HIT [42] to remove paralogous or duplicate proteins.

Blasp against the database of essential genes (DEG) The resulting sequences were run through DEG [43] at an expectation (E-value) cutoff of 10^{-4} . The database of essential genes includes genes required for basic survival of *Staphylococcus aureus*, as well as more than 10 other bacteria, such as *E. coli*, *B. subtilis*, *H. pylori*, *S. pneumoniae*, *M. genitalium* and *H. influenzae*, etc.

Blasp against human genome The essential genes identified were subjected to BLASTP against the human genome (both refseq and nonrefseq) [44] to exclude any genes that have a significant match (E-value cutoff of 10^{-3} and lower) with human homologs. Genes having BLAST E-

scores less than 10^{-3} were considered as having no close relatives in human.

Protein function assignment Information on the function of the identified proteins was derived from the annotated genome sequence through Integr8-Inquisitor [45] and/or EMBL/EBI/InterProScan [46].

Metabolic pathway study MRSA Metabolic pathways were obtained from KEGG database [47].

Amino Acid Alignment Analysis The interested protein sequences were submitted to SDSC Biology Workbench [48] for alignment in order to identify orthologs.

III. RESULTS AND DISCUSSION

The goal of this investigation was to determine potential drug targets for alternative treatment of MRSA infections and to classify and to analyze the identified targets. Out of the complete genomes of 13 MRSA strains that were sequenced and deposited in the NCBI gene bank, MRSA 252 and MRSA Mu50 were selected due to the fact that the former is a common strain in the USA [49] and the UK [50] and the latter, a methicillin and vancomycin resistant strain isolated in Japan [51] is commercially available for future molecular biological study (ATCC). The common method of drug target identification encompasses two steps: the identification of essential genes for bacterial viability [37] and the identification of genes absent in the human genome [38]. The former was performed by adopting the DEG database in our approach because this database compiles a list of all currently available essential genes in more than 10 prokaryotes including Staphylococcus aureus [41] and proved to be more accessible than conventional tools [39, 40]. On the other hand, the availability of the human genome sequence [52, 53] renders the latter step feasible. Following two newly published genomic analysis methods [39, 40], 2656 MRSA 250 and 2697 Mu50 genes were purged at 90 % and 60% using CD-HIT to remove

TABLE 1: GENOMICS ANALYSES OF MRSA 252 AND MRSA MU50 STRAINS REPECTIVELY.

Genes	MRSA 252	MRSA Mu50		
Total number	2656	2697		
Duplicates (>60% identical)	88	105		
Non-paralogs	2568	2592		
Essential genes [cut-off <i>E</i> -value < 10 ⁻⁴]	499	496		
Essential genes w/o human homologs[cut-off E-value < 10 ⁻³]	133	134		

TABLE 2. 133 essential, non-human homologous genes in both MRSA 252 and MRSA Mu50 strans encoding different classes of proteins and their known or putative functions

			MRSA 252	MRSAMu50	Known or putative functions
Categories	Classes	Groups	NCBI Gene	NCBI Gene	F
0		-	Accession [#]	Accession #	
Metabolism	Cellular	Carbohydrate	49482458	15923216	Formate acetyltransferase
	respiration	Catabolism	49482459	15923217	Formate acetyltransferase activating enzyme
			49482486	15923242	Xylitol dehydrogenase
			49483017	15923750	HPr kinase/phosphorylase
			49483247	15924074	Phosphoenolpyruvate-protein phosphatase ptsI
			49483033	15923765	Phosphoglyceromutase
			49483952	15924701	Acetate kinase
			49484267	15925031	Sucrose-6-phosphate hydrolase
			49484349	15925115	Fructose-bisphosphate aldolase
			49484367	15925133	Mannose-6-phosphate isomerase
			49484381	15925149	Mannitol-1-phosphate 5-dehydrogenase
			49484415	15925185	Galactose-6-phosphate isomerase subunit LacA
		Lipid	49483384	15924216	Phosphatase/ dihydroxyacetone kinase
		Catabolism	49483425	15924288	Glycerol uptake operon antiterminator regulatory protein
		Amino acid	49482426	15923174	N-acetyl- γ -glutamyl-phosphate reductase
		catabolism	49482779	15923539	N-acyl-L-amino acid amidohydrolase
			49483163	15923990	Thimet oligopeptidase homolog
			49483313	15924141	Glutamate racemase
			49483846	15924589	5'-methylthioadenosine nucleosidase/S-
			40494504	15025270	adenosylhomocysteine nucleosidase
			49484504	15925279	Aminomentidese subultit p
			49464120	15924609	Glycerete kinese
			49464049	15925422	HisE cyclase-like protein
			47404000	15923177	Cystein Hydrolase
			49483520	15924318	Homoserine dehydrogenase
			49483584	15924384	Aspartate semialdehyde dehydrogenase
				15925319	Amino acid amidohydrolase
		Common	49482818	15923578	Phosphotransacetylase
		metabolic	49484161	15924909	Putative manganese-dependent inorganic
		pathway			pyrophosphatase
			49484002	57634637	Probable NAD(FAD)-utilizing dehydrogenase
	Bio-	Amino acid	49484873	15925668	Histidinol dehydrogenase
	synthesis	biosynthesis	49482425	15923173	Ornithine acetyltransferase
			49482586	15923346	5-methyltetrahydropter-oyltriglutamatehomo- cysteine methyltransferase
			49482696	15923462	Glutamate synthase, large subunit
			49483565	15924362	Tryptophan synthase β subunit
			49483583	15924383	Aspartokinase II
			49483655	15924456	Chorismate synthase
			49484279	15925043	dihydroxy acid dehydratase
			49484281	15925046	Ketol-acid reductoisomerase
			4948429	15925000	Alanine facease
		Fatty agid	49464794	15925566	Fatty acid/phospholipid synthesis protoin
		biosynthesis	49463392	15924219	Party actor phosphonphu synthesis protein
		hiosynthesis	49482382	15925129	Uriduleta Iringga
		biosynthesis	47403421	15924248	Cytidylate kinase
		Cell wall	49484627	15925401	FemAB family protein
		biosynthesis	49483567	15924364	FemA protein
			49482490	15923244	Teichoic acid biosynthesis protein (truncated TagF)
			49482939	15923673	Undecaprenyl Pyrophosphate Phosphatase
			49482995	15923728	UDP-N acetylenolpyruvoyl-glucosamine reductase
			49483182	15924008	UDP-N-acetylmuramoylalanyl-D-glutamate-2, 6- diaminopimelate ligase
			49484307	15925072	UDP-N-acetylmuramoylalanyl-D-glutamyl-2, 6- diaminopimelate-D-alanyl-D-alanyl ligase
			49484133	15924882	UDP-N-acetylmuramyl tripeptide synthetase

		49483346	15924173	UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
		40494249	15025114	Synthetase
		49484348	15925114	DP-N-acetyigiucosamine 1-carboxyvinyitransierase
		49484309	15925074	Rod snape determining protein RodA
		49485587	15924587	LIDB N acetyl muramovi L alapina syntheteca
		49403900	57634647	UDP N acetylalucosamine 1 carboyyuinyltransferase
	Other	40482716	15022470	totropyrole(corrig/porphy rip) mothylass
	biosynthesis	49482710	15023485	4 diphosphocytidyl 2 C methyl D erythrital kinase
	biosynthesis	49462722	15024750	4-dipilosphocytidyi-2-C-illetinyi-D-ei yuliitoi kiilase
		49484015	15924739	Ribollavili biosylitiesis
Transmissi	DNA replication	49484793	15925589	5-inethyl-2-oxobutatioate hydroxymethyltransterase
on of	DINA replication,	49482234	15922991	DNA a classication initiation protein
genetic	recombination and repair	49482255	15922992	DINA polymerase III p subunit
information		49482209	15923006	Engine APC suburit C
information		49485509	15924150	Excinuciease ABC subunit C
		49483033	15924434	
		49483747	15924487	Integrase/recombinase
		49483811	15924552	DNA primase
		49483834	15924577	DINA polymerase III subunit delta
		49483926	15924674	Primosomai protein Dhai
		49483944	15924693	DNA polymerase III, β chain
		49484385	15925153	DisA bacterial checkpoint controller nucleotide binding
	Transcription and RNA	49483418	15924245	Transcriptional repressor Cod Y
	processing	49483550	15924347	Transcription antiterminator
		49484097	15924845	SpoU rRNA methylase family protein
		49484908	15925703	Ribonuclease P
		49483433	15924260	Ribosome-binding factor A
		49483855	15924600	Transcription elongation factor
		49482590	15923350	Transcription terminator
		49483976	15924726	Catabolite control protein A
	Translation and	49483000	15923733	peptidase T
	posttranslational	49483039	15923772	SsrA-binding protein
	modifications	49483384	15924211	Hypothetical translation and posttranslational modifications
		49483609	15924409	Gcn5-related acetvltransferases
		49483778	15924518	Elongation factor P
Trans-	Antibiotic Resistance	49482275	15923012	Metallo- lactamase
membrane		49483344	15924171	Penicillin-binding protein
Proteins	Regulation	49483168	15923996	GTP pyrophosphokinase
	regulation	49483425	15924252	Zinc metalloprotease vluc
	Transport	49482431	15923179	Glucose-specific PTS_IIABC component
	Transport	49482476	15923232	PTS_IIBC component
		49482956	15923690	Gructose-specific PTS, IIABC component
		49483966	15924716	N-acetylglucosamine specific PTS. IIABC component
		49484378	15925146	Mannitol-specific PTS_IIBC component
		49484380	15925148	Mannitol specific PTS_IIA component
		49484538	15925313	PTS_arbutin-like_IIBC_component
		49484739	15925528	Glucose-specific PTS_ILABC component
		49484838	15925631	PTS_IIABC component
		49483148	15923031	Oligopentide transport system permease protein
		49484706	15925495	Gluconate permease
		49482866	15923628	Teichoic acid ABC transporter permease
		49482000	15925210	Cobalt transport protein
		40484516	15025201	Na ⁺ /H ⁺ antiporter
		40484801	15025688	Nickel transport protein
		10/18/18/6	15925630	Bifunctional Preprotein translocase subunit Sec.4
		10/82881	15925059	Bifunctional preprotein translocase subunit SecD/SecE
		49483265	15924027	Spermidine/putrescine-binding protein precursor
		40482214	15022072	homolog
		49482314	15923062	Potassium-transporting A I Pase subunit A
		47402333	15925100	D-ractate permease nonnoise potassium-transporting ATDaga subunit A
		49404303	15925007	Preprotein translogase subunit SecV
		40/82071	15923220	ABC transporter substrate hinding protein
		40/82075	15923029	ABC transporter substrate-officing protein
		40/82078	15923035	ABC transporter associated protein
L	1	7/10/01/0	13723030	ABC transporter-associated protein

Other	Carrier proteins	49483175	15924003	Sodium/proton-dependent alanine carrier protein
Proteins		49482688	15923454	Lipoprotein
-	Regulation	49482271	15923008	Response regulator protein
	Cell division	49482736	15923499	C ell division
		49483349	15924176	C ell division protein FtsZ
		49484905	15925700	Glucose-inhibited division protein B
	Other	49484374	15925142	Haloacid dehalogenase-like hydrolase
		49484612	15925386	Nitrate reductase β chain
		49484613	15925387	Respiratory nitrate reductase alpha chain
	Unknown function	49482472	15923228	Unknown
		49483005	15923738	Unknown
		49483022	15923755	Unknown
		49483024	15923757	Unknown
		49483035	15923767	Unknown
		49483546	15924343	Unknown
		49483928	15924676	Unknown
		49484792	15925584	Unknown

paralogues, respectively. The resulting 2568 MRSA 250 and 2592 Mu50 sequences were run through the database of essential genes (DEG) at an expectation cut-off of 10-4, yielding 499 and 496 essential genes respectively. Those 499 and 496 essential genes identified were subjected to BLASTP against the human genome [52, 53] to exclude any genes that have a significant match (E-value threshold of 10-3 and lower) with human homologs. Consensually, 133 MRSA 252 and 134 Mu50 genes respectively were considered as having no close relatives in humans. The results are summarized in table 1. Their known or putative functions annotated by Integr8-Inquisitor [46] and/or EMBL/EBI/InterProScan [47] are listed in table 2.

Among the 133 and 134 essential non-human homologous genes in MRSA 252 and Mu50 strains, respectively, 133 encode proteins that are well conserved between the two strains. Out of this conserved set, 63 are involved in metabolism, 24 participate in the transmission of genetic information, 29 represent transmembrane proteins, 9 have other functions such as regulation cell division and carrier proteins, *etc.*, and 8 have unknown functions.

Our approach identified 14 genes in cell wall biosynthesis, most of which were validated by other research groups [54-56]. Among them, 6 are involved in the elongation of peptidoglycan, in agreement with previous studies [54, 55]. FemA family proteins are currently considered novel anti-staphylococcal targets due to the fact that they are involved in cell wall biosynthesis and expression of a methicillin resistance gene [56]. They are found to be essential in both MRSA 252 (NCBI Gene Accession#: 49484627 and 49483567) and Mu50 (NCBI Gene Accession#: 15925401 and 15924364) strains by our approach. Gene GI#49484133 in MRSA 252 and GI#15924882 Mu50 respectively in represent Staphylococcus aureus murE gene encoding UDP-Ntripeptide synthetase, acetylmuramyl which was demonstrated to be essential in Staphylococcus aureus

through a method incorporating an IPTG controllable promoter [57].

Although the cell wall has long been considered an attractive target for antibiotic development because of its absence in humans, what should not be overlooked is that one of the most common antibiotic resistance mechanisms is the metamorphosis of cell-wall proteins, leading to antibiotic resistance. For example, β- lactam resistance was attributed to the expression of a group of cell wall penicillin-binding proteins (PBP-2') encoded by the mecA gene [58, 59]. Glycopeptide resistance is also considered to be caused by cell wall thickening resulting in binding vancomysin extracellularly [60, 61] and/or alteration of the drug-acting site in the cell wall from D-alanine-D-alanine to D-alanine-D-lactate owing to the expression of vanA resistance gene [62]. Hence, for novel antibiotic development, substances that anchor in sites other than the bacterial cell wall may have more potential because resistance usually arises as the result of gene mutation on the target proteins that are subject to direct antibiotic attack [63]. A 2006 review on mechanisms of bacterial antibiotic resistance suggested the exploration of novel antibiotics with alternative mechanisms of action [5].

Genes involved in transmission of genetic information including DNA replication, recombination and repair, transcription and RNA processing, translation, posttranslational modification remain viable targets for antibacterial agent development [39, 40]. Our approach identified 24 of these candidate genes.

Our approach identified 29 membrane bound proteins. A recent review of anti-MRSA drug development indicated that agents anchoring in the bacterial membrane (*e.g.*, ceragenins and lipopeptides) showed great bactericidal effect and less prone to drug resistance due to the inability of bacteria to modify their targeted cellular sites in a way that is compatible with their survival [64]. Among this pool of proteins, 19 are involved in membrane transport, which represent valid drug targets

because pathogens usually lose their biosynthetic capabilities and rely on their hosts for the supply of essential nutrients [65, 66]. Thus, certain membrane transport proteins are of great importance in maintaining pathogen viability.

Our approach identified 30 energy metabolic (*i.e.* cellular respiration) genes in both MRSA 252 and MRSA Mu50, which are essential to staphylococcal survival with *E*-score $< 10^{-4}$ but absent in human genome with *E*-score $< 10^{-3}$. Currently there are limited numbers of commercially available antibiotics targeting energy metabolism. Those existing are mainly biological reagents such as oligomycin [67] and pesticides or piscicides such as antimycin A [68], not commonly used

for humans because they affect both bacterial and human cells. Surprisingly, nature has provided us with a group of energy metabolic enzymes which are essential to pathogen survival while absent in humans. The differentiation lies in that those enzymes function through alternative mechanisms other than their counterpart enzymes in humans. Accumulating *in vitro* [69] and *in vivo* [70] evidence suggests that enzymes catalyzing bacterial cellular respiration with differentiated mechanisms of action are promising targets for novel antibiotic development. The inhibitors against those enzymes are able to hinder bacterial growth by inhibition of those enzymes without interfering with their human cousins. Most importantly, attacking bacterial energymaking machinery bypasses the usual bacterial mutation

TABLE 3 - POTENTIAL CENTRAL METABOLIC DRUG TARGETS FROM MRSA MU50 BASED ON DATA BASE OF ESSENTIAL GENES (DEG) HOSTED RECORD	OS OF
CURRENTLY AVAILABLE ESSENTIAL GENES.	

Class	MRSA 252	MRSA Mu50	Known or putative function	EC #	Identity with DEG genes			human homolog	
	Accession #	Accession #			Organism	E- Value	% Identity	% Similarity	or ortholog
Carbohydrate Catabolism	SAR0217	SAV0226	Formate acetyltransferase	2.3.1.54	H.influenzae Rd KW20	0	62%	77%	No
	49482486 SAR0247	15923242 SAV0252	Xylitol dehydrogenase	1.1.1.137	S. aureus NCTC 8325	1e-163	80%	91%	No
	49483017 SAR0814	15923750 SAV0760	HPr kinase /phosphorylase	2.7.11 2.7.4	S. aureus NCTC 8325	1e-155	95%	95%	No
	49483247 SAR1057	15924074 SAV1084	Phosphoenolpyruv ate-protein phosphatase	2.7.3.9	S. aureus N315	0	97%	97%	No
	49483033 SAR0831	15923765 SAV0775	Phospho- glyceromutase	5.4.2.1	S. aureus NCTC 8325	0	97%	97%	No
	49483952 SAR1789	15924701 SAV1711	Acetate kinase	2.7.2.1	S. aureus N315	0	92%	92%	No
	49484349 SAR2213	15925115 SAV2125	Fructose- bisphosphate aldolase	4.1.2.40	S. aureus N315	1e-163	100%	100%	No
	49484381 SAR2247	15925149 SAV2159	Mannitol-1- phosphate 5- dehydrogenase	1.1.1.17	S. aureus N315	0	100%	100%	No
	49484415 SAR2286	15925185 SAV2195	Galactose-6- phosphate isomerase subunit LacA	5.3.1.26	S. aureus N315	1e-76	100%	100%	No
	49482818 SAR0594	15923578 SAV0588	Phospho- transacetylase	2.3.1.8	S. aureus NCTC 8325	1e-169	93%	93%	No
Lipid Catabolism	49483425 SAR1238	15924288 SAV1298	Glycerol uptake operon antiterminator regulator	Un- classified	S. aureus N315	7e-98	100%	100%	No
Protein Catabolism	49483313 SAR1123	15924141 SAV1151	Glutamate racemase	5.1.1.3	S. aureus N315	1e-154	100%	100%	No
	49484504 SAR2373	15925279 SAV2289	Urease subunit β	3.2.2.16	S. aureus N315	2e-77	100%	100%	No
	49484120 SAR1969	15924869 SAV1879	Aminopeptidase ampS	3.4.11	S. aureus N315	0	100%	100%	No
Common metabolic pathway	49484161 SAR2012	15924909 SAV1919	manganese- dependent inorganic pyrophosphatase	3.6.1.1	S. aureus NCTC 8325	1e-172	100%	100%	No

sites for drug resistance [71-72]. Hence, exploration of antibiotics targeting alternative cellular functions such as central metabolic pathways may be a promising direction, and selective inhibition of targets specific to bacterial energy metabolism may be a potentially efficacious alternative in the treatment of MRSA infections. The enzymes on the higher priority list include MRSA fructose-bisphosphate aldolase, MRSA acetate kinase, MRSA phosphotransacetylase, MRSA formate acetyltransferase and MRSA xylitol dehydrogenase, etc. (table 3), which either do not have human homologues or adopt dramatically different catalytic mechanisms compared to their human cousins.

MRSA fructose-1, 6-diphosphate aldolase (NCBI Gene Accession#: 49483952 and 15924701 respectively) showed a 100 % match to both *Staphylococcus aureus* NCTC 8325 and *Staphylococcus aureus* N315 in Database of Essential Gene (DEG) with an identical expectation value of e^{-163} [73,74], suggesting the essential nature of this protein. It is well known that FBPA is one

of the key enzymes in the glycolytic pathway that involves the breakdown of glucose [75]. FBPA is divided into two classes based on structural properties and catalytic mechanisms [75, 76]. Class I FBPA is mainly found in higher order organisms (e.g., humans and animals). Catalysis in class I FBPA proceeds via a Schiff base intermediate formed by an active site lysine residue [75]. Class II FBPA is usually found in yeasts, bacteria, fungi, and parasites [76]. Catalysis in class II FBPA centers on the participation of a Zn (II) cofactor that coordinates to an enolate anion intermediate [76]. Based on major differences in active site structure and catalytic mechanism, an inhibitor of class II FBPA can be designed which will not inhibit class I FBPA. Thus, class II FBPA has long been considered as potential drug target in the development of antibiotics [77]. Multiple alignment of the sequence of MRSA FBPA with class II giardia FBPA and class I human FBPA was shown in Figure 1. MRSA FBPA (NCBI Gene Accession[#]: 49484349 and 15925115 respectively) exhibits 40.8% sequence identity to class II giardia FBPA while it exhibits only 18.8 % sequence

1	XPL <mark>CI</mark> LEQXLCEAEXHKTCYCAF#Y##MEQIQCIMKA	Giardia_FBPA
1	<u>TPLYS. MEETLIDAKENGYAYG</u> QTHIHHLEFTQAILEA	IBSA_FBPA
1	AHEFPALIQEQUEEDSEIAQSIYANCEGILAADESYGTKGBELQEIEVEEBEVEBEVEBE	Human_FBPA
38	VYQLKSPYILQCSEGALETSDKTTLKELCELADEKH.PDTFTCTHLDEGDT	Giardia_FBPA
38	SQEENAPYILGVSEGAARTMSGFTTIVEMVEGLMHDLNITIPVAIHLDEGSS	MESA_FBPA
61	ILFSYDSSINCSICCYTLFHETL QXDSQCTLFRNILKERCIYYCIKLDQCGAPLAGT	Human_FBPA
88	LDSVKMAIDLGFSSVMIDASEHPFDENVKITREVVATABAKSVSVEAELGTLGGIEEDVQ	Giardia_FBPA
80	FD KCREAT DAGET SVATDASHSPFELM VATTAREV VETABER GV SVEAEL GT V GGUEDD VV	RESA_FEPA
119	NKETT <mark>I</mark> QGLD <u>GLS</u> EKGAQTK <mark>K</mark> DGY <u>U</u> FGKYKAYLK <mark>IA</mark> DQGPS <mark>SLAIQ</mark> ENANA <mark>DA</mark> KTASIG <u>U</u>	Human_FBPA
148	NT. YULTE PUBARKFYP LTGY DALAVAIGTSHGATNFRSESDIKLAIDEVETISDETGIP	Giardia_FBPA
150	ADGI I TADPREQUELY PRIGIDAL APALOSY HOP TROEP KLOFKE EEIGLST GLP	RESA_FBPA
179	QHCLYPIYEPEYIPDODHDLEHCQTYTEKYLAAYYKALHDHHYTLEGTLLEPHWYTACHA	Human_FBPA
207	T VERGESS VOTEVED TO TATA AND UNITED TO THE TOTAL TOTAL	Giardia VBD1
206		WRSI FRPI
236	CTTATE DOLLARD BUT ATTAL BETWEEN SALES FRANT FI ALLE OF DED	Human KRPI
2.50		
266	TRAVEVE HPEKEDPROTLOPORDATTENT PRIKAFOSAGHAGDYKYVSLEEAKAY	Giardia FBPA
244	VEDVIL NNDREVTDPRETLOPAREA IKETVKOK IKERGTSNRAK	MRSA FRPA
295	YELS STORALQASALAAYOOKAANEEATQEAFEEMAECQAAKOQTYHTOSSGAASTQ	Human_FBPA
		_
300	**	Giardia FRP1
32Z 287	IΔ	WRSA FRPA
355	SLETACETY	Human FBPA
	DAT 10111	

Figure.1 Alignment of the amino acid sequences of *MRSA* FBPA (NCBI GENE ACCESSION#:49484349 and 15925115 respectively) with class II *giardia* FBPA (2ISV) and class I *human* FBPA (1QO5). Numbering of the amino acids is indicated on the left. Identical amino acid residues in the alignment are indicated in light-blue shading and similar amino acid residues are indicated in purple shading. Gaps introduced during the alignment process are indicated as dots.

identity to class I *human* FBPA. Thus, *MRSA* FBPA should be putatively classified into class II FBPA, not class I FBPA. We have cloned and purified and characterized *MRSA* FBPA (unpublished result). Validation of the essential nature of class II *MRSA* FBPA through allelic replacement and inducible expression is underway in our research group.

MRSA acetate kinase (NCBI Gene Accession#: 49483952 and 15924701 respectively) demonstrated a 92 % match to Staphylococcus aureus N315 in Database of Essential Gene (DEG) with an expectation value of 0 [73, 74], suggesting the essential nature of this enzyme. Acetate kinase catalyzes the reversible phosphorylation of acetate to synthesize acetyl phosphate by transfer of a phosphoryl group from ATP. Acetate kinases are wildly distributed among prokaryotes [78] and some eukaryotes [79]. In aerobic conditions, this enzyme converts acetate to acetyl-CoA, a key intermediate in TCA cycle [80]. In anaerobic conditions, it plays a central role in synthesizing ATP from acetyl phosphate [81]. Prokaryotic acetate kinases are highly conservative. MRSA acetate kinase exhibits 44.6 % sequence identity to E. coli, 48.5 % sequence identity to Salmonella typhimurium acetate kinase, 51.3 % sequence identity to Methanosarcina themophia acetate kinase and 52.0 % sequence identity to Lactobacillus sanfranciscensis acetate kinase (Figure 2). Smith group has confirmed that it is a key enzyme in bacterial metabolism in a number of important fungal and protozoan pathogens. (e.g., fungus Cryptococcus neoformans and protist Entamoeba histolytica). Its absence in humans suggests that it may also be a possible drug target [82]. We have cloned, purified and characterized MRSA acetate kinase (unpublished result). The development of crystal structures of MRSA acetate kinase is in progress at the laboratory of our collaborator Dr. Scott Lovell at the University of Kansas, which will allow us to preform structure-activity analysis as the basis of rational inhibitor design.

MRSA phosphotransacetylase (NCBI Gene Accession#: 49482818 and 15923578 respectively) demonstrated a 93 % match to *both Staphylococcus aureus* NCTC 8325 and *Staphylococcus aureus* N315 in Database of Essential Gene (DEG) with an identical expectation value of e^{-169} [73, 74], suggesting the essential nature of this enzyme. The gene encoding *MRSA* phosphotransacetylase has been cloned and the enzyme has been expressed in *E. coli* and purified. Kinetic assay of this enzyme is in progress.

Overall, we proposed that a class of essential, central metabolic enzymes, such as MRSA fructose-bisphosphate aldolase, MRSA acetate kinase, MRSA phosphotransacetylase, MRSA formate acetyltransferase and MRSA xylitol dehydrogenase, etc. (table 3), which either do not have human homologues or functionally differentiate themselves from their human counterparts, are promising antibiotic drug targets. Because of the alterations in active site structure and mode of action of such a bacterial enzyme v. s. its human cousin (if there is one), through rational inhibitor design, an inhibitor of this enzyme can be designed which will not inhibit its human cousin. Nevertheless, this central metabolic inhibitor approach potentially decreases the risk of bacterial resistance against the antibacterial agents in that it bypasses the cellular sites where currently existing antibiotics regularly attack. In other words, since those cellular sites have not been repeatedly exposed to antibacterial agents, central metabolic inhibitors should be less prone to drug resistance induced by evolutionary adaptation.

		10	20	30	40	50	60	
1	M <mark>sk. Ii</mark> a	VELOSSTLE	FETE	NY <mark>LAE IV</mark> I	RIALPASHVEI	KTOD <mark>GER</mark> TER	TT	Lactobacil
1	M <mark>SKL IL</mark> A	INAGSSSLE	FOLIENPEE	EL <mark>Y</mark> TE 🚺 I E	RIGLEDSIFTI	E <mark>V</mark> N. <mark>Ce</mark> xykt	YQII	MESA_Aceta
1	KEVLY	INAGSSSLE	TOLIDETEE	SALAY 31 CE	RIGIDES I TO	KEFDGERLEE	LTDL	Methanosa
ī	KSSKLVLV	LNCOSSSLE	FALLDAYFG	DETLS	CFHLPEARIKY	K NDGSKOEAA	GAG	Salmonella
1	KSSKLVLV	LHCGSSSLE	FAILDAYEG	ETLS	CFHLPEARIKY	K NDG N KOEA A	GAG	Escherichi
_								
		7 0	.	so	100	110	120	
59	K H <mark>h</mark> eq aiq	I <mark>LL</mark> DQ <mark>LE</mark> D.	.LD <mark>IIK</mark> ETS	EINCYCER	7 <mark>7AGGE</mark> TFDE <mark>S</mark> 7	YITPD <mark>YL</mark> EKI	ESLT	Lactobacil
59	KD <mark>H</mark> Y <mark>EAY</mark> D	I <mark>ML</mark> DAFK <mark>A</mark> .	. H <mark>HI N</mark> DIN	DIYCTGHEY	/VHOGEKFPESY	AITDEVEREI	EELS	MESA_Aceta
58	PT <mark>HEDAL</mark> E	E <mark>VYKAL</mark> TDI	EFG <mark>YIKD</mark> MG	E I HA VOHRY	/VHGGERFT <mark>T</mark> SA	LTDECVERAI	KDCF	_Methanosa
61	AABSEALE	F <mark>IY</mark> NT <mark>ILA</mark> .	<mark>Q</mark> kpels <mark>a</mark>	QLT <mark>AIGHE</mark> I	I Y HGGEK T TSSY	VIDE <mark>SVIQ</mark> BI	KD <mark>SA</mark>	Salmonella
61	AAESEALE	F <mark>IY</mark> ST <mark>ILA</mark> .	QKPELSA	QL TAIGHEI	VHCCER TSSY	VIDE <mark>SVIQ</mark> BI	KDAA	Escherichi
		130	140	150	140	170	150	
117	ELAPLHER	ANYLOTKAP	REVIED II.	SWAVEDT	NCHATL PERNET	SLP ETER	(TSA	Lactobacil
117	EL APL HNP	ANLNGTRAF	RELLENTP.	HVATEDT	AFROTUPERATI	TSL PTHTTE	TTTR	MRSA Aceta
118	ELAPLENP	PERMIT	AEIMPGTP.	NVIVEDT	AFHOT PPTATE	TALPTDLTER	HGY B	Kethanosa
118	SFAPLER	ART TOTAE	LESF POLET	TRNVAVEDT.	FHOTUPEESTL	TALPTSLTE	HOVE	Salmonella
118	SFAPLENP	AHL TOTEE!	LESFPOLED	KNVAVEDT	FHOTUPPESTI	TALPINLIK	HG B	Eacherichi
					and the second			
		190	XID	zio	zz	220	240	
175	KTGFHG IG	E <mark>rys</mark> ora <i>l</i>	ELLCKPAET	LEMIITEL	GA <mark>GASI</mark> CP <mark>VE</mark> EG	ESFOTSMOFT	(PVTG	Lactobacil
175	RTGFHGTS	H <mark>EFYS</mark> QEAA	ELLDEPIED	LEIISCHI	GHG <mark>ASI</mark> AAIDG <mark>G</mark>	KS <mark>I</mark> DTSKOF1	PLAG	MESA_Aceta
176	ETGFHGTS	H <mark>ETVAE</mark> RAA	LILOKPACE	TEIITCHL	GHG <mark>SSITA</mark> YEGG	ESVETSKOF1	PLE	_Methanosa
178	RTGAEGTS	HFTYTQEAA	IEMLE <mark>RPYE</mark> E	LITCHL	GEG <mark>CSYS</mark> AI <mark>B</mark> EG	RCYDTSKOLI	[PLEG	Salmonella
178	ETGEEGTS	HFT YT QE A A	E ILDEPTEE	LITCHL	GEGOSYS <mark>AIR</mark> EG	ECYDTSKCLI	PLE C	Escherichi
		250	340	zio	2 20	290	300	
235	ITESC	DYDESLLAT		INERIKYL	TESGLLGISGY	S DORLY E	LAOAT	Lactobacil
235	TRETESC	BIDPAL PR	THEFT BEAL	VEOA FEI	HESGLLGLSG	SSDLEDL SEE	LESC	MESA_Aceta
236		SIDPALYPE	LINE LINE	TRE DTLN	INDSG LO SG	SEDFEDLDE	SKC	_Methanosa
238	LYRCIESC	DIDPALIFE	HUTLD.S.	ADOLD GOL	TRESGLEGE <mark>T</mark> EY	TSDCRTY.ET		Salmonella
238		913 9132 -9 0 (F I	DPHOTLS:S.	ADT OR ON	D:02510 PLC PLEY			Escherichi
		300	370	340	340	2	360	
294	NPR R.R.	TTVN RTTR	TRICA TOL SPECIO		TARVATASIT		F <mark>BT</mark> G	Lactobacil
294	RARSONAL	FASELER	TIGSTAAR	HG. VDYIYF	TAGIGERSVET	ARVIEGIEF	TONT	MRSA Aceta
295	NRREELAL	ETEATEVEE	FIGETSANLI	R. ADAYYE	TAGIGERSAST	RRTT TOT DG	TRIK	Kethanosa
296	REDAKRAN	DYTCHRI AK	TIGSTIAL D	GRUDAYYF	TOGIGENAAMY	ELSTORICY	LOFE	Salmonella
296	KEDAKRAN	DYTCHRLAK	TIGATTAL	D <mark>GRLDAYY</mark> F	TOGIGENAAMY	ELSCREDY	LGFE	Escherichi
		370	380	350	400	410		
353	V DUE K ND		SIT <mark>NI KON</mark> ST	TYPETERT		r .	Тас	tobacil
353	TPREFE	RORDORT	TPHSPURV	VVIPTOFES	NTARDYNTRONI		MRS	
354	IDDERNE.	TRODEIDT	STPDARVEVI	VIPTNEEL	ATARETKETVET	TEVELESSIP	Y Ke	thanosa
356	VTHERNI.A.	RECESSOR	ER. ERTRPA	VYTPTNEPT	VIAODASRI TA		Sal	emella
356	VDHERNI.A	ARFORSBET	K.EGTRPA	YVIPTHEEL	VILODASET TA		Eac	herichi
	I non con	served						
	I similar	-						

conserved
all match

Figure.2 Alignment of the amino acid sequences of *MRSA* acetate kinase with *E. coli*, *Salmonella typhimurium*, *Methanosarcina themophia*, *Lactobacillus sanfranciscensis* acetate kinases. Numbering of the amino acids is indicated on the left. Identical amino acid residues in the alignment are indicated in lightblue shading and similar amino acid residues are indicated in purple shading. Gaps introduced during the alignment process are indicated as dote

.

One of the crucial steps in narrow-spectrum antibiotics development is target identification. In this study, a putative set of candidate drug targets were elucidated by an *in silico* approach. The candidate genes are hypothetically required for survival of the candidate microorganisms and have no close human analogues. Many identified targets have been experimentally validated [56-59, 83-88]. By shortening the list of potential drug targets to a small pool of genes, the data presented in this paper facilitated our group and, may also aid other researchers in pursuing target validation and target characterization for alternative treatment of MRSA infections. Future directions include using a combination of kinetic assay and crystal structure development for enzyme characterization such as substrate recognition, catalytic site identification and reaction mechanism elucidation. Using ration drug design, tight-binding inhibitors will be designed followed by organic synthesis and in vitro evaluation. Once a nanomolar level inhibitor with high specificity is identified, development of X-ray crystal structures of enzyme-inhibitor complexes will be performed for further optimization. In principle, the premise is that the inhibitors of these targets should only be toxic to pathogens, but safe for use by humans. Proposed long-term work also includes extension of this approach to other bacterial systems to combat antibiotic resistance. It is even more crucial that this type of investigation is undertaken in academia than it would be if industry were still heavily investing in it.

IV. CONCLUSION AND FUTURE WORK

This study sheds light on a potentially new class of MRSA antibiotics, which may pave the road to multifaceted approaches to combat antibiotic resistance. From the broader perspective, blocking central metabolic pathways was usually considered as a forbidden area in drug development due to the possibility of affecting human central metabolism (*e.g.*, side effects of chemotherapies). If the assertion that certain central metabolic inhibitors are specific to pathogens not to humans is tested, it will reassure that we have moved in the right direction to tackle a major challenge.

ACKNOWLEDGMENT

We thank Dr. Adhar Manna (University of South Dakota) for the ongoing collaboration on target essentiality validation. We also appreciate Dr. Scott Lovell (University of Kansas) for the ongoing collaboration on crystal structure development. This publication was made possible by NIH Grant Number 2 P20 RR016479 from the INBRE Program of the National Center for Research Resources. Its contents are solely the responsibility of the

authors and do not necessarily represent the official views of the NIH.

REFERENCES

[1] N. L. Haag, K. K. Velk, and C. Wu, "*In silico* Identification of Drug Targets in Methicillin/Multidrug-Resistant *Staphylococcus aureus*," Proc. Third International Conference on Bioinformatics,

Biocomputational Systems and Biotechnologies, BIOTECHNO 2011, May 22-27, 2011, Venice, Italy, pp. 91-99, IARIA XPS Press, ISBN: 978-1-61208-007-9.

[2] C. T. Walsh, "Antibiotics: Actions, Origin, Resistance," ASM Press, Washington, DC, 2003.

[3] S. B. Levy, "Antibiotic and antiseptic resistance: impact on public health," Pediatr. Infect. Dis. J., Vol. 19, Oct. 2000, pp. S120–S122.

[4] S. B. Levy, "The antibiotic paradox: how miracle drugs are

destroying the miracle," New York: Plenum, 1992.

[5] F. C. Tenover, "Mechanisms of antimicrobial resistance in bacteria," Am. J. Med., vol. 119 (6 Suppl 1), June 2006, pp. S3–S10,

doi:10.1016/j.ajic.2006.05.219 [6] C. Nathan, "Antibiotics at the crossroads," Nature, vol. 431, Oct. 2004, pp. 899–902, doi:10.1038/431899a

[7] C. Barrett, and J. Barrett," Antibacterials: are the new entries enough to deal with emerging resistance problems?" Current Opinion in Biotechnology, 2003,14, pp. 621–626.

[8] C. Walsh, "Where will new antibiotics come from?" Nature Rev. Microbiol. Oct. 2003, Vol. 1, pp. 65–70.

[9] L. L. Marcusson, N. Frimodt-Møller, and D. Hughes, "Interplay in the Selection of Fluoroquinolone Resistance and Bacterial Fitness" PLoS Pathogens, August 2009, Vol. 5, pp. 1-8.

[10]Community-Associated MRSA Information for the Public. CDC. 11 August 2008

[11] Fact Sheet. Multidrug-Resistant Tuberculosis (MDR TB). Division of Tuberculosis Elimination. CDC. 11 August 2008

[12] Fact Sheet. Extensively Drug-Resistant Tuberculosis (XDR TB). Division of Tuberculosis Elimination. CDC. 11 August 2008

[13] K. K. Kumarasamy, M. A. Toleman, T. R. Walsh, J. Bagaria, F. Butt, R. Balakrishnan, and U. Chaudhary, *et al.* "Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study". Lancet Infect Dis vol.10, August 2010, pp. 597–602, doi:10.1016/S1473-3099(10)70143-2.

[14] S. Projan, "Why is big Pharma getting out of antibacterial drug discovery?" Curr. Opin. Microbiol. vol. 6, Oct. 2003, pp. 427–430, doi:10.1016/j.mib.2003.08.003

[15] F. D. Lowy, "Staphylococcus aureus infections," N Engl J Med. 1998, Vol. 339, pp.520–32.

[16] V. M. Dukic, M. Z. David, and Lauderdale, D.S. "Internet queries and methicillin-resistant *Staphylococcus aureus* surveillance," Emerg. Infect. Dis. 2011 Jun http://www.cdc.gov/EID/content/17/6/1068.htm doi: 10.3201/eid1706.101451

[17] U. Lorenz, K. Ohlsen, H. Karch, A. Thiede, and J.Hacker, "Immunodominant Proteins in Human Sepsis Caused by Methicillin Resistant *Staphylococcus aureus*," Advances in Experimental Medicine and Biology, 2002, Vol. 485, pp. 273-278, doi: 10.1007/0-306-46840-9_36

[18] M. Jevons, Celbenin"-resistant staphylococci, Br. Med. J., vol. 1, 1961, pp. 124-125.

[19] T. Foster, (1996). *Staphylococcus*. In: Barron's Medical Microbiology (Barron S *et al*, eds.), 4th ed. Galveston, TX.

[20] K. Okuma, K. Iwakawa, J. D. Turnidge, W. B. Grubb, J. M. Bell, F. G. O'Brien, G. W. Coombs, J. W. Pearman, F. C. Tenover, M. Kapi, C. Tiensasitorn, T. Ito, and K. Hiramatsu, "Dissemination of new methicillin-resistant *Staphylococcus aureus* clones in the community", J. Clin. Microbiol. vol. 40, Nov. 2002, pp. 4289–4294, doi: 10.1128/JCM.40.11.4289-4294.2002

[21] H. Huang, N. M. Flynn, J. H. King, C. Monchaud, M. Morita, and S. H. Cohen, "Comparisons of Community-Associated Methicillin-Resistant *Staphylococcus aureus* (MRSA) and Hospital-Associated MSRA

Infections in Sacramento, California," J. Clin. Microbiol. vol. 44, July 2006, pp. 2423-2427, doi:10.1128/JCM.00254-06

[22] R. C. Moellering, "Vancomycin: A 50-Year Reassessment," Clin. Infect. Dis. vol. 42, Suppl 1, Jan. 2006, pp. S3-4.

[23] P. L. Donald, "Vancomycin: A History," Clin. Infect. Dis. vol., 42, Suppl 1, Jan. 2006, pp. S5-S12.

[24] G. C. Schito, "The importance of the development of antibiotic resistance in *Staphylococcus aureus*," Clin. Microbiol. Infect., Suppl 1, Mar. 2006, pp. 16445718.

[25] K. Sieradzki, and A. Tomasz, "Inhibition of cell wall turnover and autolysis by vancomycin in a highly vancomycin-resistant mutant of *Staphylococcus aureus*," J. Bacteriol., vol. 179, April, 1997, pp. 2557-2566.

[26] C. Burlak, C. H. Hammer, M. Robinson, A. R. Whitney, M. J. McGavin, B. N. Kreiswirth, and F. R. DeLeo, "Global analysis of community-associated methicillin-resistant *Staphylococcus aureus* exoproteins reveals molecules produced *in vitro* and during infection Cell" Microbiol., vol. 9, Jan. 2007, pp. 1172–1190, doi:10.1111/j.1462-5822.2006.00858.x

[27] J. M. Voyich, M. Otto, B. Mathema, K. R. Braughton, A. R. Whitney, D. Welty, R. D. Long, D. W. Dorward, D. J. Gardner, G. Lina, B. N. Kreiswirth, and F. R. DeLeo, "Is panton-valentine leukocidin the major virulence determinant in community-associated methicillin-resistant *Staphylococcus aureus* disease?" J. Infect. Dis. vol.194, Dec. 2006, pp. 1761-1770.

[28] Centers for Disease Control and Prevention, (2007). MRSA: Methicillin-resistant *Staphylococcus aureus* in Healthcare Settings.

[29] R. M. Klevens, M. A. Morrison, J. Nadle, S. Petit, K. Gershman, S. Ray, L. H. Harrison, R. Lynfield, G. Dumyati, J. M. Townes, A. S. Craig, E. R. Zell, G. E. Fosheim, L. K. McDougal, R. B. Carey, and S. K. Fridkin, "Invasive methicillin-resistant *Staphylococcus aureus* infections in the United States," JAMA, vol. 298, Oct. 2007, pp. 1763-1771.

[30] J. D. Siegel, E. Rhinehart, M. Jackson, and L. Chiarello, (2008). Management of multi-drug resistant organisms in healthcare settings, 2006. US Centers for Disease Control and Prevention. Healthcare Infection Control Practices Advisory Committee. Accessed January 25.

[31] L. Nicolle, "Community-acquired MRSA: a practitioner's guide,"

CMAJ., vol. 175, June 2006, pp. 145, doi:10.1503/cmaj.060457

[32] Centers for Disease Control and Prevention. Epidemiology and malnagement of MRSA in the Community. October 26, 2007. Accessed January 25, 2008.

[33] J. A. Gorchynski, and J. K. Rose, "Complications of MRSA Treatment: Linezolid-induced Myelosuppression Presenting with Pancytopenia," Western Journal of Emergency Medicine, vol. 9, August 2008, pp. 177-178

[34] Cubist Pharmaceuticals, Inc. (2003). Daptomycin (Cubicin) package literature. Cubist Pharmaceuticals, Inc., Lexington, Mass.

[35] R. Moellering, Trends in New Drug Development; from Broad- to Narrow-Spectrum Antibiotics Program and abstracts from the 39th ICAAC Symposium 138, F 1363.

[36] F. Tally, Trends in New Drug Development; from Broad- to Narrow-Spectrum Antibiotics Program and abstracts from the 39th ICAAC Symposium 138, F 1364.

[37] S. D. Mills, "The role of genomics in antimicrobial discovery," J. Antimicrob. Chemother., vol. 51, Mar. 2003, pp. 749-752, doi: 10.1093/jac/dkg178

[38] P. F. Boreham, R. E. Phillips, and R. W. Shepherd, "Altered uptake of metronidazole in vitro by stocks of Giardia intestinalis with different drug sensitivities," Trans. R. Soc. Trop. Med. Hyg. vol. 82, May 1988, pp. 104-106.

[39] K. R. Sakharkar, M. K. Sakharkar, and V. T. Chow, "A novel genomics approach for the identification of drug targets in pathogens, with special reference to *Pseudomonas aeruginosa*," *In Silico* Biology, vol. 4, 2004, pp. 355-360.

[40] V. Sharma, P. Gupta, and A. Dixit, "Identification of putative drug targets from different metabolic pathways of *Aeromonas hydrophila*," *In Silico*. Biology," vol 4, 2008, pp. 331-338.

[41] http://www.ncbi.nlm.nih.gov/genome/154 (06/12/2012)

[42] W. Li, L. Jaroszewski, and A. Godzik, "Clustering of highly homologous sequences to reduce the size of large protein databases," Bioinformatics, vol. 17, Mar. 2001, pp. 282-283, doi: 10.1093/bioinformatics/17.3.282 [43] R. Zhang, H. Ou, and C. Zhang, "DEG, a Database of Essential Genes," Nucleic Acids Res. vol. 32, (suppl 1), Jan. 2004, pp. D271-D272, doi: 10.1093/nar/gkh024

[44] http://www.ncbi.nlm.nih.gov/RefSeq/ (06/12/2012)

[45]http://www.ebi.ac.uk/integr8/InquisitorPage.do (06/12/2012)

[46] http://www.ebi.ac.uk/Tools/pfa/iprscan/(06/12/2012)

[47] http://www.genome.jp/(06/12/2012)

[48] http://workbench.sdsc.edu/ (06/12/2012)

[49] B. A. Diep, H. A. Carleton, R. F. Chang, G. F. Sensabaugh, and F. Perdreau-Remington, "Roles of 34 virulence genes in the evolution of hospital- and community-associated strains of methicillin-resistant *Staphylococcus aureus*," J. Infect. Dis. vol. 193, Apr. 2006, pp. 1495–1503, doi: 10.1086/503777

[50] A. P. Johnsona, H.M. Auckenb, S. Cavendishc, M. Gannerb, M. C. J. Walec, M. Warnera, D. M. Livermorea, and B. D. Cooksonb "Dominance of EMRSA-15 and -16 among MRSA causing nosocomial bacteraemia in the UK: analysis of isolates from the European Antimicrobial Resistance Surveillance System" (EARSS)". J. Antimicrob. Chemother., vol. 4, 2001, pp. 143–144, doi:10.1093/jac/48.1.143.

[51] K. Hiramatsu, N. Aritaka, and H. Hanaki, "Dissemination in Japanese hospitals of strains of *Staphylococcus aureus* heterogeneously resistant to vancomycin," Lancet, vol. 350, Dec. 1997, pp. 1670-1673, doi:10.1016/S0140-6736(97)07324-8

[52] E. S. Lander, L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody, J. Baldwin, K. Devon, K. Dewar, M. Doyle, W. FitzHugh, *et al.*, "Initial sequencing and analysis of the human genome," Nature vol. 409, Feb. 2001, pp. 860-921, doi:10.1038/35057062

[53] J. C. Venter, M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G. Sutton, H. O. Smith, M. Yandell, C. A. Evans, R. A. Holt, *et al.*, "The sequence of the human genome" Science, vol. 291, Feb. 2001, pp. 1304-1351,doi: 10.1126/science.1058040.

[54] K. L. Longenecker, G. F. Stamper, P. J. Hajduk, E. H. Fry, C. G. Jakob, J. E. Harlan, R. Edalji, D. M. Bartley, K. A. Walter, L. R. Solomon, T. F. Holzman, Y. G. Gu, C. G. Lerner, B. A. Beutel, and V. S. Stoll, "Structure of MurF from *Streptococcus pneumoniae* co-crystallized with a small molecule inhibitor exhibits interdomain closure," Protein Sci., vol. 14, Dec. 2005, pp. 3039-3047, doi: 10.1110/ps.051604805

[55] A. Perdih, M. Kotnik, M. Hodoscek, and T. Solmajer, "Targeted molecular dynamics simulation studies of binding and conformational changes in *E. coli* MurD," Proteins, vol.68, Apr. 2007, pp. 243-254. doi: 10.1002/prot.21374

[56] A. Strandén, K. Ehlert, H. Labischinski, and B. Berger-Bächi, "Cell wall monoglycine cross-bridges and methicillin hypersusceptibility in a femAB null mutant of methicillin-resistant *Staphylococcus aureus*," J. Bacteriol. vol. 179, Jan. 1997, pp. 9–16.

[57] J. Malabendu, T. Luong, H. Komatsuzawa, M. Shigeta, and C. Y. Lee, "A method for demonstrating gene essentiality in *Staphylococcus aureus*," Plasmid, vol. 44, Mar. 2000. pp. 100-104, doi:10.1006/plas.2000.1473

[58] N. H. Georgopapadakou, and F. Y. Liu, "Binding of β -lactam antibiotics to penicillin-binding proteins of *Staphylococcus aureus* and *Streptococcus faecalis*: relation to antibacterial activity," Antimicrob. Agents Chemother. vol. 18, Nov. 1980, pp. 834-836.

[59] K. Ubukata, N. Yamashita, and M. d Konno, "Occurrence of a β -lactam-inducible penicillin-binding protein in methicillin resistant *staphylococci*," Antimicrob. Agents Chemother. vol. 27, May 1985, pp. 851-857.

[60] M. Kuroda, H. Kuroda, T. Oshima, F. Takeuchi, H. Mori, and K. Hiramatsu, "Two-component system VraSR positively modulates the regulation of cell-wall biosynthesis pathway in *Staphylococcus aureus*," Mol. Microbiol. vol.49, Aug. 2003, pp. 807–821, doi:10.1046/j.1365-2958.2003.03599.x

[61] L. Cui, H. Murakami, K. Kuwahara-Arai, H. Hanaki, and K. Hiramatsu, "Contribution of a thickened cell wall and its glutamine nonamidated component to the vancomycin resistance expressed by *Staphylococcus aureus* Mu50," Antimicrob. Agents Chemother. vol. 44, Sep. 2000, pp. 2276–2285.

[62] A. Severin, K. Tabei, F. Tenover, M. Chung, N. Clarke, and A. Tomasz, "High level oxacillin and vancomycin resistance and altered cell wall composition in *Staphylococcus aureus* carrying the staphylococcal mecA and the enterococcal vanA gene complex," J. Biol. Chem. vol. 279, Jan. 2004, pp. 3398-3407.

[63] A. A. Salyers, and D. D. Whitt, (2005). Revenge Of The Microbes: How Bacterial Resistance Is Undermining The Antibiotic Miracle, American Society for Microbiology Press, Washington, DC.

[64] F. Van Bambeke, M. P. Mingeot-Leclercq, M. J. Struelens, and P. M. Tulkens, "The bacterial envelope as a target for novel anti-MRSA antibiotics," Trends Pharmacol Sci. vol. 29, Mar. 2008, pp. 124-134.

[65] K. Lewis, "Multidrug resistance: versatile drug sensors of bacterial

cells," Curr. Biol., vol. 9, Jun. 1999, pp. R403-R407,

doi:10.1016/S0960-9822(99)80254-1

[66] C. M. Fraser, J. D. Gocayne, O. White, M. D. Adams, R. A. Clayton, R. D. Fleischmann, C. J. Bult, A. R. Kerlavage, G. Sutton, J. M. Kelley, R. D. Fritchman, J. F. Weidman, K. V. Small, M. Sandusky, J. Fuhrmann, D. Nguyen, T. R. Utterback, D. M. Saudek, C. A. Phillips, J. M. Merrick, J. F. Tomb, B. A. Dougherty, K. F. Bott, P. C. Hu, T. S. Lucier, S. N. Peterson, H. O. Smith, C. A. Hutchison, 3rd and J. C. Venter, "The minimal gene complement of *Mycoplasma genitalium*," Science. vol. 270, Oct. 1995, pp. 397-403, DOI: 10.1126/science.270.5235.397

[67] Y. Kagawa, and E. Racker, "Partial resolution of the enzymes catalyzing oxidative phosphorylation. 8. Properties of a factor conferring oligomycin sensitivity on mitochondrial adenosine triphosphatase," J. Biol. Chem., vol.241, May 1966, pp. 2461-2466.

[68] D. Xia, C. H. Yu, H. Kim, J. Xia, A. M. Kachurin, L. Zhang, L. Yu, and J. Deisenhofer, "Structure of Antimycin A1, a Specific Electron Transfer Inhibitor of Ubiquinol-Cytochrome c Oxidoreductase" J. Am. Chem. Soc., vol. 121, Aug. 1999, pp. 4902–4903, DOI: 10.1002/chin.199933269

[69] A. Fredenhagen, S. Y. Tamura, P. T. M. Kenny, H. Komura, Y. Naya, K. Nakanishi, K. Nishiyama, M. Sugiura, and H. Kita, "Andrimid, a new peptide antibiotic produced by an intracellular bacterial symbiont isolated from a brown planthopper" J. Am. Chem. Soc. vol. 109, Jul. 1987, pp. 4409–4411, doi: 10.1021/ja00248a055

[70] C. Freiberg, J. Pohlmann, P. G. Nell, R. Endermann, J. Schuhmacher, B. Newton, M. Otteneder, T. Lampe, D. Häbich, and K. Ziegelbauer, "Novel bacterial acetyl coenzyme A carboxylase inhibitors with antibiotic efficacy in vivo," Antimicrob Agents Chemother, vol. 50, Aug. 2006, pp. 2707-2712.

[71] F. R. Stermitz, P. Lorenz, J. N. Tawara, L. A. Zenewicz, and K. Lewis, "Synergy in a medicinal plant: Antimicrobial action of berberine potentiated by 5'-methoxyhydnocarpin, a multidrug pump inhibitor," Proc. Natl. Acad. Sci. U.S. A. vol. 97, Feb. 2000, pp. 1433-1437.
[72] N. R. Guz, and F. R. Stermitz, "Synthesis and structures of

regioisomeric hydnocarpin-type flavonolignans," J. Nat. Prod. Vol. 63, Aug. 2000, pp. 1140-1145, DOI: 10.1021/np000166d.

[73] S. F. Altschul, T. L. Madden, A. A. Schäffe, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman, "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs," Nucleic Acids Res. vol. 25, Sep. 1997, pp. 3389-3402.

[74] J.D. Thompson, D.G. Higgins, and T.J. Gibson, "CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice," Nucleic Acids Res. vol. 22, Nov. 1994, pp. 4673-4680, doi: 10.1093/nar/22.22.4673.

[75] T. Gefflaut, C. Blonski, J. Perie, and M. Willson, "Class I aldolases: substrate specificity, mechanism, inhibitors and structural aspects," Prog. Biophys. Mol. Biol. vol.63, 1995, pp. 301-340.

[76] A. Galkin, L. Kulakova, E. Melamud, L. Li, C. Wu, P. Mariano, D. Dunaway-Mariano, T. E. Nash, and O. Herzberg, "Characterization, Kinetics, and Crystal Structures of Fructose-1,6-bisphosphate Aldolase from the Human Parasite *Giardia lamblia*," J. Biol. Chem., vol. 282, Feb. 2007, pp. 4859–4867.

[77] D. Voet, and J. G. Voet, Biochemistry, 3rd ed., Chp. 17. Wiley: 2004, pp. 591

[78] A. Gorrell, and J. G. Ferry, "Investigation of the Methanosarcina thermophila acetate kinase mechanism by fluorescence quenching," Biochemistry, Dec 2007 Vol. 46, pp. 14170-14176.

[79] C. Ingram-Simth, S.R. Martin, and K.S. Smith, "Acetate kinase: not just a bacterial enzyme," Trends in Microbiology, June 2006, Vol. 14, pp. 249-253.

[80] A. J. Wolfe, "The acetate switch." Microbiol. Mol. Biol. 2005 Mar. Vol. 69, pp. 12-50.

[81] A. Gorrell, S. H. Lawrence, and J. G. Ferry, "Structural and Kinetic Analyses of Arginine Residues in the Active Site of the Acetate Kinase from *Methanosarcina thermophile*," The Journal of Biological Chemistry, 2005,March Vol. 280, pp. 10731-10742/doi: 10.1074/jbc.M412118200

[82]http://www.clemson.edu/cafls/spotlight_profiles/faculty/smith_kerry. html

[83] A. Boniface, A. Bouhss, D. Mengin-Lecreulx, and D. Blanot, "The MurE synthetase from Thermotoga maritima is endowed with an unusual D-lysine adding activity," J. Biol. Chem. vol. 281, Jun. 2006, pp. 15680-15686.

[84] T. Deva, E. N. Baker, C. J. Squire, and C. A. Smith, "Structure of *Escherichia coli* UDP-N-acetylmuramoyl:L-alanine ligase (MurC)," Acta. Crystallogr. D. Biol. Crystallogr. vol.62, Dec. 2006, pp. 1466-1474, doi:10.1107/S0907444906038376

[85] C. A. Smith, "Structure, function and dynamics in the mur family of bacterial cell wall ligases," J. Mol. Biol. vol. 362, Sep.2006, pp. 640-655, doi:10.1016/j.jmb.2006.07.066.

[86] K. Ehlert, "Methicillin-resistance in Staphylococcus aureus -

molecular basis, novel targets and antibiotic therapy," Curr. Pharm. Des. vol.5, Feb.1999, pp. 45-55.