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Abstract - To prevent lumbago, it is effective to have a system 

that enables people to improve their habitual bad posture. 

Therefore, we will develop a method of estimating body load 

without user burden for constant observation of posture. 

Hence, this study proposes the use of a web camera, which 

everyone has and can acquire images on a daily basis without 

any burden, as a non-contact sensing method, and the use of 

deep learning as a means of estimating body load from web 

images. Deep learning models are created by deriving body 

load values using musculoskeletal analysis based on skeletal 

position coordinates extracted from posture images and 

labeling the images with these as true values. Thus, if a pre-

trained deep learning model is created in advance, body load 

can be estimated from images alone, without the use of 

specialized software or cloud communication. If it is possible to 

easily visualize one's own body load in daily life, the system can 

be developed to provide feedback on posture evaluation and 

improvement plans based on the estimated body load. We 

consider that this will further increase the users' awareness of 

improvement and lead to the maintenance and promotion of 

health. In this paper, as the first step, a deep learning model is 

created for a stationary standing forward bending posture, and 

the accuracy of the lumbar load estimation by the deep 

learning model is evaluated. The results of individual learning 

using untrained data allowed us to estimate the lumbar load 

with high accuracy. Hence, the possibility of applying the 

proposed method to certain individuals is indicated. The other 

is, the results of ensemble learning confirmed models with high 

and low accuracy. Hence, the deep learning models that 

estimated untrained participants showed large variations in 

accuracy and insufficient generalization performance.  

Discussion of the results confirms that data bias is a 

contributing factor to the accuracy loss and indicates the 

possibility of obtaining generalization performance by 

improving data bias. 

Keywords- Deep learning; Single camera; Estimation; 

Musculoskeletal model simulation; Lumbar load. 

I.  INTRODUCTION 

Many people of all ages and genders experience lumbago, 
and lumbago has become a social problem because of its 
potential impact on daily life. One of the causes of lumbago 

is the habit of a broken posture, which is very demanding on 
the body. From this, to prevent lumbago, it is useful to 
constantly observe posture in daily life. In cases where 
posture is out of balance, it is effective to have a system that 
allows people to improve their posture by themselves. To 
achieve this, this research group has been considering the 
quantitative estimation of the load on the lower back in order 
to determine whether the posture is good or bad. In the past, 
the lumbar region has been measured using optical motion 
capture, wearable inertial sensors, and bending sensors to 
non-invasively estimate lumbar load using biomechanics and 
statistics [2] [3] [4] [5] [6]. These estimation results showed 
qualitatively similar trends to the measured lumbar load 
ratios of Nachemson et al. [7] and Wilke et al. [8] and 
confirmed the usefulness of the estimation method. However, 
since specialized equipment and analysis are required, and 
users are burdened during measurement and estimation, it is 
difficult to apply this method to the observation, estimation, 
and evaluation of posture in daily life.  

Therefore, in this study, as a way to reduce the burden on 
the user during measurement, consider using an easily 
accessible, non-wearing sensing device. Muto et al. [9] 
evaluated the posture of an elderly person using Kinect v2 
for Windows (Microsoft), a depth camera, as a non-contact 
sensing device. However, the depth cameras essential to this 
research are not widely available to the public. On the other 
hand, several systems have been commercialized to evaluate 
posture based on the skeletal position that is detected by AI 
from 2D images that lack depth information (e.g., Posen 
[10]). Although joint angles and other factors are visualized 
in these systems, however, the loads applied to the body are 
not quantified. Hence, this study proposes a method for 
estimating body load using AI from a single camera image, 
which is a readily available device, as a method of constantly 
observing posture by self and quantitatively estimating body 
load [1]. If the proposed method can be realized, by creating 
a deep learning model in advance using specialized software, 
it will then be possible to visualize one's own body load in 
daily life simply by inputting posture images, without going 
through the cloud. In addition, it can be developed into a 
system that provides feedback on posture evaluation and 
improvement plans and evaluations based on this, it will 

62

International Journal on Advances in Life Sciences, vol 15 no 3 & 4, year 2023, http://www.iariajournals.org/life_sciences/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



enable posture condition to be evaluated without burden and 
lead to the prevention of lumbago. 

In this paper, as the first step in creating the proposed 

system, the deep learning model is created with only the 

lumbar load as the body load and the posture as a static 

standing forward-bending posture. After that, the proposed 

method will be evaluated by the accuracy of the lumbar load 

estimation using the deep learning model created. In the 

previous paper [1], a deep learning model was created using 

multiple experimental participants as training data and 

estimation using untrained data from participants used for 

training data. The results were shown to be useful, as high 

correlations and small errors were identified. However, 

scope of application remains unclear since the estimation of 

training participants by a deep learning model was created 

using several participants. Therefore, this paper verifies 

scope of application of the proposed method. First, it is 

verified that the proposed method is applicable to specific 

individual. A deep learning model is created using specific 

participant as training data, and its accuracy is confirmed by 

estimation using untrained data from the same participant. 

Furthermore, to verify the generalization performance of the 

proposed method. A deep learning model is created using 

multiple participants as training data, and the accuracy is 

confirmed by performing estimation on untrained 

participants.  
The rest of this paper is organized as follows. Section II 

describes the methods of the lumbar load estimation system 
proposed in this paper. Section III determines the criteria for 
evaluating the accuracy of the deep learning model. Section 
IV provides the methods and conditions for creating the 
lumbar load estimation system proposed in this paper, and 
discusses the experimental results based on the evaluation 
criteria identified in Section III. Section V discusses the 
results of Section IV. Finally, the conclusions close the paper. 
 

Figure 1. Overview of the proposed body load estimation system. [1] 

 

II. LUMBAR LOAD ESTIMATION SYSTEM 

This section describes the system proposed in this study. 

Figure 1 shows an overall view of the system to be 

developed in this study, as proposed in the previous report 

[1]. During system operation, user inputs an image of 

his/her posture, along with his/her height and weight, into 

the system, which estimates the body load and outputs 

improvement plans based on this. To achieve this, a deep 

learning model is created in advance during development.  

A method for deriving the body load to be learned by the 

deep learning model is described. Tagawa et al. [11] 

proposed a device to visualize the dynamic load of various 

body parts from video alone using skeletal detection 

software. In this system, the body load is calculated using 

the Newton-Euler method based on the coordinates of the 

detected skeletal position. However, it is not suitable for 

estimating static posture, which is the participant of this 

study, because no acceleration occurs. In addition, it is 

difficult to obtain an accurate body load from an estimation 

based on skeletal position alone, because muscle activity 

and other factors cannot be considered. Therefore, in this 

study, body load is derived using AnyBody [12]. AnyBody 

is a musculoskeletal analysis software that can derive 

various human body information by creating a virtual 

human body model from skeletal positions. Also, AnyBody 

can be obtained the account the amount of muscle activity 

and other factors to determine the force, moment (torque), 

and muscle tension applied to a region. In the field of 

healthcare, much research has been conducted that make 

effective use of AnyBody. Previous research used AnyBody 

to analyze the effects of age and height on the lumbar region 

during manual material handling [13] and the effects of 

lumbar disc herniation on spin loading characteristics [14]. 

However, the input data for AnyBody are the skeletal 

coordinate positions of the human body. An optical motion 

capture camera is generally used, although this device 

cannot obtain information from the images. Therefore, AI 

skeletal detection software is used to detect skeletal 

coordinates from images. The skeletal coordinates detected 

using such software are used as input data to AnyBody. 

Thus, in this study, the skeletal position coordinates are 

detected from images using VisionPose [15]. VisionPose is 

one of the AI skeleton detection software, a highly accurate 

AI posture estimation engine that can detect skeletons from 

2D camera images without using markers or depth sensors. 

VisionPose detects a total of 30 skeletal positions, including 

the hip and shoulder joints shown in Figure 2. Hence, in this 

study, the load applied to the body using AnyBody is 

derived from the skeletal position coordinates detected using 

VisionPose from the images. Out of the 30 locations 

detected by VisionPose shown on the right in Figure 2, the 

15 locations in deficit are used to derive the load by 

AnyBody. After that, a deep learning model is created by 

labeling this as the true value with the image. As described 

above, during system development, specialized software 

such as AnyBody and VisionPose is used to create deep 
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learning models. Then, based on this, when the system is 

used by the user, a structure will be built to enable 

estimation using only AI applications, without the need for 

several specialized software. These are the primary 

characteristics of the proposed system. It is a novel 

approach to combine AnyBody with AI.  

In this paper, since we focus on lumbago, we use the 

lumbar load as the body load. In this process, a deep 

learning model is created for each body load that is 

appropriate for the posture to be observed because AnyBody 

can derive the load that occurs in any region from single 

image data. That is, many body loads can be estimated and 

visualized by the proposed system from single image data. 

Next, the lumbar loading used in this paper is described. 

According to previous research [16], positive agreement 

was observed between in vivo measurements of disc 

compression forces between L4L5 and the values derived by 

AnyBody, demonstrating the suitability of the AnyBody 

model. Based on these results, this paper uses the 

compression force of the intervertebral disc between L4L5 

derived from AnyBody as the lumbar load. In a previous 

report [17], as a preliminary step in creating a deep learning 

model, we evaluated the compression force of intervertebral 

disc between L4L5 derived by AnyBody using the skeletal 

position coordinates detected by VisionPose from web 

images of standing forward bending posture. This result 

showed an increasing trend of disc compression force with 

forward bending of the upper body, as measured by 

Nachemson et al. [7]. In response to this result, as one of the 

training data for the compression force of the deep learning 

model, the intervertebral disc between L4L5 derived by 

AnyBody is used as the true value in this paper. 

 

III. ESTABLISHMENT OF CRITERIA FOR EVALUATING THE 

ACCURACY OF DEEP LEARNING MODELS 

In deriving the true value of the disc compression force 

for the proposed method, the relationship between the error 

in skeletal detection by VisionPose and the anterior tilt 

angle and the disc compression force will be clarified. This 

determines the evaluation criteria for the accuracy of the 

deep learning model to be created. 

 

A. Experiment 

Three male participants (age 21 ± 1.00, height 1.70 ± 

0.02 [m], weight 67.0 ± 1.70 [kg]) agreed to participate in 

the experiment in advance after obtaining approval from the 

University Ethics Committee and explaining the 

experimental details to the participants. A standing static 

posture image is acquired for them to obtain the anterior tilt 

angle and lumbar load by skeletal detection with VisionPose. 

One webcam (StreamCam: logicool) is used to get video. 

The camera is placed at the distance of 3 [m] from the 

center of the participant's body and at a height of 0.85 [m] 

from the floor. The movies are shot at 1080p/30fps. Three 

pictures are taken in each of the following conditions using 

the webcam: upright posture (0 degrees), 10 degrees, 20 

degrees, and 30 degrees of forward tilt angle of the upper 

body. The angle ofc forward bend is determined by pressing 

the board against the lower back and measuring with a 

digital angle meter. 

Based on the obtained images, one is, the skeletal 

position coordinates indicating the body center shoulder and 

hip positions detected by VisionPose are used to calculate 

the anterior tilt angle using a trigonometric function. After 

that, the error is calculated from the results of the measured 

and calculated values. The other is, based on the images, the 

skeletal position coordinates are detected from each image 

using VisionPose, and the skeletal position coordinates are 

input to AnyBody to derive the compression force of 

intervertebral disc between L4L5. In this process, the height 

and weight in the human body model in AnyBody are 

standardized to the participant's average in order to 

eliminate differences in the participant's physique in the 

derived values.  

 

B. Estimation Results 

Table I shows the error between the calculated and 

measured values of each forward tilt angle of the upper 

body, and the compression force of the intervertebral disc 

between L4L5 derived by AnyBody. Table I shows that the 

average absolute error of the forward tilt angle of the upper 

body detected by VisionPose is 3.20 [°]. Furthermore, the 

mean of standard deviation of the derived disc compression 

force between L4L5 was 13.1 [N], which is approximately 

2.00 [%] of the mean body weight, indicating a high 

accuracy with little variation between participants of the 

data. In addition, from the derivation results shown in 

Figure 3, it can be read that the L4/L5 intervertebral disc 

 

 

Figure 2. Skeletal position coordinates to be detected by VisionPose. 
Skeletal positions to be used for AnyBody are shown in red.    

(Source [15] on the left of the image) 
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TABLE I. MEAN ABSOLUTE ERROR BETWEEN CALCULATED AND MEASURED VALUES AND COMPRESSION FORCE OF INTERVERTEBRAL DISC BETWEEN L4L5 

AT EACH UPPER BODY FORWARD TILT ANGLE 

 

 

Figure 3. Compression force of intervertebral disc between L4L5 derived 
using AnyBody for each angle of forward tilt of upper body. 

 

load increases almost linearly in 10-degree increments. The 

estimation results captured the trend of increased lumbar 

loading due to forward tilt of the upper body, as described in 

orthopedic clinical practice. Therefore, the lumbar load 

derived by AnyBody from the skeletal position coordinates 

detected by VisionPose can be used as the true value of the 

training data for the deep learning model. Following the 

results, the slope of the linear function of the approximate 

line was calculated to obtain an average change in 

compressive force per unit angle of 21.1 [N]. These results 

will be used to evaluate the deep learning models to be 

created in subsequent sections. 

 

IV. ESTIMATION OF LUMBAR LOAD USING DEEP 

LEARNING MODEL 

This section describes the experimental methods used to 

collect training and validation data, the preprocessing 

applied to the measured data, and the training conditions for 

CNN. Furthermore, the created deep learning model is used 

to estimate the lumbar load and confirm its accuracy.  

 

A. Experiment 

Three male participants (age 23.2 ± 0.748, height 1.73 ± 

3.49 [m], weight 67.2 ± 4.35 [kg]) agreed to participate in 

the experiment in advance after obtaining approval from the 

Universi ty Ethics Committee and explaining the 

experimental details to the participants. To efficiently 

acquire posture images for use in the creation and accuracy 

validation of the deep learning model, video is captured for 

the forward bending motion of standing posture. The 

 

equipment used and camera locations are the same as in the 

experiment in Section III. The body gradually bends from 

an upright standing posture to about 30 degrees in 2 seconds, 

then the body gradually raises in 2 seconds to an upright 

standing posture. This is taken as one trial, and 5 trials are 

obtained. A total of three videos are obtained for each 

participant. 
 

B. Estimation Methods 

In this estimation, it is desirable to obtain the posture 

load at a specific point in time, so frame-by-frame images 

should be used for learning and estimation, rather than 

processing with video that includes time information. Hence, 

the video obtained by the experiment for a total of 15 trials 

for 5 using the Python module OpenCV (image processing 

library). The video of each participant is converted to an 

image at each frame rate, generating 1800 images per 

participant for a total of 9000 images. In addition, the 

lumbar load to be used as the true value is obtained by using 

VisionPose to detect the skeletal position coordinates from 

the videos of 15 participants in the trials. The first through 

fourth images of each trial as training data and the fifth 

image as validation data. The training data for each model 

are 1440 images and the of 5 participants in the same 

experiment. The derived disc compression force is 

normalized by dividing it by height and weight to eliminate 

differences due to body size. The normalized values are 

labeled as the true values for each frame of training data to 

create a deep learning model. After that, using the deep 

learning model created, estimation of lumbar load is 

performed on the validation data, and the normalized values 

are converted to disc compression force [N] by multiplying 

by height and weight.  

TABLE II. CNN LEARNING CONDITIONS 

 Set value 

Batch size 64 

Classes 100 

Epochs 200 

Dropout 0.2 

Convolution layer 

Filter size1 32 

Filter size2 64 

Stride 1 

Pooling layer Size (2, 2) 

Fully connected layer 64 

Upper body forward tilt angle [°] 0 10 20 30 Mean value 

Mean absolute error of angle [°] 2.17 ± 0.3 2.58 ± 1.1 4.58 ± 0.9 3.46 ± 4.3 3.20 ± 0.924 

L4/L5 intervertebral disc load [N] 365 ± 16.4 584 ± 6.50 798 ± 10.3 998 ± 19.2  
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Figure 4. The structure of the CNN learning conditions. 

 

In this paper, we use Convolutional Neural Network 

(CNN) for deep learning to estimate lumbar load.  

Numerical estimation is based on images, we consider that 

the same mechanism can be used for estimation as in the 

classification problem. The values of each parameter are 

shown in Table II. Figure 4 shows the structure of the CNN 

learning conditions used in this report. The CNN structure 

in the deep learning model consists of an input layer, 

followed by two convolutional layers, one pooling layer, 

two convolutional layers with dropout to prevent overfitting, 

one pooling layer, smoothing to prevent dropout to prevent 

overfitting, and output to an output layer after passing 

through all coupled layers one layer. The Relu function is 

used as the activation function in the convolution layer, the 

Relu function is used in the all-coupling layer, the Softmax 

function is used in the output layer, and Adam [18] is used 

for optimization. Keras Documentation [19] was used to 

create the above structure in Python. 

Keras.Callbacks.EarlyStopping is used as the termination 

condition, with the training error used as the monitor and 

auto as the mode. 

 

C. Individual Learning 

In this section, a deep learning model created for an 

individual confirms the applicability of the proposed 

method to a specific individual. A total of five deep learning 

models (Models A, B, C, D, and E) are created for each 

validation data, which are 360 images. The accuracy of the 

lumbar load estimated by the deep learning model is 

evaluated from each of the 360 images of the validation data. 

Figure 5 plots the estimates for each angle of forward tilt. 

The anterior tilt angle is calculated using a trigonometric 

function with the skeletal position coordinates indicating the 

body-centered shoulder and hip positions detected by 

VisionPose, based on the upright posture as 0 [°]. All model 

estimation results captured the trend of increased lumbar 

load due to upper body forward tilt as described in 

orthopedic clinical practice. Then, the lumbar load derived 

from the same verification data using AnyBody is compared 

to the estimated value as the true value. Figure 6 plots the 

estimated values from the deep learning model and the true 

values derived by AnyBody. Table III shows the Pearson's 

correlation coefficient and mean absolute error for each 

deep learning model. Pearson's correlation coefficients were 

0.993 at maximum, 0.978 at minimum, and 0.987 ± 0.00770 

at mean, indicating a high correlation in all models. In 

addition, the mean absolute error between the deep learning 

estimates and the true values derived by AnyBody was a 

maximum of 28.8 [N], a minimum of 22.5 [N], and an 

average of 26.3 ± 5.22 [N]. This is approximately 3.91 [%] 

of the average weight. Further, based on the results of the 

experiment described in Section III-B, the compression 

force changes by 21.1 [N] per 1 [°] of forward tilt angle. 

The average absolute error of the results of this experiment 

is equivalent to an error of 1.25 [°] of forward tilt angle, 

which is smaller than the average detection error of 3.20 [°] 

for the forward tilt angle in VisionPose. Therefore, the error 

is small. 

In response to this result, the deep learning model for the 

standing forward bending posture that was created was able 

to estimate the lumbar load of the participant with high 

accuracy, and the proposed method is applicable as a lumbar 

load estimation method for the individuals used in the 

training.  Thus, the user can check the posture change by 

own self by creating a deep learning model specialized for 

own self in advance. 

 

TABLE III. PEARSON'S CORRELATION COEFFICIENT AND MEAN ABSOLUTE ERROR FOR EACH DEEP LEARNING MODEL CREATED FOR AN INDIVIDUAL 

 Model A Model B Model C Model D Model E 

Pearson's correlation coefficient 0.983 ± 0.0101 0.994 ± 0.00172 0.993 ± 0.00271 0.978 ± 0.0178 0.990 ± 0.00617 

Mean absolute error [N] 28.4 ± 4.05 25.1 ± 3.79 26.8 ± 5.91 28.8 ± 7.39 22.5 ± 4.94 
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Figure 5. Intervertebral disc compression forces estimated for untrained 
data by a deep learning model created for an individual at each 

anterior tilt angle. For example, Model A plots the results of a deep 
learning model created for participant a using the first through fourth 
images of each trial as training data, and the fifth image of each trial 

is estimated as validation data. 

 

 

Figure 6. Comparison of disc compression forces estimated for untrained 
data by a deep learning model trained on an individual with the true 

values derived by AnyBody. 

 

D. Ensemble Learning 

In this section, a deep learning model created for several 

participants is used to verify the generalization performance 

of the proposed method. A total of five deep learning 

models (Models 1, 2, 3, 4, and 5) are created by cross- 

validating four of the five participants as training data and 

one as validation data. The training data for each model are 

7200 images and the validation data are 1800 images. 
Evaluate the accuracy of the lumbar load estimated by the 

deep learning model from each of the 1800 images of the 

validation data. Figure 7 plots the estimated values for each  

 

Figure 7. Intervertebral disc compression forces estimated for untrained 
persons by deep learning models trained on multiple people for each 
anterior tilt angle. For example, Model 1 plots the results of a deep 
learning model created with participants B, C, D, and E as training 

data, with participant A estimated as validation data. 

 

 

Figure 8. Comparison of disc compression forces estimated for untrained 
participants by a deep learning model trained on multiple people 

with the true values derived by AnyBody. 

 

angle of forward tilt. Although there were some outliers, all 

models captured the trend of increased lumbar load due to 

forward tilt of the upper body, as described in orthopedic 

clinical practice. Then, the lumbar load derived from the 

same verification data using AnyBody is compared to the 

estimated value as the true value. Figure 8 plots the 

estimated values from the deep learning model and the true 

values derived by AnyBody. Table IV shows the Pearson's 

correlation coefficient and mean absolute error for each 

deep learning model. Pearson's correlation coefficient was 

0.966 at maximum, 0.800 at minimum, and 0.888 ± 0.0274 

at the mean, indicating a high correlation, although inferior 

to individual learning. However, Figure 8 shows that 
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TABLE IV. PEARSON'S CORRELATION COEFFICIENT AND MEAN ABSOLUTE ERROR FOR EACH DEEP LEARNING MODEL WITH MULTIPLE PEOPLE TRAINED 

 

outliers were observed when the estimated values were 

between 300 and 400 [N]. In addition, the mean absolute 

error between the deep learning estimates and the true 

values derived by AnyBody was 126 [N] at maximum, 54.2 

[N] at minimum, and 79.2 ± 9.84 [N] on average. This is 

approximately 11.9 [%] of the average weight. Based on the 

results of the experiment described in Section III-B, the 

compression force changes by 21.1 [N] per 1 [°] of forward 

tilt angle. The average absolute error of the results of this 

experiment is 3.75 [°] of forward tilt angle, which is a 

higher value than the average detection error of 3.20 [°] for 

the forward tilt angle in VisionPose. Therefore, the error is 

large.  
However, Model 1 with the smallest average absolute 

error has an error equivalent to a forward tilt angle of 2.57 

[°], which is smaller than the average detection error of 3.20 

[°] for the VisionPose's forward tilt angle, and thus can be 

estimated with a small error. 

The deep learning models created for the standing 

forward bending posture target did not show sufficient 

generalization performance in estimation for untrained 

participants, due to variations in accuracy caused by some 

models satisfying the evaluation criteria and others not. 

 

V. CONSIDERATION 

The deep learning model created in Section IV-3 was 

used to estimate the lumbar load of untrained participants in 

several participants. The results showed that the estimation 

accuracy varied and the proposed method did not 

demonstrate sufficient generalization performance. This 

section considers the causes of this result and offers 

prospects for improving the accuracy of deep learning 

models. 

First, Figures 9 and 10 show the error rate and accuracy 

of Model 1. Model 1 has a relatively good Pearson's 

correlation coefficient and mean absolute error, with few 

outliers, among all deep learning models. Figure 9 shows 

the error rate per epoch during training for the Model 1 deep 

learning model. In the training data, the loss function 

decreases as the number of epochs increases. However, in 

the validation data, the loss function increases after a certain 

point. Furthermore, Figure 10 shows the accuracy per epoch 

during training for the Model 1 deep learning model. In the 

training data, the percentage of the accuracy increases as the 

number of epochs increases. However, in the validation data, 

there is no change in the accuracy value at a certain point in 

time. These figures suggest that overfitting has occurred. 

Citation [20] has been validated using MNIST and states 

that one of the causes of overfitting is lack of data. The 7200 

training data for the deep learning model created in this 

paper are extremely small compared to the 50000 training 

data for CIFAR-100, a data set with the same number of 

classifications. This indicates insufficient training data. 

Hence, the deep learning model is expected to be improved 

by increasing the training data. However, collecting huge 

amounts of data through experiments is costly and labor 

intensive. Therefore, one idea is to artificially edit image 

data through data expansion, as in previous research [21], to 

increase the training data without involving any actual 

experiments. Thus, it is expected to lead to an improvement 

in the accuracy of deep learning models. 

Second, Figure 11 shows the distribution of the image 

data acquired from the experiment for per normalized disc 

compression force. Figure 12 shows the distribution of 

 

 

Figure 9. Error rates for training and validation data for Model 1. 

 

 

Figure 10.   Accuracy for training and validation data for Model 1. 

 
Model 1 Model 2 Model 3 Model 4 Model 5 

Pearson's correlation coefficient 0.947 ± 0.0226 0.801 ± 0.0357 0.966 ± 0.00509 0.921 ± 0.0237 0.803 ± 0.0498 

Mean absolute error [N] 54.2 ± 10.4 89.4 ± 9.44 126 ± 9.49 57.0 ± 6.13 69.5 ± 13.8 
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Figure 11. Distribution of the number of image data acquired in the 
experiment per normalized disc compression force. 

 

 

Figure 12. Distribution of the number of images used as training data for 
Model 1 per normalized disc compression force. 

 

image data per normalized disc compression force used to 

train Model 1. Figure 12 shows that the amount of image 

data in the range of 30 to 35 normalized compressions used 

to train Model 1 was more than the other compressions. 

Further, a similar trend can be seen in all other models. 

Hence, the occurrence of outliers due to bias in the number 

of training data is another factor thought to reduce accuracy. 

Therefore, to verify the occurrence of outliers due to the 

bias in the number of training data, the number of image 

data is randomly deleted so that the number of image data 

between 30 to 35 becomes 800, the same level as the other 

range. A deep learning model was created using training 

data that had been adjusted to reduce bias in a simplified 

manner by this process, and the accuracy of the model was 

verified. Figure 13 plots the estimated values for each angle 

of forward tilt. All results of model estimation captured the 

trend of increased lumbar load due to forward tilt of the 

upper body as described in orthopedic clinical practice. 

Figure 14 plots the estimated values by the deep learning 

model using the training data after bias adjustment and the 

true values derived by AnyBody. Table V shows the 

Pearson's correlation coefficient and mean absolute error for 

each deep learning model created using the training data 

after bias adjustment. Pearson's correlation coefficients were 

0.971 at maximum, 0.843 at minimum, and 0.936 ± 0.0361 

at the mean, reducing the outliers seen in Figure 8 when the 

estimates were 300~400 [N], and showing a higher 

correlation than the results in Section IV-3, in which the 

training data were biased. In addition, the mean absolute 

error between the deep learning estimates and the true 

values derived by AnyBody was 126 [N] at maximum, 44.7 

[N] at minimum, and 80.1 ± 12.37 [N] on average. Next, the 

bias adjustment is made to confirm what changes occur in 

each of the deep learning models. For Model 2 and Model 5,  

 

 

Figure 13. Intervertebral disc compression forces estimated for untrained 
persons by deep learning models trained on multiple people using 

bias-adjusted training data for each anterior tilt angle. 

 

 

Figure 14. Comparison of disc compression forces estimated for untrained 
participants by a deep learning model trained on multiple people 
using bias-adjusted training data with the true values derived by 

AnyBody. 
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TABLE V. PEARSON'S CORRELATION COEFFICIENT AND MEAN ABSOLUTE ERROR FOR EACH DEEP LEARNING MODEL WITH MULTIPLE PEOPLE TRAINED 

USING BIAS-ADJUSTED TRAINING DATA 
 

Model 1 Model 2 Model 3 Model 4 Model 5 

Pearson's correlation coefficient 0.843 ± 0.159 0.938 ± 0.00524 0.972 ± 0.00439 0.960 ± 0.00674 0.968 ± 0.00590 

Mean absolute error [N] 80.0 ± 35.2 73.8 ± 3.18 126 ± 9.47 80.3 ± 6.65 44.7 ± 7.32 

 

where many outliers can be seen in Figures 7 and 8, the bias 

adjustment significantly improved the outliers. 

Accompanying this improvement was an increase in 

accuracy in both Pearson's correlation coefficient and 

absolute mean error. However, Model 1 after bias 

adjustment was less accurate than Model 1 before bias 

adjustment for both Pearson's correlation coefficient and the 

absolute value of the mean error. Otherwise, Model 4 after 

bias adjustment improved the correlation coefficient and 

worsened the mean absolute error. Model 3 confirmed no 

change in accuracy due to bias adjustment. 

In the two indices used to evaluate the accuracy of this 

paper, the accuracy by average of all models was lower than 

the results in Section IV-3, in which the training data were 

biased. In some of these cases, the correlation coefficient 

improved and the mean absolute error worsened, while in 

other cases both Pearson's correlation coefficient and mean 

absolute error worsened. Although, the outliers are 

eliminated in all models. Figures 15 and 16 show the error 

rate and the accuracy per epoch during training for the 

Model 1 deep learning model after bias adjustment. 

Although a minute change, the results of the validation data 

track the results of the training data, indicating that 

overfitting can be prevented by correcting the bias in the 

data. Hence, the possibility of improving the accuracy of the 

deep learning model was observed by homogenizing the 

training data. Furthermore, in this study, the training data 

was acquired through continuous repetition of forward 

bending movements, thus there is probably room for 

improvement with respect to this approach. 

If these problems can be improved and applied to 

untrained users, it will be possible to estimate lumbar load 

with a deep learning model prepared in advance, without 

having created a deep learning model specific to the 

individual in advance. That is, the scope of application can 

be expanded to include untrained user for general use. As a 

result, the system will not only improve the posture of users 

who habitually have bad posture, but also enable healthy 

users to easily use the system as a preventive measure. 

 

VI. CONCLUSIONS 

To prevent lumbago, it is effective to constantly observe 

the posture of daily life. Therefore, we will develop a 

method to quantitatively estimate and visualize the load 

applied to the user's own body without any burden on the 

user. To achieve this, this study proposes a body load 

estimation method used on a deep learning model that uses 

web images and body load derived by AnyBody as training  

 

data. In this paper, as a preliminary step, we created a deep 

learning model using only lumbar load as the body load and 

assuming a stationary standing forward bending posture. 

After that, the accuracy of estimating lumbar load from web 

images using the created deep learning model was evaluated. 

In the individual learning model, a high correlation was 

obtained between the estimates by the deep learning model 

and the true values derived by AnyBody, indicating that the 

errors were small. Therefore, it is possible to create a deep 

learning model in advance specifically for a specific user by 

using specialized software to create a deep learning model 

to be applied to that user. Thereafter the user to estimate the 

lumbar load in the target posture simply by inputting images, 

and can check the posture transition by own self. Hence, 

improvement of posture suited to individual will be possible 

without repeated visits to the hospital. 

 

 

Figure 15. Error rates for training and validation data for Model 1 after bias 
adjustment. 

 

Figure 16.    Accuracy of training and validation data for Model 1 after bias 
adjustment. 
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The other is, ensemble learning models showed high 

correlations, but models with high and low accuracy were 

identified, with a large variation in accuracy, and they did 

not show sufficient generalization performance. However, it 

was confirmed that data bias was one of the contributing 

factors to the lower accuracy. Therefore, if the data bias is 

improved, the proposed method has the potential to be 

applicable as a lumbar load estimation method to untrained 

persons.  

The deep learning model created in this paper only 

covers the estimation of lumbar load in the forward bending 

posture of the upper body. However, the AnyBody used to 

derive the lumbar load in this paper can derive various body 

loads on the body from single measured data. Therefore, 

various body loads are obtained from a single image data, 

and a new deep learning model is created using this as 

training data. That is, it is possible to estimate selected body 

loads in each posture by acquiring various loads applied to 

each body part from images of postures that are considered 

to have a large load on the lumbar, such as hunching back 

and warped back, including the upper body forward bending 

posture targeted in this paper, and learning them together 

with the images. In addition, the accuracy of the deep 

learning model is improved by optimizing the program 

through filtering and attention mechanisms.  
If these methods can be used to estimate the body load 

of any posture with a high degree of accuracy, the system 
can be developed into a system that quantifies and presents 
the load based on the proposed methods, allowing users to 
observe their own posture without burden. Thus, raise 
awareness of improvement, prevent lumbago, and ultimately, 
maintain and promote health.  
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