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Abstract—Digital Health Technologies (DHT) utilize a combina-
tion of computing platforms, connectivity, software, and sensors for
healthcare-related uses. Today, these technologies collect complex
digital data from participants in clinical investigations, including
a large amount of wearable sensor signals. These collected data
are used to develop digital biomarkers (dBMs), which can act as
indicators for health outcomes for monitoring life quality and
measuring drug efficacy. One essential step towards realizing
the full potential of these complex digital data is to define the
fundamental principles and methods to demonstrate sufficient
data quality and fidelity needed for the research. This paper aims
to develop a digital data quality assessment framework across
the complete data life cycle in dBM research, including data
quality metrics and methods to analyze and report digital data
quality. Aggregating and reporting digital data quality is often
challenging and error-prone. We developed Magnol.Ai, a data
platform equipped with data quality assessment and reporting
tools that allow us to define data compliance criteria and view
data quality reports at different levels in a consumable fashion.

Keywords—digital health technology; connected clinical trial;
sensor data; data quality assessment; data visualization; digital
biomarker.

I. INTRODUCTION

Digital biomarkers (dBMs) are patient-generated physio-
logical and behavioral measures collected through connected
digital devices. The collected data are then used to explain,
influence, or predict an individual’s health-related outcomes
(see [1], [2]). While the development of dBMs invests heavily
in advanced analytics, effective results depend on trusted and
understood data collected from digital devices. An established
data quality assessment framework is thus needed to define
the expectation of data, monitor the data for conformance to
expectations throughout trials, and report various measures to
assess the data quality (see, e.g., [3]). Establishing a meaningful
data quality function will help reduce risk throughout the dBM
research activities, ultimately ensuring that the criteria for
success are met.

Today, we use DHT (see, e.g., [4]) to collect some of the
most complex digital data from patients for dBM research.
There has been an overall need for better understanding of

data, as well as easier access to both data quality and trusted
digital data to support operational and analytical activities in
the research. Establishing a data quality assessment framework
and building software tools to facilitate the assessment is an
emerging industry capability. Some unique challenges for this
class of data quality strategy include:

• Complexity of digital data — We collect some of the
most complex digital data in the dBM context, including
sensor signals from wearables, patient-reported outcomes
from hand-held devices, and labels and annotations pro-
cessed and used as ground truth information for algorithm
development. Handling the wearable sensor data can be
challenging. For example, with a sampling frequency of
50Hz, over 4 million 3-axial data points are collected from
an accelerometer sensor for a single day to understand a
patient’s daily activities. Similar sensor data streams in-
clude, e.g., continuously collected photoplethysmography
(PPG) and electrocardiogram (ECG) signals from trial
participants.

• Full-spectrum quality expectations — Defining quality
expectations for digital data and monitoring their con-
formance to expectations are full-spectrum in the data
life cycle. For example, given that data can be collected
in a free living environment, scanning the invalid values
and noises in wearable sensor signals is often the first
profiling step. Identifying the wearable sensor signal’s
useable (wear-compliant) portions is also a leading data
quality function. The ultimate answer to the digital data
quality question is the extent that our digital data satisfies
the specific requirements needed for dBM analysis.

• Aggregation and reporting — Generating various mea-
sures to assess digital data quality is not trivial. For
example, aggregating compliance information from signal
level to the number of analyzable digital measures at
the visit and study levels can often be tedious and error-
prone. More challenging is reporting data quality in an
efficient and effective means across the data life-cycle, and
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with more difficulty, at individual participant level, which
requires tools to extract and report quantified compliance
information, including patterns.

In this paper, we build upon our prior work [1] in the field of
data quality assessment. Our contributions can be summarized
into two significant parts:

• Introduction of Magnol.Ai Data Platform: We introduce
Magnol.Ai, a comprehensive data platform tailored to
support digital dBM research. At its core, Magnol.Ai
incorporates an enhanced data quality assessment frame-
work as an integral component. We begin by offering an
overview of the primary digital data categories central
to our research focus. Subsequently, we delve into the
various metrics employed for profiling digital data quality
and their application at multiple aggregation levels.

• Data Quality Reporting Dashboard: This paper also
presents our innovative Data Quality Reporting Dashboard
integrated within Magnol.Ai. The dashboard unifies and
streamlines all data quality assessment functions into a
cohesive system. It empowers data stewards and quality
analysts by allowing them to work seamlessly with
specific study data. Users can run processes through
interactive workflows and effortlessly generate consumable
data quality reports within a centralized, cloud-based
ecosystem.

This paper is organized as follows. Section II presents the
related work. We present our digital data quality assessment
framework and the visual interfaces and tools we developed
in Section III. In Section IV, we showcase the data quality
reporting portal and the underlying data infrastructure of
Magnol.Ai and finally, we conclude the paper in Section V.

II. RELATED WORK

Developing dBMs requires conducting studies in a lab or
free-living settings to collect raw sensor data, often with
appropriate labels and annotations (e.g., reported patient
outcomes). Collection and analysis of wearable sensor data,
together with other digital data sets, has thus become an
emerging capability needed in dBM development.

Industry players have begun exploring cost-effective and
purpose-built solutions in the past few years. For example,
the Medidata sensor cloud [5] is used to manage wearable
sensor and DHT data for clinical trials. The Koneksa platform
[6] provides support to improve compliance monitoring and
patient engagement, and other representative efforts to store and
deliver raw or processed data from devices in trials, including
Evidation [7] and DHDP [8].

Meanwhile, good data is more important than big data in
dBM development. Given that wearable sensor data can be
collected from participants in a free-living environment, noises,
missingness, and invalid values in wearable sensor signals are
inherent. To extract and leverage useful and meaningful sensor
data, we need to monitor the quality and eventually standardize
and process them to support dBM research, as digital data
quality is of fundamental importance to developing algorithms
for new dBMs (see, e.g., [9] [10] [11]).

In this paper, we are mainly concerned with digital data sets
that fall into four general categories:

• Raw Sensor Signals. A device typically collects data from
multiple sensor signals at varied pre-configured sampling
frequencies to minimize study participants’ burden under
free living conditions. In most cases, the sensor signals
are collected in a nonstop 24 ∗ 7 fashion throughout
the entire study, which generally runs between weeks
to months. Therefore, assessing potential issues, such as
sensor malfunctioning, or wear non-compliance due to
participants’ behaviors, is critical to ensure data quality
can satisfy the downstream analytics needs. Meanwhile,
the quality and coverage of sensor data directly correlate
to the dBMs derivation, which will be discussed in the
later sections of this paper.

• Scored Data, or Digital Biomarkers. In addition to
raw sensor signals, device companies usually have their
proprietary algorithms to analyze sensor data and derive
dBMs from it. For example, heart rate and blood volume
pulse can be derived from the raw photoplethysmography
(PPG) sensor signal. Derived dBMs are at a much lower
resolution than the sensor signal, often at the minute or
half-minute level.

• Labels/Annotations. As algorithms and machine learning
models used in developing dBMs become more complex,
requirements for large annotated data sets grow. Annotat-
ing data for machine learning applications is especially
challenging in the biomedical domain as it requires the
domain expertise of highly trained specialists to perform
the annotations. Annotations can come as interval-based
events, with precise timestamps to label the onset and
offsets of disease events.

• Clinical Records. Apart from raw sensor data and derived
dBMs, one yet important piece of data is clinical records
that provision key mappings, e.g., device ID to participant
ID, participant ID to the treatment cohort, visit dates to
treatment phases, etc.

Unique challenges arise from these digital data and have
made a case for us to develop a data quality assessment
framework to define the expectation of these digital data (e.g.,
completeness, uniqueness, validity, integrity), to monitor the
data for conformance to expectations throughout the dBMs
trials, and, finally, a user interface as the front-end of Magnol.Ai
to display the findings to support operational and analytical
activities.

III. DIGITAL DATA QUALITY ASSESSMENT FRAMEWORK

The key functions in our data quality assessment framework
should now be clear in Figure 1. The logical series of modeling
steps, the problems they induce, and the ultimate resolution of
the problems are in the rest of this section as follows.

A. Signal Data Quality Metrics

In the pre-study phase, we establish the Data Transfer
Agreement (DTA), to clearly define data quality metrics
regarding signal data, including raw sensor signals and dBMs.
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Figure 1: The overall data quality assessment scenario — from establishing the data transaction report (DTA) in the pre-study phase, to
compliance monitoring in the live phase, and finally to the quality assessment and reporting in the post-Database Lock (DBL) phase.

TABLE I: EXAMPLE OF A SIGNAL DATA QUALITY METRICS TABLE FOUND IN A TYPICAL DTA DOCUMENT.

Channel Description Units Min Value Max Value Invalid Value Sampling Frequency (Hz)
accelx Accelerometer X Vector gravity/1024 -32768 32767 None 50
accely Accelerometer Y Vector gravity/1024 -32768 32767 None 50
accelz Accelerometer Z Vector gravity/1024 -32768 32767 None 50
ec ECG signal µV -10000 10000 32767 125
st Step count Steps 0 65535 None 1
hr Heart rate beats/min 30 200 0 0.25
re Respiration rate beats/min 4 42 0 0.25
po Posture Enum 0 11 5 1

• Laying Down = 0
• Standing = 2
• Walking = 3
• Running = 4
• Unknown = 5
• Leaning = 11

Below we list the typical quality metrics, and Table I gives an
example of the data quality metrics table we find in the DTA,
where accex, accely, accelz and ec are raw sensor signals,
st, po (categorical) are derived dBMs (or, scored data) from
accelerometry data, and hr and re are the scored ones from
ec.

• Sampling Frequency — For raw sensor signals, the
sampling frequency is the preconfigured average number
of samples obtained in one second. For derived dBMs, it
is the resolution of resultant features from analyzing raw
sensor data.

• Valid Range — For numerical variables (i.e., sensor
signals and dBMs), the valid range is indicated by
minimum and maximum values that can be measured.
For enumerated variables, the valid range is a list of

predefined categorical values. One example is the rest
classification biomarker, which has the following classes:
“awake”, “sleep”, “toss and turn” and “interrupted”.

• Invalid Value/Error Code — In addition to the valid
range, devices often provision specific invalid values or
error codes to indicate different statuses of malfunctioning,
which help pinpoint the underlying issue.

B. Signal Data Quality Assessment

Connected clinical trials for dBM research often are con-
ducted under a free living condition, i.e., participants wear
sensor devices on a best effort basis using instructions com-
municated during study enrollment. Inevitably, the free living
conditions, potential for device failure or malfunction, and
device wearing compliance introduce data issues such as
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Figure 2: Illustration of sensor signal data issue. Visualized sensor data show different patterns when worn correctly versus incorrectly.

missing data or invalid data collected when participants do
not wear or incorrectly wear the devices. Figure 2 illustrates
how valid signals (i.e., correctly worn signals) can mix with
invalid signals (i.e., incorrectly or not worn signals) in the
data collection and how they differ when plotted. Therefore,
a qualitative means is needed to tell whether a device was
operating normally and worn correctly (i.e., data usefulness).

To fulfil this goal, the quality assessment is performed in
two stages, as discussed in the following.

• Validity Check. Data validity checks leverage signal data
metrics, as discussed in Section III-A. We immediately
know how many valid data points we expect to receive for
a sensor signal or dBM using its pre-configured sampling
frequency. We can filter out invalid values with a valid
value range to get valid data coverage, i.e., coverage of
valid data points.
Since raw sensor signal directly correlates with derived
dBMs, we can perform a validity check against the two
independently and then align their valid data coverage
to check the consistency. We may further overlay device
incident events to understand the root cause of observed
issues better.

• Non-wear Detection. After dropping out invalid data
through the validity checking process, the subsequent task
is to detect moments when the devices were not correctly
worn. The non-wear detection can be challenging as data
from such moments can be entirely valid in terms of falling
within its valid data range. Instead of reinventing the wheel,
we rely on Biobank [12] [13], an accelerometer data
processing pipeline whose non-wear detection module is
widely adopted as a standard. Below are two key concepts
in non-wear detection.

– Epoch — Although data points are collected initially
at a high resolution, e.g., 50Hz sampling frequency,
the processing is conducted on aggregated values
(e.g., 1 or 5 second short epochs or 15 minutes long
epochs) due to the following reasons: (1) collapsing
data to epoch summary measures helps to standardize
differences in sample frequency across studies; (2)
there is little evidence that raw data is an accurate
representation of body acceleration, and all scientific

evidence so far has been based on epoch averages;
(3) collapsing data to epoch summary measures also
helps to average out different noise levels making
results more comparable across sensor brands.

– Non-wear Detection — Accelerometer non-wear time
is estimated based on the standard deviation and the
value range of the raw data from each accelerometer
axis. Classification is done per 30-second epochs
based on the characteristics of a larger window cen-
tered at these 30-second epochs. Specifically, Biobank
identifies stationary periods in 10-second windows
where all three axes have a standard deviation of
less than 13.0mg (1mg = 0.0098m · s−2). These
stationary periods are then used to define whether a
window is stationary or not.

C. Signal Data Quality By Granularity

In addition to qualitative assessment as discussed in Sec-
tion III-B, quantitative measures that define how much usable
data is in a specific period (i.e., data quality at different levels)
are required before statisticians can begin analysis.

The Data Quality Model. Based on Biobank’s non-wear
classification on 30-second epoch level, we can further generate
data quality that can be used for analysis at different time
resolutions. Each phase in our data quality derivation flow is
illustrated in Table II to Table V and expanded upon below.

• Epoch Level — This table is generated from Biobank’s
30-second epoch classification. It serves as the working
basis for subsequent data quality tables. Note that we have
one additional column, “Subject,” to indicate participant
ownership of an epoch.

• Hourly Level — From the epoch quality table, we can
apply a filter to only keep correctly worn epochs and
in turn infer hourly data coverage in terms of compliant
minutes. This hourly data quality table is the source for
data quality reporting at the finest granularity.

• Daily and Intraday Window Level — From the hourly
data quality table we can summarize the total coverage
for each day and produce daily level data quality tables.
In addition, for analysis purposes, we are often interested
in specific intraday windows from which digital endpoints
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TABLE II: EPOCH LEVEL
QUALITY.

Subject Timestamp Non-wear

1002 2021-09-15 false
19:15:00

. . . . . . . . .

1005 2021-10-18 true
09:45:30

TABLE III: HOURLY LEVEL
QUALITY.

Subject Date Hr Coverage
(minute)

1002 2021- 19 45
09-15

. . . . . . . . . . . .

1005 2021- 09 60
10-18

TABLE IV: DAILY AND INTRADAY
LEVEL QUALITY.

Subject Date Coverage Window
(minute)

1002 2021- 1440 pa daily
09-15

. . . . . . . . . . . .

1005 2021- 720 sleep night
10-18

TABLE V: EXTENDED QUALITY WITH EXTERNAL MAPPINGS.

Site Subject Date Trial Day Index Visit Coverage Window
(minute)

101 1002 2021-09-15 1 0 1440 pa daily
(PreTreatment)

. . . . . . . . . . . . . . . . . . . . .

103 1005 2021-10-18 32 4 720 sleep night

are derived — for instance, walking time or step count
during the daytime (i.e., daily physical activity) and sleep
hours during the nighttime. Thanks to the “Hour” column
in the hourly quality table, intraday window coverage can
be easily derived by applying filters.

• Extended Quality with External Mappings — We
can further extend the data quality table with additional
mappings when they become available as the study
progresses, for instance, mapping between patients and
sites/visits, as reported from the clinical operation site.
These extra fields allow analysis-specific filtering and
aggregation, e.g., to find out which participants have
sufficient data and set up individual baselines. We use
this table to look for the patients with at least three valid
days (>= 20 hours of data for a day to be qualified as a
valid day) during a pre-treatment visit.

D. Representing Digital Data Quality

Fully understanding the quality of a large dataset, especially
one that contains data from wearable device sensors, is not
always a trivial undertaking. With numerous considerations to
be cognizant of, as discussed in Section III-C, the most logical
first step is to present the data with visualizations. Thoroughly
understanding the data coverage and quality requires more than
one visualization, simply because there is more than one aspect
to check. This section presents a family of commonly used
visualization examples in our data quality strategy.

• Identifying Outliers and Missing Data. Certain metrics
must fall between threshold ranges depending on the
study and associated data sources. One example is heart
rate, which falls within a specified range of 30 to 200
beats/minute for one study. This range is outlined in the
DTA for the study and must be applied to all heart rate
data points collected. By plotting these signals against the
specified thresholds, outliers can be immediately detected
by viewing a plot. If outliers exist, further investigation
will be completed for that participant’s data to see if

there are outliers for other metrics. Further, gaps in
data can be identified within the same visualization, as
demonstrated in Figure 3(a). Detailed data quality reports
are generated in conjunction with the visualizations created
for displaying outliers and missing data. For example, we
convert the signal data from 3(a) to a sequence of colored
blocks in Figure 3(b), with green blocks indicating valid
sensor signal value in the corresponding period and red
indicating missing or invalid signal value identified. In
Figure 3(c), we compute the valid data ratio, and therefore
can represent the data quality with a numeric value, or
with a color from the color palette, keyed to the valid
data ratio (see e.g., Figure 3(d)).

• Data Quality Map with Levels of Detail. The quality
of sensor signal data must be examined on various levels,
each offering a specific level of detail. While certain levels
are more useful for identifying distinct patterns, we will
focus on the hourly, daily, and study levels on both a
patient and population level:

– Minute-by-Minute Quality Map for a Day — Exam-
ining signals on a minute level can help to identify
the minutes where a device may have intermittent
connectivity, or more minor issues can be identified
and further inspected, as seen in Figure 4(a).

– Hour-by-Hour Quality Map for a Trial — Zooming
out, we can look at each hour across all days in
the study. The hourly level aggregation mentioned in
Section III-C is used to configure the day level plot,
shown in Figure 4(b). This figure shows minutes of
data coverage for each hour across all study days. This
type of visualization allows us to look at compliance
trends for a patient that may persist during certain
hours of each day. Figure 4(b) shows an interesting
device wearing pattern for the participant — taking
off the wearable device to charge the battery for a
couple of hours in the middle of each day of the trial
has resulted in missing data, visualized as a sequence
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(a)

(b) (c)

−−−−→
60.61%

(d)

Figure 3: Visualization for sensor data quality. (a) Heart rate data (beats/minute) observed for one participant between 2021-02-15 07:49:00.000
and 2021-02-15 08:11:00.000. Valid range between 30 - 200 beats/minute, as denoted by threshold lines. Invalid data was observed multiple
times. Missing data was observed between 2021-02-15 08:01:08.994 and 2021-02-15 08:06:09.000 with nearly 5 minutes of no data. (b)
Use colored blocks to represent sensor signal data quality. (c) Deriving numeric representation of the data quality, i.e., valid data ratio. (d)
Interpreting data quality with color.

(a)

(b)

(c)

(d) (e)

Figure 4: Plots showing (a) minute-level quality representation throughout a participant day, (b) hourly-level quality representation for a
participant throughout an entire trial, (c) daily-level quality for a population throughout the entire trial, (d) number of compliant days across
all days in a study and (e) data coverage and device wearing issues observed throughout a study.

of red blocks in the center area of the map.
– Day-by-Day Population-level Quality Map for a Trial

— Plotting data quality for all hours, days, and
participants in a study yields the observation of data
quality patterns seen in Figure 4(c). This study-level
visualization can help us gain insights into the overall
data quality at the population level and the compliance

trends at the participant level throughout the trials.
– Compliant Days Throughout a Trial — In addition to

the number of hours per day, it is also useful to view
the number of compliant In addition to the number of
hours per day, it is also useful to view the number of
compliant days throughout the study, with a definition
of compliance dependent on a study’s protocol. One
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(a) (b) (c)

Figure 5: Putting together compliance reports for Intervention-Specific Appendices (ISAs) under Chronic Pain Master Protocol (CPMP). (a)
Generated compliance reports on the patient level. (b) Compliance by visit. (c) Customizable compliance report at patient level.

can recognize device-wearing patterns by plotting the
number of patients compliant daily in a given study.
As seen in Figure 4(d), the number of compliant days
in a study decreased due to reduced device wearing
as the study progressed.

• Identifying and Aligning Data Issues. In many clin-
ical trials, it is a requirement that patients visit a site
periodically. Whether it be for receiving dosing of a
drug, having their vitals checked, or obtaining a device,
information is collected by the sites and stored in various
reports. One type of report, device reports, are used during
data processing and can help understand the device’s
overall performance, specifically if any device issues exist.
Additionally, information derived from these reports can
be used to populate visualizations such as Figure 4(e). By
combining this visualization with the information received
in site reports, patterns specific to potential device issues
and wearing patterns can be derived.
From the aforementioned data visualizations, various
issues and patterns can be identified. When these are
paired with actionable recommendations and delivered to
the study team promptly, the study team can notify the
corresponding site and participant to ensure the issue is
rectified. This process leads to a quick turnaround time for
potential improvements to data collection and can resolve
the challenges that create low compliance in studies.

E. Generating Compliance Reports

Visualizing data is key to understanding data quality, as
discussed in Section III-D. However, it is equally important
to have a standardized reporting system for compliance to
distribute quality and compliance information. Such systems
generate reports that outline compliance on three levels: trial,

site, and patient. In addition, automated generation allows
systems to be configured at the start of a trial and run at
set cadences to produce consistent quality assessment reports
efficiently.

For each report, regardless of the level or contents, the
thresholds used to configure and derive data metrics and
visualizations are based on the expectations outlined in the
study protocol. Each report aims to give insights into the
population’s compliance behavior:

• Trial Summary: A single comprehensive trial report can
be generated and contains metadata regarding the number
of patients, sites, and overall compliance percentages.

• Study-Level Compliance: A study-level report, such
as Figure 5(a), will typically contain metrics displaying
overall enrollment and compliance on a site level. These
can allow a clinical trial team to gauge the progress of
a specific study easily, i.e., the number of patients who
have completed their time in the study and the number
of patients still in progress.

• Site-Level Compliance: Generating reports based on sites,
as seen in Figure 5(b), allows clinical teams to efficiently
identify which sites may be experiencing issues regarding
low compliance across their assigned patients. Typically,
site reports contain information for overall performance,
with specifics for patients that may fall below a set
compliance threshold. The patients with low compliance
are labeled with a potential issue- such as low compliance
during the nighttime. The potential issues are derived from
the hourly compliance for that patient. From here, sites
can identify which of their patients contribute most to
low compliance and attempt to resolve the issues linked
to the low compliance.

• Patient-Level Compliance: Reports on a patient level
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Figure 6: A plot of sensor signals overlaid with annotation labels is used to assess the data quality of annotations in conjunction with sensor
signals.

can give insight into their specific patterns of device
wearing. In these reports, as seen in Figure 5(c), the
number of visits, compliant days within each visit, and
compliance percentage per visit are displayed. In addition,
an hourly compliance heatmap is visible, allowing for
further understanding of when patients wear their devices
across the study duration.

F. Data Quality in Novel Digital Endpoint Development

For novel digital endpoint development, raw sensor signals
are collected along with annotations or labels, considered the
ground truth. Annotations describe events explaining the status
of the patient. As such, it is critical to assess the data quality
of annotations and sensor signals to identify and address as
many defects as possible.

Assessing Annotation Quality. Annotations are typically
collected through patient reporting via a survey system or are
labeled via software by trained clinicians who observe patient
behavior. We first check for defects in the annotations. Defects
may include improper data structure, invalid label categories,
incomplete annotations, duplicates, and impossibly overlapping
annotations. Defects could be caused by bugs in the annotation
software or improper training on how to label.

Assessing Annotation Quality with Sensor Signals. Eval-
uating annotation quality in isolation is insufficient because
digital endpoint development requires both annotations and
raw sensor signals. So, we must also assess the data quality of
annotations and raw sensor signals in conjunction. Therefore,
we plot annotated time segments along with raw sensor signals
(e.g., Figure 6) to facilitate the data quality assessment.

Discrepancies in the alignment of annotations and raw
sensor signals can vary considerably due to time tracking
configurations and device properties in each step of the
data collection process. Misalignment between annotation and
raw sensor signals can be caused by improper device time
configuration or the precision of the sensor device’s initial
time configuration. In addition, if the sensor device’s time
tracking is not periodically synced, the device’s internal Real-
time clock (RTC) will slowly drift over time. We measure
drift using the sensor signal overlaid with annotation plots.
Once the misalignment from the initial configuration time and

RTC drift are measured, we align the raw sensor signals to the
annotations.

After the annotations and sensor signals have been properly
aligned, we observe the plots to identify possible defects
in annotation quality. Defects could include improper labels,
annotated events that are not apparent in the sensor signals,
and time segments that appear to be missing annotations or
sensor signals. Specific time segments of concern are selected
and validated with the source to determine if further action is
needed.

Lastly, depending on study-specific requirements, we may
apply other methods to assess data quality. For example, output
from movement detection algorithms can be compared to
annotated time segments that describe the movement to check
annotation validity and coverage. Using various methods to
assess data quality from different approaches is essential to
maintain the data quality needed for novel digital endpoint
development.

Throughout a clinical trial, accessing data quality metrics
is critical to upholding our outlined principles. Therefore, in
addition to the compliance reports generated, an interactive
data quality assessment tool is needed to monitor data quality
throughout a trial. We are thus motivated to establish a data
platform, i.e., Magnol.Ai, that allows users to customize the
plots to view digital data and the associated data quality reports
through various lenses, utilizing filters and other user controls.
For example, users may want to view the raw sensor data at
the scale and resolution they desire, review derived compliance
reports on a day, visit, or patient level. Figure 7(a) is such a
typical screen image of the dashboard of Magnol.Ai where users
can select the level and the metric for which the visualization
will show accordingly. A user wants to view compliance for
all patients in a study on the visit level, as seen in Figure 7(b).
They define compliance as having at least 12 hours of data
daily, with 3 days each visit comprising a compliant visit. By
selecting the compliance type, which in this case is visit, and
inputting the number of hours and days for defining compliance,
the user can see the population’s compliance report with these
specific thresholds, as seen in Figure 7(a). Additionally, they
can easily compare and contrast different levels and compliance
thresholds within Magnol.Ai’s dashboard.
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(a)

(b) (c)

Figure 7: The platform features displaying (a) filters for customizable compliance reports, (b) compliance by visit, and (c) generated
compliance reports on the patient level.

In addition to the compliance assessment, data quality
visualizations, such as Figure 4, are created and customized
within the platform. For example, as seen in Figure 7, a user can
select a specific time range or time level to view the data. This
zoom in and out can be used to identify and trace patterns of
device wearing. The sensor data visualization, supplemented by
the data quality assessment capability allows for customizable,
real-time, informative visualizations that enable insights into
patient compliance and device-wearing data patterns. The study
team can process and act upon these key insights with these
visualizations housed in a centralized, consistent, and efficient
platform.

IV. MAGNOL.AI — PUTTING TOOLS TOGETHER FOR
DIGITAL BIOMARKER RESEARCH

In this section, we focus on a few key building blocks of
our data platform, i.e., Magnol.Ai, which continuously ingests,
visualizes, and profiles digital data for quality analysis and
digital measure derivation. We introduce how we organize the
various digital data sets collected from studies, and then how
we present these digital data sets with interactive dashboards to
help researchers navigate and explore these digital data, view
the data quality reports and uncover data insights. Finally
we focus on the technologies we leverage for cloudifing,
versioning, and parallelizing Magnol.Ai’s computing jobs for
quality analysis and digital measure derivation.

A. Organizing Digital Data in Magnol.Ai

Organizing and presenting digital data from wearables is vital
to the success of using digital technologies in a clinical study,
and is a key consideration to regulators. Inside Magnol.Ai
these wearable sensor data are stored and organized at study
level for authorized visualization and access, with a few key
attributes that can be leveraged to further subset or group the
digital data in Magnol.Ai’s data portal:

• ISA: There are cases where an overarching study consists
of various unique studies, or a ‘suite’ of studies. In this
case, each individual study is described as being an ISA.
Using the aforementioned CPMP study suite, we see
that there various ISAs. As seen in Figure 8, Magnol.Ai
handles this case by treating each ISA as an individual
study, under the umbrella of the overarching CPMP study.

• Cohort: A cohort is a grouping of participants in a given
study that is specific to an activity or criteria as outlined
in the study protocol. For example, in a drug trial, there
can be a cohort for each specific drug dosage, as well
as a placebo cohort. In an observational study, there can
be cohorts that contain subjects who have varying levels
of severity for a given disease state, as well as a healthy
population cohort.

• Participant: Wearable sensor data are collected from
participants enrolled in each clinical study. Displaying
various sensor data collected from each participant as well
as the derived features and data compliance is one typical
way for one to explore sensor data using Magnol.Ai’s
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Figure 8: A typical “study suite” view in Magnol.Ai, where there are multiple ISAs, i.e., individual studies, under this overarching “suite”.

(a) (b) (c)

Figure 9: Navigating studies and exploring digital data sets with Magnol.Ai’s dashboards. Key visuals: (a) side navigation panel, (b) study
overview dashboard example, and (c) sensor data and derived features visualizations.

dashboard (see e.g., Figure 9(c)).
• Time Range: Magnol.Ai allows one to view the full

spectrum of all digital data collected in studies, or use
controls to explore the data at the scale or resolution
desired by the user.

By designing Magnol.Ai to work with various organizational
hierarchies for study design, it can properly house and display
the needed information, including an overview of a study, as
seen in Figure 9(b). When beginning data exploration for a
given study, users need to know the basic overview of study
activities and study population. Magnol.Ai’s custom design
allows all study overview information to be viewed in one
single dashboard. The study overview page contains high-level,
universal metrics including the number of devices, endpoint
descriptions, and study timeline.

B. Visualizing Wearable Sensor Data and Reporting Quality
In addition to the study overview page, each study contains

various dashboards belonging to each type of data, including
sensor data, ePRO data, and compliance data. Users can
easily navigate to a given dashboard within a study directly
from the study overview page. With each tab holding specific
information, organizing the information from studies becomes
as simple as making a new dashboard for each desired type of
data. Taking compliance data as an example, a user would need
to see an overview of compliance on a study level, as well
as compliance on a participant level. By building dashboards

representative of these two aggregation levels, these dashboards
can be housed under ‘Compliance’.

Compliance Overview The compliance overview dashboard
shows aggregated levels of compliance at the study-level. These
metrics account for all subjects, regardless of cohort, site, visit,
or other grouping and often contain the following:

• Number of Completed Participants — The total number
of participants who have completed the study.

• Number of In-Progress Participants — The total number
of participants who are currently in the study.

• Average Daily Compliance — The average percentage of
daily device wearing.

• Average Daily Wearing Hours — The average number of
hours where a device was worn.

As shown in Figure 7, various visualizations showing compli-
ance including daily, weekly, or visit heatmaps, distribution
plots of average daily wearing compliances, and compliance
metrics by site are often included.

Compliance at Participant Level The compliance analysis
at participant level displays compliance metrics and detail plots
corresponding to each participant with more granularity —-
hour by hour throughout the entire trial. Additional filters can
be applied including visit information or trial day information.
While some kind metrics, such as average daily compliance per-
centage, are also used on the compliance overview dashboard,
visualizations on the ‘Compliance by Participant’ dashboard
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(a)

(b)

(c)

(d)

Figure 10: Magnol.Ai offers the power to visualize and directly compare raw sensor signals (a), derived features — sleep measure (b), step
count (c), and daily wearing compliance (d) to fully understand the quality of the data.

can show more detailed information about a subject including:

• Visit Compliance — With the addition of a visit selection
dropdown, users can select a visit and view compliance
for each hour during a given visit in a study (Figure 7(b)).

• Hourly Compliance — A heatmap showing the number
of wearing minutes for each hour across the duration of
a study, offering more insights to wearing patterns of a
given subject (Figure 7(c)).

Sensor Data Visualization Sensor data can also be organized
and displayed similarly to compliance information (see Figure
9(c).) For each device in a study, there is a designated dashboard
under the ‘Devices’ section in the side navigation panel, as
seen in Figure 9(a). When navigating to a given dashboard,
users can see visualizations of raw sensor data processed sensor
data, and the derived features. Across types of visualizations,
the data is synchronized to zoom / aggregate to the same level
in the same view. This can be accomplished by 1) clicking and
dragging to zoom into a specific time range (see e.g., Figure 6),
or 2) utilizing the date-picker at the top of the page to select
a date on a calendar, or type in a specific date and time (see
e.g., Figure 9(c)).

Data Quality The true power of Magnol.Ai comes in the

form of visualizing data quality. With the capability to view
various types of data aligned to the same date and time range,
users can easily identify the story that the data is telling.
Examining Figure 10, we see the raw accelerometer data
coming from a wrist-worn device. We can compare the raw
sensor signals to the derived sleep minute features. Additionally,
we can view the device wearing compliance for each day the
device was worn, in form of a heatmap. With all three data
visualization channels aligned to the same date and time range,
users easily view the quality of the data and assess which
segments of the data are most useful to analysis.

We have designed Magnol.Ai to view data in this way in
order to directly compare data and fully understand the quality
of the data. This capability is not limited to only viewing
sensor data, but rather, we can apply the same methodology
to comparing patient reported events to raw sensor data
and derived features, as well as ePRO data, including pain
ratings. With the capability to compare virtually any type of
data, Magnol.Ai allows unlimited exploration, including data
coverage, quality, and compliance.
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C. Cloudifying, Versioning, and Parallelizing Data Pipelines

Motivation Our data processing and digital measure deriva-
tion pipelines previously run on company’s on-premises High
Performance Computing (HPC) systems. As our computational
needs grow significantly following limitations are identified:

• Limited Scalability — On-premises HPC systems often
have fixed hardware resources, which can limit the
scalability of data processing pipelines. As data sets grow
in size or processing demands increase, it may become
challenging to accommodate the additional workload
efficiently. This can lead to performance bottlenecks and
longer processing times.

• Dependency Management — Running pipelines on ded-
icated on-premises systems might involve managing
various dependencies, libraries, and runtime environments
manually. Ensuring consistent environments across dif-
ferent systems can be challenging and may lead to
compatibility issues and version conflicts.

• Lack of Elasticity — On-premises HPC systems have fixed
capacity, which means they cannot easily adapt to varying
workloads. During periods of low activity, resources
may be underutilized, wasting valuable computing power.
Conversely, during periods of high demand, the system
may struggle to handle the load efficiently, leading to
delays in data processing.

• Reproducibility Challenges — Reproducing pipeline re-
sults can be challenging on on-premises HPC systems
due to potential differences in hardware, configurations,
and software versions. This lack of standardization can
hinder the ability to validate and replicate research findings
reliably.

• High Maintenance Costs — Maintaining and upgrading on-
premises HPC infrastructure can be expensive, requiring
significant capital investments and ongoing operational
costs. Additionally, specialized personnel are needed to
manage and support the infrastructure, which can add to
the overall expenditure.

In contrast, containerizing pipelines and migrating to cloud-
based environments like AWS using Docker addresses many
of these drawbacks. Containerization is a lightweight and
portable approach to software development and deployment.
It is a method of packaging an application along with all
its dependencies, libraries, and configurations into a single
unit called a container. This container acts as a self-contained
execution environment, allowing the application to run con-
sistently and predictably on any platform that supports the

containerization technology. Unlike traditional virtual machines,
which require a full operating system for each application,
containers share the host OS kernel, making them much more
efficient and lightweight. This efficiency not only reduces
resource overhead but also facilitates rapid deployment and
scaling, making containerization an ideal solution for modern
cloud-based architectures.

Cloud-based containerization offers elasticity, scalability, and
cost-effectiveness, allowing researchers to efficiently process
large datasets, optimize resource utilization, and adapt to
varying workloads. Docker’s containerization approach ensures
consistent environments, simplifies dependency management,
and enhances reproducibility, making it easier to validate
research findings and collaborate with others seamlessly.
Additionally, cloud providers handle infrastructure maintenance,
disaster recovery, and offer a pay-as-you-go model, reducing
the need for extensive upfront investments and ongoing
maintenance costs. In below we detail the advantages of
containerization.

Cloudifying Public cloud providers, such as AWS, Google
Cloud Platform (GCP), and Microsoft Azure, offer robust
support for container-based parallel and distributed processing
services. AWS provides Elastic Container Service (ECS)
and Elastic Kubernetes Service (EKS), GCP offers Google
Kubernetes Engine (GKE), and Azure has Azure Kubernetes
Service (AKS) and Azure Container Apps. These cloud-native
services enable seamless deployment and management of
containerized applications at scale, aligning perfectly with
our needs for parallel data processing.

Migrating from on-premises high-performance computing
to the cloud aligns with our company’s strategy to leverage
cloud-based storage and computation. By adopting container-
based processing in the cloud, we can take advantage of the
cloud’s elasticity, scalability, and cost-effectiveness. Cloud
infrastructure allows us to dynamically allocate resources based
on demand, optimizing utilization and reducing operational
costs. Additionally, it reduces the burden of managing and
maintaining on-premises hardware, providing us with more
flexibility and agility to adapt to changing research requirements
and workloads.

Versioning Ensuring the reproducibility of results is crucial
in scientific research and data processing. Dockerizing our
pipelines allows us to version both the algorithm source code
and the entire environment in which the processing takes place.
This means that we can track changes to the pipeline code
over time, allowing us to roll back to previous versions if
needed. Moreover, capturing the entire environment, including
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libraries, configurations, and runtimes, guarantees that the
data processing pipeline will produce consistent and replicable
results, regardless of the underlying infrastructure or platform.

Furthermore, provenance tracking, which involves recording
the origin and history of data and processes, is essential for
maintaining data integrity and traceability. Docker containers
act as self-contained units that encapsulate all the dependencies
and configurations required for data processing. By versioning
the container images, we can precisely track the exact envi-
ronment in which data processing occurred, ensuring that any
future analysis or audits can be confidently performed based on
the same conditions. This level of versioning and provenance
tracking enhances the credibility of our research and allows
other researchers to reproduce our findings with ease.

Parallelization The data processing pattern for digital
measures, such as step count and sleep duration, often follows
an embarrassingly parallel computing paradigm. This means
that the processing of data for each subject day can be
performed independently, without any need for inter-process
communication or coordination.

By dockerizing these pipelines and running them in a public
cloud environment like AWS, we can easily take advantage
of the cloud’s ability to handle data processing in parallel
and at scale, enabling faster and more efficient analysis of
large datasets. To be more specific, docker containerization
provides a straightforward way to manage parallel computing
tasks efficiently. With the ability to spawn multiple containers
simultaneously, we can distribute the data processing workload
across a cluster of containers, enabling concurrent execution
of tasks. This scalability not only speeds up the overall
data processing but also ensures that we can handle large
volumes of data without overwhelming the system. Furthermore,
container orchestration tools like Kubernetes make it easy to
manage the deployment, scaling, and monitoring of containers,
simplifying the management of parallel processing in the cloud
environment.

Additionally, the elasticity of cloud resources ensures that
we can dynamically adjust the number of container instances
based on the workload, optimizing resource utilization and cost
efficiency.

Pipeline Cloudifying Steps
Figure 11 summarizes the steps of cloudifying a traditional

pipeline and below we detail these steps.
• I/O Refactor and Pipeline Wrapper — During the process

of containerizing the pipeline, a significant aspect that
required attention was the handling of file input/output,
which originally relied on local storage. To make the
pipeline cloud-ready and to ensure seamless data process-
ing in a distributed environment, a crucial refactoring step
was undertaken to implement an I/O layer that interacts
with cloud storage, specifically an S3 bucket.
During the I/O refactoring phase, a thoughtful design
approach was adopted to seamlessly integrate cloud-based
file input/output functionalities without modifying the
original pipeline code. The design centered around the
creation of a wrapper that serves as an intermediary

layer between the pipeline and the cloud I/O services,
specifically the S3 bucket. This wrapper encapsulates
the necessary code to interact with the cloud storage,
enabling the pipeline to leverage the benefits of cloud-
based file management while maintaining the integrity
of its core functionality. By isolating the cloud I/O layer
in the wrapper, the underlying pipeline code remains
untouched and agnostic to the storage medium. This
design preserves the pipeline’s portability and allows it to
be run with minimal modifications in diverse computing
environments.
By leveraging Amazon S3’s object storage service, the
pipeline can now read input data from and write output
data to the S3 bucket, providing a scalable and durable
storage solution. The refactored I/O layer ensures that the
pipeline can effectively handle cloud storage, making it
well-suited for deployment in public cloud environments
like AWS.

• Docker Image Building —
The Dockerfile presented in Listing 1 serves as a blueprint
for building a containerized environment tailored to
process sensor data to derive digital measures using GGIR.
It starts by utilizing the base image of R, upon which
subsequent instructions are layered to set up the required
configuration. For instance, setting up GGIR pipeline in
R (line 5), installing dependent python libraries required
by our driver (line 14). Lastly, the Dockerfile defines
the command to run the application (driver ‘ggir.py’
in our case) upon container launch (line 20). Through
this Dockerfile, researchers can create a self-contained
environment with all necessary components, enabling
seamless and consistent data processing across various
platforms and environments. Once Docker image being
fully validated, we deposit it to AWS Elastic Container
Registry (ECR).

1 # Base image for R
2 FROM rocker/r-ver:4.3.1
3

4 # Install GGIR version 2.8-6
5 RUN R -e

"devtools::install_github(’wadpac/GGIR@2.8-6’)"
6

7 # Install Python 3.9
8 RUN apt-get -y install python3.9
9

10 WORKDIR /app
11

12 # Install dependencies through requirements.txt
13 COPY requirements.txt .
14 RUN pip install --no-cache-dir -r requirements.txt
15

16 # Copy Python driver program and other files
17 COPY . .
18

19 # Set the entry point as the Python driver
20 ENTRYPOINT ["python", "ggir.py"]

Listing 1: Sample GGIR Dockerfile.

• Task Definition Registration —
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1 family="pipeline-ggir"
2 task_role_arn="ecs-task"
3 execution_role_arn="dh-tti-ecs-exec"
4 # CPU units, 1,024 CPU units per vCPU
5 cpu=2048
6 # in MiB
7 memory=8192
8 container_name="ggir"
9 image_uri="dhrd-pipeline-ggir:2.8.6"

10

11 response=$(aws ecs register-task-definition \
12 --family "${family}" \
13 --task-role-arn "${task_role_arn}" \
14 --execution-role-arn "${execution_role_arn}" \
15 --network-mode awsvpc \
16 --requires-compatibilities FARGATE \
17 --cpu ${cpu} \
18 --memory ${memory} \
19 --container-definitions "[{
20 "name": "${container_name}",
21 "image": "${image_uri}",
22 "essential": true,
23 "cpu": ${cpu},
24 "memory": ${memory} }]" \
25 )

Listing 2: Sample script to register GGIR task definition.

In the provided sample shell script as shown in Listing 2,
the task definition registration is a crucial step in deploying
containerized applications on AWS. ECS task definitions
define the configuration for individual tasks, specifying
essential parameters such as the Docker container image,
CPU and memory requirements, network settings, and
task roles. By registering a task definition using the AWS
CLI (Command Line Interface), we effectively create a
blueprint for the containerized application that ECS can
use to launch and manage instances of the task. The
registration process associates the task definition with a
specific family name, such as ”pipeline-ggir” in this case,
making it easily identifiable and reusable across ECS
services.
In addition, task definitions support the concept of revi-
sions. A revision represents a specific version or iteration
of a task definition. Whenever a task definition is updated,
either to change container configurations, environment
variables, or other parameters, a new revision is created.
This approach allows ECS to maintain a historical record
of changes to the task definition over time. This helps
to maintain a history of configuration changes, which is
useful for auditing, rollback purposes, and understanding
the evolution of our pipelines over time.

• Running Tasks in Parallel — Following the successful
registration of the ECS task definition, the next crucial
step in our containerized data processing pipeline is to
launch ECS tasks for each input/output file pair, as shown
in Listing 3. The script employs a for loop to iterate over
the lists of input and output file paths. For each pair, a
separate ECS task is initiated using the AWS CLI’s aws
ecs run-task command. The run-task API call submits tasks
in an asynchronous fashion, enabling ECS to efficiently
run tasks in parallel based on the available resources in
the designated cluster, in this case, “dbm-pipeline”. The
tasks are executed using the specified Fargate launch type,

which manages the underlying infrastructure, allowing us
to focus solely on defining the task requirements in the task
definition. The ‘–overrides’ flag within the script allows us
to pass dynamic input and output directories to the Docker
container as command-line arguments. This enables the
containerized application to process the corresponding
input data from S3 and store the results in the specified
output location. By launching tasks in parallel, ECS
leverages the underlying cloud infrastructure’s scalability,
making it a well-suited solution for processing large-scale
datasets in an efficient and resource-effective manner.

1 # List of input file paths
2 input_folders=("s3://...", ...)
3

4 # List of output file paths
5 output_folders=("s3://...", ...)
6

7 cluster_name="dbm-pipeline"
8 task_definition_name="pipeline-ggir"
9

10 # Iterate over the input/output lists
11 # and run the Docker container for each pair
12 for i in "${!input_folders[@]}"; do
13 input="${input_folders[i]}"
14 output="${output_folders[i]}"
15

16 # Run the Docker container as a separate ECS task
17 aws ecs run-task \
18 --cluster $cluster_name \
19 --launch-type FARGATE \
20 --task-definition $task_definition_name \
21 --overrides "{"containerOverrides":
22 [{
23 "name": "${container_name}",
24 "command": [
25 "--inputdir", "${input}",
26 "--outputdir", "${output}" ]}]}"
27 done

Listing 3: Sample script to run parallel GGIR tasks.

V. CONCLUSION AND FUTURE WORK

As DHT continue to evolve and collect more complex
digital data in clinical trials, the need for a digital data quality
assessment platform is increasing. By defining and imple-
menting the fundamentals of data quality into the digital data
quality framework and platform, we can generate automated
compliance reports, customizable visualizations, and real-time
quality metrics. In addition, the methods for facilitating dBMs
research have been simplified with the centralized digital data
quality assessment platform. As dBMs research continues, so
will the use of the digital data quality assessment platform.
Future directions include the use of visual mining and data
mining technologies to help identify data quality in a novel
way to facilitate data quality assessment.
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