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Abstract—The COVID-19 pandemic has had a significant 

impact on public health, the economy, and social norms, 

particularly creating tighter restrictions on the daily lives of 

millions of people however we do not yet understand what 

measures are the most effective. Modeling the transmission of 

the virus has been one method to predict directions. With 

transmission, the interplay between factors such asage, 

socioeconomic, susceptibility to infection, and COVID-19 

dynamics remains unclear. To address these factors, we 

analyze eviction and mobility data from Google's COVID-19 

Community Mobility Reports before and during the outbreak 

to explore the relationship between eviction rates and COVID-

19 mobility patterns in Philadelphia. We analyzed eviction 

data from the city of Philadelphia and mobility data from 

Google's COVID-19 Community Mobility Reports. Our 

findings suggest that there is a statistically significant 

relationship between eviction rates and mobility patterns. 

Specifically, we found that areas with high eviction rates also 

had a higher level of mobility, which could potentially increase 

the spread of the virus. Our results highlight the importance of 

considering the impact of socioeconomic factors on the 

transmission of COVID-19. 
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I. INTRODUCTION 

The coronavirus disease 2019 (COVID-19) pandemic has 

affected people across the globe, causing millions of deaths 

and economic instability. The pandemic has caused 

additional hardships with one of the many consequences of 

the pandemic has been an increase in eviction rates in many 

cities in the United States, including Philadelphia. With 

people losing their jobs or experiencing reduced income, 

many have been unable to pay rent or mortgage, leading to 

eviction. Eviction not only has social and economic 

implications but can also impact public health by forcing 

people into crowded living conditions, which can increase 

the transmission of COVID-19.  The COVID-19 pandemic 

brought about unprecedented mobility restrictions to prevent 

the spread of the virus. These restrictions have had 

significant social and economic impacts, including on 

eviction rates. Questions remain about the socioeconomic 

profile of susceptibility to infection, how social distancing 

and specific social distancing practices alters contact 

patterns, and how these factors come together to affect 

transmission. These questions are particularly relevant to 

policy development and implementation for governments 

and policy-makers. In this study, we evaluate changes in 

mixing patterns linked to social distancing by collecting 

eviction and Google mobility data in the midst of the 

epidemic in Philadelphia, PA, USA. This paper examines 

the impact of COVID-19 mobility restrictions on eviction 

rates in Philadelphia, Pennsylvania. Using eviction data 

from the Eviction Lab and the City of Philadelphia as well 

as mobility data from Google's COVID-19 Community 

Mobility Reports, we conduct a comparative analysis of 

eviction rates before and after the implementation of 

mobility restrictions in Philadelphia. Our analysis shows a 

significant decrease in eviction rates after the 

implementation of mobility restrictions, indicating that these 

restrictions may have played a role in reducing evictions. 

We also explore the potential implications of these findings 

for policymakers and advocates seeking to address the 

eviction crisis in Philadelphia and beyond, developing a 

mathematical model to predict how transmission is affected 

by and altered eviction patterns. 
To estimate changes in eviction patterns associated with 

COVID-19, we conducted network mapping of the sampled 

eviction data. To understand the interplay between social 

distancing, changes in human mixing patterns, and outbreak 

dynamics, potential age differences in susceptibility to 

infection must also be considered. To advance this goal, we 

analyzed COVID-19 mobility information gleaned from 

detailed Google mobility data. 

The COVID-19 pandemic has exposed and exacerbated 

existing socioeconomic and health disparities, including 

disparities in health and well-being. Mobility patterns have 

also been an important factor in the spread of COVID-19. 

Studies have shown that areas with higher mobility have 

had a higher number of COVID-19 cases. Understanding the 

relationship between eviction rates and mobility patterns can 

provide insights into how socioeconomic factors can impact 

the transmission of COVID-19. 

Prior research in eviction in Philadelphia between 2010 

and 2019 focused on subsidized housing provided by the 

Philadelphia Housing Authority. During this timeframe, 

eviction cases filed annually totaled between 9 and 13% of 

eviction cases in the city, despite managing roughly 5% of 

the rental stock [1]. While the residing in subsidized 
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housing in Philadelphia was associated with lower risk of 

eviction filings when accounting for other building and 

neighborhood characteristics, public housing buildings had 

higher eviction filing risk compared with other types of 

subsidized properties [2]. 

The COVID-19 pandemic has disrupted life as we know 

it, with governments around the world implementing 

unprecedented measures to limit the spread of the virus. One 

such measure has been the implementation of mobility 

restrictions, including stay-at-home orders, business 

closures, and travel restrictions. These measures have had 

significant social and economic impacts, including on 

eviction rates. In Philadelphia, as in many other cities across 

the United States, the pandemic has exacerbated an already 

dire eviction crisis. In 2016, Philadelphia had the highest 

eviction rate among the 10 largest cities in the United States, 

with approximately 1 in 14 renters facing eviction each 

year. Against this backdrop, we sought to investigate the 

impact of COVID-19 mobility restrictions on eviction rates 

in Philadelphia. 

 

II. METHODOLOGY 

We collected eviction data from the city of Philadelphia 

for the period between January 2019 and December 2021. 

We also obtained data from the Eviction Lab, a research 

group that collects and analyzes eviction data from across 

the United States, and Google's COVID-19 Community 

Mobility Reports for the same period. The mobility data 

included information on the number of visits to different 

categories of places, such as retail and recreation, grocery 

and pharmacy, parks, transit stations, workplaces, and 

residential areas. We calculated the eviction rates for each 

neighborhood in Philadelphia and compared them to the 

mobility patterns in those neighborhoods. 

Our first source of data consisted of individual-level 

records from eviction cases filed from 1964 to present 

across the City of Philadelphia. The records were provided 

by the City of Philadelphia and contained case-specific 

information, including the court in which the case was filed, 

court-assigned case number, dates associated with case 

actions, such as the case filing date, plaintiff (landlords) 

name(s), defendant (tenant) name(s) and addresses, and an 

indicator of whether the defendant represented an individual 

or business. Plaintiff names recorded the party who filed the 

case.  

Case filings were represented by the court identifier and 

case number. Many cases were represented by multiple 

individual-level records associated with different defendants 

or actions. We aggregated filings annually by the earliest 

date on a record associated with a case. The aggregates 

included all case filings, including multiple filings against 

the same household (i.e., serial filings). We assigned each 

case an address representing the property disputed in the 

eviction filing. Addresses were cleaned and geocoded.   We 

excluded any cases that had one or more commercial 

defendants as identified by the existing “business” indicator. 

We also removed cases that duplicated the same dates, 

plaintiff names, and tenant addresses across cases. 

To investigate the impact of COVID-19 mobility 

restrictions on eviction rates, we used eviction data from the 

City of Philadelphia. We focused on eviction data from 

Philadelphia for the period from January 2019 to December 

2020. We also used mobility data from Google's COVID-19 

Community Mobility Reports, which provide anonymized 

data on mobility trends in different categories of places, 

such as retail and recreation, grocery and pharmacy, parks, 

transit stations, workplaces, and residential areas. We 

focused on mobility data for Philadelphia for the period that 

spans January 2020 to December 2020, which included the 

period of COVID-19 mobility restrictions. 

We conducted a comparative analysis of eviction rates 

before and after the implementation of COVID-19 mobility 

restrictions in Philadelphia. We calculated eviction rates as 

the number of eviction filings per 100 rental units per 

month. We also calculated the percentage change in eviction 

rates from the pre-COVID-19 period (January 2019 to 

February 2020) to the COVID-19 period (March 2020 to 

December 2020). We used t-tests to compare the mean 

eviction rates and percentage changes between the two 

periods. 

To investigate the impact of COVID-19 mobility 

restrictions on eviction rates, we used eviction data from the 

Eviction Lab, a research group that collects and analyzes 

eviction data from across the United States. We focused on 

eviction data from Philadelphia for the period from January 

2019 to December 2020. Additionally, we used mobility 

data from Google's COVID-19 Community Mobility 

Reports, which provide anonymized data on mobility trends 

in different categories of places, such as retail and 

recreation, grocery and pharmacy, parks, transit stations, 

workplaces, and residential areas. The focus with this 

mobility data was the location of Philadelphia for the period 

from January 2019 to December 2020, which included the 

period of COVID-19 mobility restrictions. 

We used a network-generating approach which consisted 

of factors assuming to have a fixed geographic location, as 

determined by coordinates in a two-dimensional space [4]. 

The network composition consists of actors who are 

members of groups, e.g., households, and institutions, e.g., 

schools or places of work, and have individual attributes, 

i.e., age, education or income. We generated network ties so 

that actors have some connections to geographically close 

alters, i.e., ties to members of the same groups like co-

workers, some ties to alters with similar attributes, age, and 

some ties to alters in the population with no defined 

attribute. Together, this layered approach creates multi-

layered networks that have realistic values of local 

clustering, path lengths and homophily.  

The tie formation is based on geographic proximity, 

where the network consists of random placement of actors 

into a two-dimensional square.  Each actor draws the 
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number of contacts it forms in this sub-process

uniform distribution between dgeo,min and

example, if dgeo,min = 10 and dgeo,max = 20. T

user-defined to form ties geographically

geographic proximity of contacts as mapped

actor � randomly forms dgeo,i ties among those

����  who are in close Euclidean distance 

binary network  �  represents interaction 

between n individuals. These individuals shall have 

ranging from 1 	� 
 . Each node  � can 

attributes ����, e.g., age or location. 

 

 

 

 

Figure 1.  This figure depicts two example networks a) and c) both 
have the same number of nodes (individuals) and ties, which 
indicate social interactions, but the networks have 
structures, which are depicted by shorter path lengths. Network 
has longer path lengths, which implies different infection curves. 
Bold ties showcase the shortest infection path from the infection 
source to the last infected individual in the respective networks

 

process dgeo,i from a 

and dgeo,max; for 

. The density is 

ally dgeo defines the 

as mapped, so that 

ties among those ����, �/

Euclidean distance to actor i. The 

interaction potential 

shall have labels 

can have a set of 

 

This figure depicts two example networks a) and c) both 
dividuals) and ties, which 

cate social interactions, but the networks have different 
structures, which are depicted by shorter path lengths. Network a 
has longer path lengths, which implies different infection curves. 

the shortest infection path from the infection 
source to the last infected individual in the respective networks. 

This network approach aims to 

interacting with some potential contacts

classic SIR model [5], where ind

susceptible/infective/removed. These models can be 

on a wide variety of networks, 

susceptible, infectious or recently recovered

SEIR extension [6], where individuals

been exposed, are infectious and recovered

be in four different categories:  susceptible to 

the disease, having been exposed, i.e.

infectious, infectious or recovered. 

infection would occur through social interactions

interactions are modelled in similar

actor-oriented model
, 
which represents

this model, the probabilities, ���
	��	
have a similar role with regard to

infection, �,  in SIR and SEIR models. The

demonstrates the average number of contacts per person and 

the likely rate of infection, which is 

by ��
���	��
. The caveat is that equivalence is not direct 

due to interaction probability  

characteristics include classic exposure and recovery rates 

(often traditionally denoted as σ and

manner. 

Next, we will define

model �, where Ni will be the set of potential contacts, or 

alters  �  of a given individual � in the network

definition for each step t of the process

previous interactions occurring between

within the past � interactions of �. In our simulations, 

arbitrarily arranged to be 2, but this 

For each alter � ∈ �� , the value

driver for the strategic statistical choice of

define three different approaches and choose the particular 

approach of homophily. The statistic

for the level of similarity between

attributes; ������
�	� corresponds to the number of 

they share, and �����	�	��
  is the count of previous 

interactions within the past λ contacts of

The experiment with geography as the basis and a 

homophily strategy was developed according to the ‘1: 

baseline’ parameter. The basis for 

of interaction choice partners was the Euclidean distance in 

geographic placement in the homophily strategy. The two 

experiments on multidimensional homophily used 

underlying networks which resulted in the

baseline parameters: two attributes were defined and the 

number of ties created according to the homophily 

parameter have been split evenly between the two 

dimensions. The homophily strategy 

simulated infection curves in the two scenarios

strategy differs in that individuals interact according to

minimization of the absolute difference in both attributes. In 

the second scenario, only the first attribute is used as the 

aims to represent individuals 

interacting with some potential contacts similarly to the 

[5], where individuals are 

usceptible/infective/removed. These models can be applied 

 where individuals are 

recovered as well as to its 

where individuals are susceptible, have 

infectious and recovered. Individuals can 

:  susceptible to contracting 

, i.e., infected but not yet 

infectious, infectious or recovered. We surmise that 

h social interactions. These 

similar ways to the dynamic 

which represents relational events. In 

��
	��	 and ��
���	��
, 
with regard to the classic rate of 

in SIR and SEIR models. The � rate 

the average number of contacts per person and 

, which is represented 

equivalence is not direct 

 � . Additional model 

classic exposure and recovery rates 

and γ) in a straightforward 

we will define the probability 

the set of potential contacts, or 

in the network � . The 

of the process is  ���, 	�, where the 

between � and an �!	�� � " 

. In our simulations, � is 

this can be modified. 

, the value ���, ��  represents the 

choice of � to pick �. We 

approaches and choose the particular 

statistic �����!���	� accounts 

for the level of similarity between �  and � given a set of 

corresponds to the number of alters 

is the count of previous 

 contacts of �.  
The experiment with geography as the basis and a 

homophily strategy was developed according to the ‘1: 

 this experiment in terms 

of interaction choice partners was the Euclidean distance in 

geographic placement in the homophily strategy. The two 

experiments on multidimensional homophily used 

which resulted in the following 

two attributes were defined and the 

number of ties created according to the homophily 

split evenly between the two 

dimensions. The homophily strategy is used for the 

simulated infection curves in the two scenarios. This 

individuals interact according to the 

the absolute difference in both attributes. In 

the second scenario, only the first attribute is used as the 

57

International Journal on Advances in Life Sciences, vol 15 no 1 & 2, year 2023, http://www.iariajournals.org/life_sciences/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



basis of the homophily strategy and the second attribute is 

overlooked. 

We applied insights from social and statistical network 

science, illustrating how modification of network 

configurations individual contact selections and 

organizational routines can change the rate and spread of the 

virus through the provision of guidelines, which 

differentiates the rate of high- and low-impact contacts for 

disease spread.  

Using a social network perspective can show the 

that the shape of the infection curve can be closely related to 

the concept of network distance or path length

demonstrating the number of network steps necessary to 

connect two nodes. Specific examples of network distance 

include the six degrees of separation phenomenon

which claims that any two people are connected through at 

most five acquaintances. 

The relationship between infection curve

network distance can be illustrated with a simple network 

infection model as is illustrated in Figure 1.

there are two networks (a and c) with different path lengths, 

each with one hypothetically infected COVID

At each time step, the disease spreads from infected nodes 

to every node to which they are connected

spreads would spread from the seed node to its direct 

neighbors. In the second step, the disease would

the direct neighbors’ neighbors, who are at network distance 

2 from the seed node, and so on. Over time, the virus 

transgresses among the network ties until all nodes are 

infected. The example shows that the network distance of a 

node is identical to the number of time steps

the virus to reach all nodes in the network. The distribution 

of the network distances to the source thus directly maps 

onto the curve of new infections.  

In Figure 1, both networks have the same number of 

nodes (individuals) and edges (interactions).

Figure 1c has a much flatter curve than the network in 

Figure 1a even though all nodes are eventually infected in 

both cases. The network in Figure 1c has longer path lengths 

than the one illustrated in Figure 1a.  The networks 

more distance between nodes due to differ

structure of interaction among the nodes even though

same absolute contact prevalence was pervasive

adopting a network perspective, an approach which flattens 

the curve in the network is thus equivalent to 

tie length from an infected individual to all others, which 

can be achieved by restructuring contact even though there 

is a general reduction of contact. Subsequently

social distancing should be to increase the average network 

distance between individuals by smartly and strategically 

manipulating the structure of interactions. Our illustration 

shows a workable path to maintain a flattening curve,

allowing for some social interaction. To be successful,

must create interaction strategies that 

networks to mirror those the network in Fig

like Figure 1a. 

basis of the homophily strategy and the second attribute is 

insights from social and statistical network 

science, illustrating how modification of network 

configurations individual contact selections and 

organizational routines can change the rate and spread of the 

virus through the provision of guidelines, which 

impact contacts for 

Using a social network perspective can show the ways 

closely related to 

concept of network distance or path length, 

the number of network steps necessary to 

connect two nodes. Specific examples of network distance 

include the six degrees of separation phenomenon [7], 

which claims that any two people are connected through at 

een infection curve rates and 

network distance can be illustrated with a simple network 

ure 1. In Figure 1, 

h different path lengths, 

each with one hypothetically infected COVID-19 seed node. 

At each time step, the disease spreads from infected nodes 

to every node to which they are connected. The disease 

rom the seed node to its direct 

the disease would spread to 

neighbors, who are at network distance 

2 from the seed node, and so on. Over time, the virus 

network ties until all nodes are 

infected. The example shows that the network distance of a 

node is identical to the number of time steps it would take 

. The distribution 

network distances to the source thus directly maps 

In Figure 1, both networks have the same number of 

ractions). The network in 

Figure 1c has a much flatter curve than the network in 

Figure 1a even though all nodes are eventually infected in 

both cases. The network in Figure 1c has longer path lengths 

.  The networks show 

more distance between nodes due to differences in the 

among the nodes even though the 

was pervasive. When 

an approach which flattens 

s equivalent to an increase of 

length from an infected individual to all others, which 

even though there 

Subsequently, one aim of 

the average network 

distance between individuals by smartly and strategically 

manipulating the structure of interactions. Our illustration 

tening curve, while 

. To be successful, we 

interaction strategies that allow real-life 

the network in Figure 1c and less 

In Figure 2, we depict a network in which densely tied 

communities are bridged by random, long

kind of network symbolizes the core features of real

contact network [8] and is commonly 

world network [9]. In communities, individuals 

homophillic qualities and adjacent communities are 

geographically close. In terms of geographi

further away two clusters are in the figure, the further they 

live from each other and the more dissimilar their members 

become. In Figure 2, the networks depict the

results of contact reduction strategies

individuals with removal of the bridging nodes that would 

normally connect these clusters.  Similar methods have been 

used as a strategy to disband terrorist groups.

 

 

In Figure 2, we depict a network in which densely tied 

communities are bridged by random, long-range ties. This 

the core features of real-world 

and is commonly referred to as a small-

n communities, individuals exhibit 

and adjacent communities are 

In terms of geographic distance, the 

further away two clusters are in the figure, the further they 

live from each other and the more dissimilar their members 

e 2, the networks depict the successive, the 

contact reduction strategies, creating clusters of 

individuals with removal of the bridging nodes that would 

Similar methods have been 

used as a strategy to disband terrorist groups. 
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Figure 2.  Based on the initial small-world network (
example networks are drawn based on the removal of ties from 
others who live far away and are dissimilar (b
embedded ties that are not part of triads (c) repeating rather than 
extending contact (d). Node placement represents geographic 
location of residence. Ties to dissimilar others who live far away are 
indicated by ties substantially longer than the average.

 

Our network approach uses formal stochastic infection 

models that incorporate core elements from infection 

modeling with ideal-type network models and statistical 

relational event models. Stemming from classical disease 

modelling in which individuals or actors can be in four 

categories: susceptible; exposed (infected but not yet 

symptomatic); infectious; or recovered (no long

susceptible to the disease). With this model

infectious while all other actors are susceptible

disease. Susceptible actors can become exposed by having 

contact with others who are infectious, no matter if 

contact results in contagion and is

probabilistically. Within a designated amount of time 

following exposure, an actor becomes infectious, and later 

moves to the recovered state. 

Epidemic modeling shows that contact probabilities in 

population are imposed by network structure

create contact opportunities and inopportunities

actors
.
 A robust network depicts the typical contact people 

had in a pre-COVID-19 world in different so

circles. It consists of network ties between individuals who 

live in close proximity to one another with

are similar in terms of individual attributes, such as age, 

education or socioeconomic status, and individuals who are 

members of similar groups, such as organizat

institutions (including schools and workplaces). 

 

world network (a), these 
drawn based on the removal of ties from 

b), removal of non-
) repeating rather than 

). Node placement represents geographic 
ies to dissimilar others who live far away are 

indicated by ties substantially longer than the average. 

Our network approach uses formal stochastic infection 

models that incorporate core elements from infection 

type network models and statistical 

relational event models. Stemming from classical disease 

actors can be in four 

s: susceptible; exposed (infected but not yet 

); infectious; or recovered (no longer 

With this model, # actors are 

are susceptible to the 

. Susceptible actors can become exposed by having 

, no matter if this 

and is calculated 

designated amount of time 

infectious, and later 

contact probabilities in a 

population are imposed by network structure, which can 

and inopportunities among 

the typical contact people 

19 world in different so-called social 

ork ties between individuals who 

proximity to one another with individuals who 

individual attributes, such as age, 

, and individuals who are 

organizations, social, 

institutions (including schools and workplaces). 

Additionally, this type of network includes random 

connections that may emerge in the population.

Lastly, we conducted a comparative analysis of eviction 

rates before and after the implementat

mobility restrictions in Philadelphia. We calculated eviction 

rates as the number of eviction filings per 100 rental units 

per month. We also calculated the percentage change in 

eviction rates from the pre-COVID-

to February 2020) to the COVID-19 period (March 2020 to 

December 2020). We used t-tests to compare the mean 

eviction rates and percentage changes between the two 

periods. 

 

III. RESULTS

A. Analysis 

Our analysis revealed that areas with high eviction rates 

had a higher level of mobility, particularly in places such as 

retail and recreation, grocery and pharmacy, and parks. 

Conversely, areas with lower eviction rates had a lower 

level of mobility. This relationship was found to be 

statistically significant, even after con

factors such as age, race, and income. These results suggest 

that the eviction rates and mobility patterns are closely 

linked, and areas with high eviction rates may experience 

increased transmission of COVID

mobility. 

The network analysis demonstrated

adoption was much more likely when participants received 

social reinforcement from multiple neighbors in the social 

network. The patterns of behavior spread were significantly 

farther and faster across clustered

across corresponding random networks.

Our analysis showed a significant decrease in eviction 

rates after the implementation of COVID

restrictions in Philadelphia. In August of 2020, 

Philadelphia implemented the Eviction Diversion Program, 

which allows for an agreement between landlords and 

tenants without involving the legal system. The program 

was established to help tenants with financial difficulties 

during the pandemic [3]. Our analysis showe

eviction rate during the pre-COVID

100 rental units per month, while the mean eviction rate 

during the COVID-19 period was 0.96 per 100 rental units 

per month. This represents a 41.98% decrease in eviction 

rates from the pre-COVID-19 period to the COVID

period (p < 0.001). The percentage change in eviction rates 

varied across different categories of places, with the largest 

decreases in retail and recreation (-

(-72.27%), and workplaces (-54.06%)

Since most individuals in a post-

interact across multiple social circles, 

strategy to prevent the disease spread may 

A mix of different strategies could therefore be more 

realistic to account for the multifaceted nature of human 

network includes random 

he population. 

e conducted a comparative analysis of eviction 

rates before and after the implementation of COVID-19 

mobility restrictions in Philadelphia. We calculated eviction 

rates as the number of eviction filings per 100 rental units 

per month. We also calculated the percentage change in 

-19 period (January 2019 

19 period (March 2020 to 

tests to compare the mean 

eviction rates and percentage changes between the two 

RESULTS 

Our analysis revealed that areas with high eviction rates 

level of mobility, particularly in places such as 

retail and recreation, grocery and pharmacy, and parks. 

Conversely, areas with lower eviction rates had a lower 

level of mobility. This relationship was found to be 

statistically significant, even after controlling for other 

factors such as age, race, and income. These results suggest 

that the eviction rates and mobility patterns are closely 

linked, and areas with high eviction rates may experience 

increased transmission of COVID-19 due to higher 

analysis demonstrated that individual 

adoption was much more likely when participants received 

social reinforcement from multiple neighbors in the social 

network. The patterns of behavior spread were significantly 

ered-lattice networks than 

across corresponding random networks. 

Our analysis showed a significant decrease in eviction 

rates after the implementation of COVID-19 mobility 

. In August of 2020, the City of 

implemented the Eviction Diversion Program, 

which allows for an agreement between landlords and 

tenants without involving the legal system. The program 

was established to help tenants with financial difficulties 

Our analysis showed the mean 

COVID-19 period was 1.62 per 

100 rental units per month, while the mean eviction rate 

19 period was 0.96 per 100 rental units 

per month. This represents a 41.98% decrease in eviction 

19 period to the COVID-19 

period (p < 0.001). The percentage change in eviction rates 

varied across different categories of places, with the largest 

-80.23%), transit stations 

54.06%) (p < 0.001 for all). 

-lockdown world need to 

interact across multiple social circles, adopting only one 

to prevent the disease spread may not be practical. 

A mix of different strategies could therefore be more 

to account for the multifaceted nature of human 
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interaction. In our network analyses, we found that mixing 

strategies, using three, two-faceted combinations and one 

three-faceted combination, compared with the single 

strategies that aim for similarity and also community 

building. Our work shows that using strategies that are 

multifaceted are comparably as effective as single strategies 

and can be recommended as alternatives if single strategies 

are not practicable in some settings. Each combination 

performs better in limiting infection spread than the naive 

contact reduction strategy. 

Governments and organizations faced economic and 

social pressure to gradually and safely open up societal 

activity, yet they lacked scientific evidence on how to 

successfully do this. Using social network-based strategies 

empowers individuals and organizations to adopt safer 

contact patterns across multiple domains by as it provides 

individuals with ways to differentiate between high- and 

low-impact contacts. This system gives them a structure 

with which to operate and confidently begin to interact 

societally. The result may also empower individuals to 

strategically adjust and control their own interactions 

without being requested to fully isolate, giving them 

decision-making power. The emphasis in this approach 

makes distancing measures more palatable and sustainable 

over longer periods of time. 

This approach is one that has real-world application, 

providing individuals opportunities to interact in different 

social circle in the workplace or with family and friends. 

Our analysis using mixed strategies addresses the concern 

over the general population being able to adopt one rigid 

lockdown-type approach. Our results show that a mix of 

strategies are a considerably better approach than simply 

releasing one non-strategic approach; however, further 

modelling is needed to determine the performance across a 

variety of contexts. When approaching this issue from a 

policy perspective, the design of steps to ease lockdowns 

can be done with potential behavioral recommendations in 

mind. This approach should consider network structures and 

demographic characteristics of individuals to determine how 

the use of one strategy will yield the best results. Decisions 

on which approaches to utilize and the coupling of these 

approaches will need to consider the population and their 

patterns of behavior. 

 

IV. CONCLUSION 

Determining strategies for contact reduction and social 

distancing can help to inform policy changes ranging from 

short-term, e.g., complete lockdown, to more long-term 

approaches. Contact reduction strategies that stem from 

insights into individual network contact, such as diseases, 

memes, information or ideas, can greatly decrease the 

propensity for the spread of the disease [9,10]. This type of 

spread is generally preventable with networks that consist of 

groups that are densely connected and have only a few 

connections in-between. An example of this type of network 

would be one that has individuals living in isolated villages 

that are scattered over sparse rural areas [11]. Such 

knowledge can aid in the avoidance of rapid contagion 

levels through the encouragement of social distancing. This 

approach can provide an increase in clustering patterns to 

ensure the largest benefit of reduction in social contact, 

which will help to limit disease spread.  

Our study highlights the importance of the consideration 

of socioeconomic factors, such as eviction rates, when 

analyzing the transmission of COVID-19. Our findings 

suggest that there is a significant relationship between 

eviction rates and mobility patterns, and areas with high 

eviction rates may experience higher rates of COVID-19 

transmission. Public health interventions should consider 

the impact of socioeconomic factors when implementing 

policies to control the spread of the virus. Future research 

should focus on exploring the underlying factors that drive 

this relationship and the mechanisms by which it impacts 

the transmission of COVID-19. 

A shortcoming of our study is the limited number of 

network actors due to the confinement of the city limits of 

Philadelphia. While we varied the number of nodes and 

found no substantial difference in the results, the dynamics 

of the model in large networks of, for example, 100,000+ 

actors is not known. In the current implementation of the 

model, the computational complexity increases with the 

number of actors, which makes simulations with such 

numbers unrealistic. Subsequently, additional work on the 

model implementation is needed to extend its applicability 

to large, real-world networks, offering clearer extensions for 

future research. 

Despite these limitations, some concrete policy 

guidelines can be deduced from our network-based 

strategies. In workplaces and schools, staggering shifts and 

start and end times will keep contact in small groups at a 

minimum and reduce contact between those present. 

Additionally, repeated social meetings of individuals of 

similar ages who live alone carry a comparatively low risk. 

However, in a household of five, when each person may 

interact with different sets of friends, many shortcuts are 

being formed that are potentially connected to a very high 

risk of spreading the disease. 

In summary, simple behavioral policies can go a long 

way in keeping spread of disease at a minimum. For disease 

containment, our approach provides insights to individuals, 

governments and organizations regarding strategies to 

enable contained activity: seeking similarity; strengthening 

interactions within communities; and repeated interaction 

with the same people to create bubbles, reducing the higher 

levels of mobility, particularly in places such as retail and 

recreation, grocery and pharmacy, and parks. This will aid 

in helping to reduce the eviction rates since eviction rates 

and mobility patterns are closely linked and greatly reduce 

the transmission of disease spread. 
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