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Abstract— This work presents a non-invasive low-cost system 

suitable for the at home assessment of the neurological 

impairment of patients affected by Parkinson’s Disease (PD). 

The assessment is automatic and it is based on the accurate 

tracking of hands and fingers movements of the patient during 

the execution of standard upper limb tasks specified by the 

Unified Parkinson’s Disease Rating Scale (UPDRS). The 

system is based on a human computer interface made by light 

gloves and an optical tracking RGB-Depth device. The 

accurate tracking and characterization of hands and fingers 

movements allows both the automatic and objective assessment 

of UPDRS tasks and the gesture-based management of the 

system, making it suitable for motor impaired users, as are PD 

patients. The assessment of UPDRS tasks is performed by a 

machine learning approach, which uses the kinematic 

parameters that characterize the patient movements, as input 

to trained classifiers, with the aim of automatically rating the 

UPDRS scores of the performance. The classifiers have been 

trained by an experimental campaign, where cohorts of PD 

patients were contemporary assessed by a neurologist and the 

system. Results on the accuracy of the system assessments, as 

compared to the neurologist’s ones, are given, along with 

preliminary results on monitoring experiments at home. 

Details about the user interfaces of the system, specifically 

designed for home-monitoring, are provided. The clinimetric 

properties of the system and its usability have been evaluated 

and reported. The results confirm that the system is suitable 

for the remote monitoring of PD patients at-home. 

Keywords - Parkinson’s disease; UPDRS assessment; RGB-D 

camera; human computer interface; tele-monitoring. 

I.  INTRODUCTION 

This article is an extended version of the paper presented 
at the Fourth International Conference on Smart Portable, 
Wearable, Implantable and Disability-oriented Devices and 
Systems, SPWID 2018, and in particular at the  
PARKTECHNO special track,  where some studies on new 
technologies for people with Parkinson’s Disease were 
presented [1]. Parkinson’s Disease (PD) is a chronic 
neurodegenerative disease characterized by a progressive 
impairment in motor functions (e.g., bradykinesia) [2], with 
important negative impacts on the quality of life. The 

Unified Parkinson's Disease Rating Scale (UPDRS) [3] is an 
international evaluation scale, commonly used by 
neurologists to assess the severity of the disease, whose 
motor symptoms are the most important and characterizing 
aspect. Specifically, standardized motor tasks, described into 
the Section III of the UPDRS and dedicated to the motor 
examination, are used by neurologists to assess impairments 
and to assign a subjective score, for each task, on a scale of 
five classes of increasing severity, from 0 (no impairment) to 
4 (severe impairment). 

The assessment process takes into account specific 
kinematic features of the movements (such as amplitude, 
speed, rhythm variations) and anomalies (such as hesitations, 
freezing, incomplete movements), which are qualitatively 
and subjectively evaluated by neurologists. On the other 
hand, a quantitative and objective assessment of these tasks 
is considered important to increase the reliability of the 
clinical assessment [4] and to support the disease 
management and the patient care. A commonly adopted 
solution is to make use of the well-established correlation 
existing between kinematic parameters of the movements 
and the severity of the impairment [5][6]. This correlation is 
used in the automatic and objective assessment of UPDRS 
motor tasks by several technological approaches, including 
those based on optical devices and wearable inertial sensors 
[7][8]. 

Another aspect to be considered is that drug treatment of 
the PD symptoms is crucial to reduce the effects of the 
impairment in daily activities. Because of possible 
fluctuations in impairment, it would be desirable to adjust the 
therapy on a weekly basis, both for the best effectiveness of 
the therapy and to reduce the side and long-term effects [9]. 
Unfortunately, the cost of a traditional weekly assessment, 
preferably at home to reduce patient’s discomfort, is 
unsustainable for the health care system. In this context, 
technology can support neurologists with an objective and 
quantitative assessment of the UPDRS motor tasks. 

The paper is organized as follows. The state of the art on 
the technological approaches adopted in the analysis of the 
upper limb movements during UPDRS tasks is presented in 
Section II. The methodological approach we propose for the 
accurate tracking of hand and fingers movement is described 
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Figure 1. Hand/fingers tracking system 

in Section III. In the same section, the graphical user 
interfaces, the methods used to evaluate the system usability 
and the agreement between standard and system assessments 
are also described. In Section IV, we present the results on 
the kinematic parameters selection, the automatic 
classification of the motor performance and the usability of 
the system. Furthermore, preliminary data about the 
assessment of patient’s performance at home are provided. 
Conclusions and future work are discussed in Section V. 

 

II. STATE OF THE ART 

Several solutions have been proposed for the 
characterization of upper limb movements during the 
execution of UPDRS tasks. Approaches based on wireless 
inertial measurement devices (such as accelerometers and 
gyroscopes) [9][10][11] and on resistive bending sensors 
[12] do not suffer of occlusion problems, but they are more 
uncomfortable for people with mobility difficulties 
compared to the optical approaches and, more importantly, 
their invasiveness can affect motor performance.  

Recently, optical approaches have been proposed for the 
hand tracking and the automated assessment of the upper 
limb tasks of UPDRS, namely: Finger Tapping (FT), 
Opening-Closing (OC) and Pronation-Supination of the hand 
(PS). In particular, solutions have been developed based on 
RGB cameras [13], passive markers [14] and bare hand 
tracking by consumer depth sensing devices 
[15][16][17][18].  

Less attention is generally given to the assessment of the 
tracking accuracy obtainable by the proprietary hand-
tracking firmware of these consumer devices. Their accuracy 
can be unsatisfactory especially for fast movements, as has 
been shown by comparisons with standard optoelectronic 
systems [19]. Nevertheless, accuracy is an important 
requirement to be considered for the reliability of kinematic 
parameters and the assessment of the motor performance. 
Furthermore, the short life of these devices and the related 
Software Development Kit (SDK) warns against solutions 
that are too dependent on proprietary hardware and software.  

Along this line of research, we present a low-cost system 
for the home-based automated assessment of the three upper 
limb tasks of the UPDRS (i.e., FT, OC, PS). The system 
hardware is based on lightweight colored gloves, an RGB-
Depth sensor and a monitor, while the software implements 
the 3D tracking of the hand trajectories, characterizes them 
by kinematic features and assesses the motor performance by 
Machine Learning algorithms (i.e., trained supervised 
classifiers). The software performs the real-time tracking by 
fusion of both color and depth information from the RGB 
and depth streams. The system acts at the same time as a 
non-invasive Human Computer Interface (HCI), which 
allows PD patients with motor impairments to self-manage 
the execution of the tests. 

 Respect to other approaches, based only on depth 
information and proprietary algorithms, the hand tracking is 
more robust and accurate for fast movements [19], making 
the final assessment more reliable. Another important 
characteristic of our solution is that it does not depend on 

any particular hardware or SDK; it assumes only the 
availability of RGB and depth streams at reasonable frame 
rate. Moreover, the accuracies obtained by the classifiers 
demonstrate the feasibility of the system in the remote 
assessment of the upper limb tasks of UPDRS. Some 
preliminary results are provided on the home monitoring of 
PD patients.  

This version extends the conference paper providing 
more details about the natural user interface, specifically 
developed to allow patients the self-management of the tasks 
execution and the interaction with the system. The main 
features of the supervising component of the monitoring 
platform, designed to analyze the patient performance 
remotely, are presented. Finally, considering the importance 
of the usability aspects of a technology, results of a Post-
Study System Usability Questionnaire (PSSUQ) are also 
presented. 

 

III. SYSTEMS AND METHODS 

A. System Hardware 

The hand/fingers tracking hardware consists of a low-
cost RGB-Depth device (Intel RealSense SR300 ©) that 
provides synchronized RGB color and Depth streams at 
resolutions of 1920x1080 (Full HD) at 30fps and 640x480 
(VGA) at 30 fps (max. 200) respectively. The RGB-Depth 
device is connected via a USB port to a personal computer 
(PC) running Microsoft Windows and equipped with a 
monitor positioned in front of the user (Figure 1). The 
monitor provides the visual feedback of the HCI for the 
user’s hand and finger movements. The user equipment 
consists of black lightweight gloves with imprinted color 
markers: each color marker corresponds to a particular part 
of hand to be tracked (e.g., fingertips and wrist) or to be used 
for color calibration and system interaction (e.g., palm). The 
working volume of the system is a pyramid trunk, which 
extends from 0.5m up to 2m from the RGB-Depth sensor. 
This guarantees enough space to perform the exercises 
comfortably. 

The device drivers and our developed software are used 
to implement both the hand/fingers tracking and the HCI 
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Figure 2. Hand segmentation and marker detection: color blob 
centroids and bounding box 

 

 

 
 

Figure 3. Human computer interface with natural gesture-based 

interaction of patient subsystem: example of GUI for the task 
selection   

user interface. The software running on the PC implements 
the acquisition and processing of the data streams for the 
hand/fingers tracking, the kinematic parameter estimation 
and the task assessment.  

Furthermore, the data produced in every test session, 
including video sequence of the performance, extracted 
kinematic parameters and system scores are automatically 
encrypted and archived for further analysis and for clinician 
supervision and independent assessment. 

 

B. Human Computer Interface for System Management 

The software for the real-time hand/fingers tracking and 
the graphical user interfaces support the human computer 
interaction, thanks to which the patient can manage the test 
session (e.g., start and end the session, select a specific task, 
enter information on the perceived health status, etc.). 
Simple gestures, such as opening and closing the hand or 
pointing the fingers toward the interactive objects of the 
graphic menu displayed on the monitor, trigger specific 
actions.   

The hand tracking software requires an initial setup 
phase, which consists of the global adjustment of the image 
brightness, the detection of the hand area and the color 
calibration for marker recognition and segmentation. The 
Intel LibRealSense library is used for the acquisition of RGB 
and Depth streams, while  the OpenCV library [20] is used to 
retrieve the 3D position of the hand centroid from the Depth 
stream. A shaking movement of the user’s hand starts the 
recovering of the initial hand position. The hand centroid is 
used to segment the hand from the background and to define 
2D and 3D hand bounding boxes, both for color and depth 
images. Then, the RGB stream is converted to the HSV color 
space, more robust to brightness variations.  

The design of the color markers and the implementation 
of a color constancy algorithm compensate for the different 
lighting conditions that could be found in domestic 
environments. For this purpose, during the initial setup, the 
white circular marker on the palm is detected and tracked in 
the HSV stream. The average levels of each HSV component 
of the white marker area are used to compensate for the 
predominant chromatic components due to the different 
types of lighting. Their values are used to scale each of the 
three HSV video sub-streams during the tracking phase. 

During the tracking phase, the 3D position of the hand 
centroid is used to continuously update the 2D and 3D hand 
bounding boxes (Figure 2). The color thresholds, selected 
during the initial setup phase, are used to detect and track all 
the color blobs of the markers. To improve performance and 
robustness, the CamShift algorithm [20] has been used in the 
tracking procedure. The 2D pixels of the area of every color 
marker are reprojected to the corresponding 3D points by 
standard reprojection algorithms to evaluate the 3D centroid 
of each color blob. Each centroid is an estimate of the 3D 
position of the corresponding part of the hand. 

The trajectories of all centroids characterize the 
movements of the hand, which are used to evaluate the task 
performance (Subsection F). 

 

C. Graphical User Interfaces of the system 

The graphical user interfaces (GUIs) of the system 
become active automatically a few seconds after the system 
is switched on. The GUIs support two different 
functionalities, depending on the type of user. The patient 
GUI is displayed on the monitor at home, and provides the 
user with visual feedback concerning the movement of the 
hand and fingers, the actions triggered, and the input given 
(Figure 3). The GUI menus of the patient interface are 
managed only by hand gestures, allowing to start/end the 
session and to select the task to be performed, confirming the 
choice by closing the hand. Furthermore, the predefined 
menu items allow the input of some basic information 
concerning the patient’s perceived condition and the type and 
dosage of drug taken.  

Textual messages support the subject during the entire 
test session and the interaction with the system; in addition, a 
video guide can be activated by dedicated menu items if the 
patient has doubts on the correct execution of the task. 

Regarding the clinician subsystem, the GUI provides the 
clinical management and the remote supervision of the 
patients. The GUI is designed for technical users without 
disabilities, and consists of a more complex structure, 
widgets and functionalities. In this case, the GUI input is 
provided by mouse and keyboard. The GUI is organized as a 
hierarchy of windows activated by visual objects that trigger  
the execution of specific actions. Preliminary authentication, 
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Figure 4. The main window GUI for the clinician subsystem. 

 
 

Figure 5. GUI used to compare performance of the left and right hand 
and to detect asymmetries. The automatic and continuous scores are 
displayed for each performance.  

via personal credentials, guarantees a secure access to data 
only to authorized clinicians.  

The main window GUI (Figure 4) allows to select the 
patient’s folder from a repository in which videos, kinematic 
parameters and system scores of each performance were 
stored. The clinician can select a particular performance 
recorded among all those archived; then videos, reports with 
automated scores and information entered by the patient are 
displayed to be analyzed by the neurologist. Each video is 
managed by the functions of a standard video player object 
(start/stop/pause, rewind, slow motion, etc.), which allows a 
detailed analysis of the patient’s performance. In the lower 
area of the main window, the clinician can add useful 
annotations to the record, including the clinical assessments. 
This information is then stored as part of the patient’s record. 
Messages or communications to patient can be written by the 
clinician into the dedicated “MSG TO PATIENT” box to be 
displayed on the main GUI of the patient subsystem before 
starting the next session. From the main window GUI, four 
other child windows can be opened.  

The first child window (Figure 5), activated from the 
menu bar of the main window, provides a GUI that is 
intended to analyze and compare the performances, for the 
different upper limb tasks, of the left and right hand in the 
same acquisition session. In the graph area, the radar plots 
generated by the kinematic parameters of the left and right 
hand performances are displayed. The average values of the 
parameters for the UPDRS 0 class (green line), which are 
estimated from the reference database as described in 
Subsection D, are also displayed. They are used as reference 
values for a quick visual comparison of the patient’s 
performance. The UPDRS class and the continuous score W, 
estimated by the system for each performance, are displayed 
in the right area of the window. 

The second child window (Figure 6) provides a GUI that 
is intended to analyze and compare the performances, for 
each motor task, of the left and right hand but in different 
acquisition sessions. This GUI aims to monitor the evolution 
over time of the kinematic parameters that characterize the 
motor performance.   

Up to four sessions can be displayed simultaneously; the 
related parameters can be compared immediately each other 
and respect to the reference parameters relating to the 
UPDRS 0 class. The “VIEW SCORES” button, in the upper 
area of the GUI, opens a third child window GUI (Figure 7). 
This window displays the prediction of the UPDRS classes 
(i.e., the output probabilities estimated by the supervised 
classifiers) and the continuous score W computed by the 
system for each performance, allowing for an easy 
comparison of the evolution of the patient impairment.  

Finally, from the menu bar of the main window GUI, a 
fourth child window can be opened (Figure 8). This window 
allows to monitor the evolutionary trend of each kinematic 
parameter over time. The information displayed here may be 
useful to detect specific motor patterns hidden in similar 
performance scores, highlighting any changes in behavior 
over time and for both hands. 

 
 

Figure 6. GUI used to compare and highlight the evolution of the 
performance for the left and right hand over time. 
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D. Clinical Assessment and Data Acquisition 

An experimental campaign was carried out to collect the 
kinematic data and the neurologist scores on the 
performances of a group of PD patients while performing the 
upper limb UPDRS tasks, that is Finger Tapping (FT), 
Opening-Closing (OC) and Pronation-Supination (PS). The 
goal was both to select the kinematic parameters that best 
characterize the differences in the impairment severity, and 
to collect a database of “kinematic parameters vector – 
neurologist UPDRS score” pairs to train the supervised 
classifiers of the system used for the automated assessment 
of each task. Two cohorts were recruited: one composed of 
forty patients (22 females, 18 males) with a diagnosis of 
Parkinson’s Disease (PD), and the other composed of fifteen 
Healthy Control (HC) subjects. Patients were recruited 
according the UK Parkinson’s Disease Society Brain 
Bank Clinical Diagnostic standards and met the following 
criteria:  Hoehn and Yahr score (average 2.2, min 1, max 4); 
age 43–81 years; disease duration 2–29 years. 

 

PD subjects were excluded if they had previous 
neurosurgical procedures, tremor severity > 1 (UPDRS-III 
severity score), or cognitive impairment (Mini–Mental State 
Examination Score < 27/30). The HC subjects met these 
criteria: age 35–78 years; not affected by neurological, motor 
and cognitive disorders. All subjects provided their informed 
consent prior to their participation. 

The PD cohort was assessed for the FT, OC and PS 
UPDRS tasks on both hands by a neurologist experienced in 
movement disorders and the resulting UPDRS severity 
scores were found between 0 (normal) and 3 (moderate 
impaired). Every performance of the PD patients was tracked 
by the system and the related kinematic parameters were 
automatically extracted from the hand/fingers trajectories. 
The HC subjects performed the tests under the same 
environmental conditions and with the same system 
configuration as the PD patients. Before starting the 
acquisition campaign, a meeting was conducted to train the 
neurologist, staff and PD participants in the use of the system 
and to get acquainted with the procedures to be followed 
during the data acquisition. 

 

E. Validation of the agreement between neurologist and 

system assessments 

The goal of this work is the development of a 
telemedicine approach for the home-based assessment of 
Parkinson’s Disease.  

In this context, it is important to verify the agreement 
between the neurologist and the system assessments, both 
during the acquisition of experimental data and during the 
remote supervision, when videos of the patient performance 
are supervised and eventually assessed by neurologists.  

The agreement between system and neurologist has been 
addressed using the Intra Class Correlation (ICC) coefficient 
[21]. The ICCN-SY coefficient, between the live scores 
assigned to each task by the neurologist and the system at the 
end of the patient’s performance, was evaluated by applying 
the two-way random effects model for absolute agreement.  

In addition, to verify if the video of the performance 
conveys enough clinical information for the remote 
supervision, the ICCN-V between live and video-based 
assessments was also evaluated, this by applying the two-
way mixed effects model for absolute agreement. 

 

F. Kinematic Parameter Selection 

The automatic assessment of UPDRS tasks makes use of 
the well-established correlation existing between the 
kinematic parameters of the movements, objectively 
evaluated by the system, and the severity of the impairment, 
subjectively rated by neurologists and expressed as UPDRS 
scores [5].  

The kinematic parameters we choose are closely related 
to the typical characteristics of the patient’s movements that 
are used by neurologists to score the performance 
(amplitude, speed, rhythm, hesitations, and others). To 
compact the information associated with these parameters 
and to reduce their redundancy, the most discriminant ones 

 
 

Figure 8. GUI used to display the trend of a single kinematic 
parameter, highlighting any change in behavior over time and for both 
hands. 

 
 

Figure 7. GUI used to display the automatic prediction and scores 
(output of the SVM classifier) for the selected trials, to quantify the 
evolution of the motor performance over time. 
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have been identified for every UPDRS task. First, the 
Principal Component Analysis (PCA) has been applied to the 
initial set of parameters to filter out those that contribute less 
than 5% to represent the whole dataset. Then, the selected 
kinematic parameters were correlated to neurologist’s 
UPDRS scores (Spearman’s correlation coefficient ρ), 
keeping only those with the best correlation with 
neurologist’s UPDRS scores, at significance level p<0.01.  

In this context, the kinematic parameters of the HC 
subjects have been used to normalize the PD ones. Thanks to 
the better performance of the HC subjects, their average 
score values pi HC are always better than the pi PD ones, and 
are used to obtain the set of normalized PD parameters ( pi PD 

norm  = pi PD /pi HC). 
 

G. Automatic UPDRS Assessment by Machine Learning 

To implement the automatic assessment of the FT, OC 
and PS UPDRS tasks, three data sets of “kinematic 
parameters vector – neurologist UPDRS score” pairs were 
used to train three different classifiers. We use the LIBSVM 
library package [22] to implement three Support Vector 
Machine (SVM) classifiers with polynomial kernel. Their 
accuracy in the correct assignment of the UPDRS scores was 
tested by using the leave-one-out cross validation method. 
The confusion matrices were used to characterize the 
classification performance of each SVM classifier. 

An interesting feature offered by the implementation of 
the SVM classifier is that, given the kinematic parameters 
vector as input, the classifier output is a vector P of 
probabilities pj that the input vector belongs to the class Cj. 
To test the classifiers performance and build the confusion 
matrices, the class Ck corresponding to the highest 
probability pk among all the probabilities in P is chosen as 
the predicted score of the system.  

The probabilistic assignment P of the classifier output 
allows for an interesting extension to continuous values of 
the discrete UPDRS classification obtained using the most 
probable class. For this purpose, for each task, the 
probabilities pi to belong to specific UPDRS classes (i.e., the 
output of the classifier) have been combined by a weighted 
average. In this way, a continuous estimation W of the 
UPDRS score is obtained: 

 

                                     W = ∑ i ∙ pi                                                        (1) 

i = 0..4; pi = probability to belong to class Ci 

 
 
The advantage of this approach is the possibility of 

evaluating continuous and slight variations in motor 
impairment that is not possible to obtain with the standard 
quantized UPDRS score (0-4). In practice, the classifiers 
estimate probabilistic assignment vectors P having only two 
significant components that correspond to contiguous 
classes. An application to the monitoring of small 
fluctuations in patient impairment by the continuous UPDRS 
score, estimated through W, is presented in the paragraph of 
preliminary experiments. 

 

H. Clinimetric validation and usability of the patient 

subsystem 

Clinimetric validation was considered successful if a 
health monitoring system is shown to be reliable, valid and 
sensitive to changes [23][24][25]. Reliability is defined as 
the degree to which the measure is error-free and, 
consequently, produces consistent results. We use the Intra 
Class Coefficient (ICC) as a measure of reliability. Validity 
is the degree to which an instrument measures the construct 
it purports to measure, and we assess the system validity by 
the accuracy of the automated assessments as compared to 
the neurologist ones (Subsection C of the Results). 
Sensitivity is related to the ability of the system to detect 
changes over time. We evaluated the sensitivity in a 
preliminary longitudinal experiment by monitoring a limited 
number of PD subjects at home over a week (Subsection D 
of the Results). We use the continuous estimation W of the 
UPDRS score as defined in Equation (1) to assess the 
sensitivity to small changes in motor impairment. 

In addition to clinimetric validation, other important 

aspects that a home-based and self-administered health 

monitoring system should show are a good usability and 

acceptability. For this purpose, all the recruited PD patients 

were interviewed at the end of their respective sessions to 

evaluate their global level in computer and technological 

skills, their ability to wear gloves, and their satisfaction in 

using the system. The interview was conducted by 

presenting them a set of adjectives qualifications referring to 

the system. 

Furthermore, the system usability was assessed by the 

standardized interview of the Post-Study System Usability 

Questionnaire (PSSUQ) [26]. This is a 19-items ordinal 

score questionnaire based on 7-point Likert scales, which 

addresses six components of user satisfaction with regards 

to the systems usability: ease of use, ease of learning, 

simplicity, effectiveness, information and user interface. 
The users’ computer and technological skills were 

evaluated by their dichotomous answers (yes/no) to a 
questionnaire of 18 items concerning the previous use of 
information technologies (IT), the difficulties encountered in 
using the system, the need for a supervisor and the 
comprehension of the sequence of activities to be performed 
during the session. The users’ responses to the proposed 
items have been added in a final score divided into 4 IT skill 
levels (i.e., none, basic, intermediate, advanced). The ability 
to wear gloves was evaluated by the session supervisor on 
three levels (i.e., impossible to wear, wearable with aid, 
wearable without aid).  

The satisfaction in the use of the system was assessed by 
showing to the subject the image in Figure 9 at the end of the 
session, asking him/her to choose the three adjectives that 
best qualify the experience. Once again, the answers were 
added over all the subjects to obtain the three most important 
adjectives chosen by the PD cohort. The PSSUQ makes use 
of a standardized set of questions and procedures to evaluate 
the usability of the system [26]. 

 
 



7

International Journal on Advances in Life Sciences, vol 11 no 1 & 2, year 2019, http://www.iariajournals.org/life_sciences/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 
 

Figure 9. Imagine shown to the users at the end of the session, with the 
set of proposed adjectives to qualify the experience in using the 
system. 

 

IV. RESULTS 

A. Discriminant kinematic parameters 

The parameter selection process, applied to the initial set 
of normalized parameters, produces three sets of 
discriminant parameters (Table I) that are able to 
discriminate the UPDRS classes for the FT, OC and PS 
tasks, respectively. This is confirmed visually by the average 
values of the kinematic parameters selected with respect to 
the UPDRS severity classes, as shown in the radar graphs of 
Figure 10(a) for FT, Figure 10(b) for OC and Figure 10(c) 
for PS tasks, respectively. 

In Figure 10, the increase of the motor performance 
severity corresponds to an expansion of the relative radar 
graph. Note that, to highlight the discriminant power of the 
selected parameters, they have been represented directly 
(with the name of the original parameter) or inversely (with 
an overscore on the name of the original parameter), 
depending on whether the parameter value increases or 
decreases when the severity of the impairment increases. 
Furthermore, for graphical representation purposes, the 
parameters are scaled, so that the values corresponding to 
the best performance (pi PD no = pi HC ) are represented on the 
innermost circle (i.e., radius value = 1). 

 
 
 

TABLE I.  SELECTED KINEMATIC PARAMETERS 

Name 
Finger Tapping UPDRS task 

Meaning Unit ρ-value 

X1 Maximum opening (mean) mm -0.43 

X2 Maximum opening (CV) - 0.35 

X3 Maximum amplitude (mean) mm -0.41 

X4 Maximum amplitude (CV) - 0.39 

X6 Duration (CV) - 0.42 

X9 Maximum opening velocity (mean)  mm/s -0.58 

X10 Maximum opening velocity (CV) - 0.39 

X11 Maximum closing velocity (mean) mm/s -0.55 

X12 Maximum closing velocity (CV) - 0.43 

X13 Main Frequency Hz -0.48 

Name 
Opening-Closing UPDRS task 

Meaning Unit ρ-value 

X1 Maximum opening (mean) mm -0.54 

X2 Maximum opening (CV) - 0.34 

X3 Maximum amplitude (mean) mm -0.55 

X4 Maximum amplitude (CV) - 0.31 

X5 Duration (mean) s 0.25* 

X6 Duration (CV) - 0.58 

X9 Maximum opening velocity (mean)  mm/s -0.63 

X10 Maximum opening velocity (CV) - 0.47 

X11 Maximum closing velocity (mean) mm/s -0.54 

X12 Maximum closing velocity (CV) - 0.53 

Name 
Pronation-Supination UPDRS task 

Meaning Unit ρ-value 

X1 Maximum supination (mean) deg -0.36 

X2 Maximum supination (CV) - 0.05 

X9 Maximum supination velocity (mean)  deg/s -0.42 

X10 Maximum supination velocity (CV) - 0.35 

X11 Maximum pronation velocity (mean) deg/s -0.46 

X12 Maximum pronation velocity (CV) - 0.44 

X13 Main Frequency Hz -0.47 

X19 Pronation Phase Duration s 0.33 

 

Legend 

Coefficient of Variation: ratio of standard deviation (σ) to mean μ of the parameter. CV = σ/μ 

Maximum Opening/Supination: peak of distance/angle in one movement 

Amplitude: difference between maximum and minimum distance/angles in one movement 

Duration: time elapsed between the start and the end of one movement 

Maximum Opening/Supination Velocity: peak in an opening/supination phase of one movement  

Maximum Closing/Pronation Velocity: peak in a closing/pronation phase of one movement  

Opening/Supination Phase Duration: Time for opening/supination phase of one movement 

Closing/Pronation Phase Duration: Time for closing/pronation phase of one movement 

Rate: Number of movements per second 
Main Frequency: Frequency with the peak in power spectrum (bandwidth 0.. 4 Hz) 
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(a) 

 

(b) 

 

(c) 

Figure 10. Radar graph of selected kinematic parameters for FT task 

(a), OC task (b) and PS task (c) 

  
 

B. Accuracy of the Automatic Assessment 

The confusion matrices, shown in Tables II, III and IV, 
were used to characterize the classification performance of 
the SVM classifiers for the FT, OC and PS UPDRS tasks, 
both for the left and the right hand. From the confusion 
matrices, all the standard parameters for the evaluation of the 
classifier performance (such as accuracy, sensitivity and so 
on) can be easily obtained. 

It can be noted that the non-zero elements outside the 
diagonal of the matrices are only one position far from the 
diagonal ones, which means that the classification errors are 
limited to one UPDRS class. 

 

TABLE II.  FT  CONFUSION MATRIX (UPDRS CLASSES) 

 
SYSTEM SCORES 

 C0 C1 C2 C3 

CLINICAL 

SCORES 

C0 15 3 0 0 

C1 2 21 2 0 

C2 0 1 18 3 

C3 0 0 2 13 

TABLE III.  OC  CONFUSION MATRIX (UPDRS CLASSES) 

 
SYSTEM SCORES 

 C0 C1 C2 C3 

CLINICAL 

SCORES 

C0 14 2 0 0 

C1 1 17 2 0 

C2 0 1 22 3 

C3 0 0 4 14 

TABLE IV.  PS  CONFUSION MATRIX (UPDRS CLASSES) 

 
SYSTEM SCORES 

 C0 C1 C2 C3 

CLINICAL 

SCORES 

C0 8 3 0 0 

C1 1 10 2 0 

C2 0 2 30 6 

C3 0 0 3 15 

 

C. Usability assessment of the system 

The percentage breakdown of the computer skills of the 

PD users for none, basic, intermediate and advanced levels, 

is 55.2%, 18.0%, 16.8%, 10.0%, respectively. Most PD 

users (over 73%) had no or low computer skills, making the 

test representative of an elderly population of PD subjects. 
The percentage breakdown of the ability to wear gloves 

for the three levels (i.e., impossible to wear, wearable with 
aids, wearable without aids) is 3%, 5%, 92%. This result 
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confirms that the system is quite user-friendly for people 
with motor impairment as PD subjects and gloves are not 
such an invasive equipment. 

Concerning the adjectives chosen as representative of the 
experience with the system, the most voted ones are 
interesting (56%), helpful (50%), exciting (44%), stimulating 
(38%), unusual (25%), improvable (25%). Moreover, all the 
adjectives chosen have a positive meaning for the 
acceptability of the system. The word cloud of the 
characteristics expressed by the PD patients to describe their 
experience of using the system is shown in Figure 11. The 
word cloud (wordle) gives an intuitive indication of the 
relative importance of the adjectives proposed through the 
typical graphic style. The biggest words represent the most 
voted adjectives among the ones presented to the subjects 
during the interview at the end of the experimental session. 
Each subject was asked to selected three adjectives from a 
set of “positive” and “negative” words, giving us a direct 
feedback on the most and the least features voted in terms of 
usability, satisfaction and acceptability of the system. 

Figure 12 shows the results of the PSSUQ questionnaire 
on the usability of the system, mediated on the PD cohort. 
Subjects were asked to answer 19 questions on the system by 
assigning a Likert score (1 absolute agreement, 7 absolute 
disagreement) to express their standard positive or negative 
judgement on the experience of using the system [26]. The 
19 items are ordered from the first question (on the left) to 
the last one (on the right); for each question, the average 
score is reported. The analysis shows that the PD participants 
rated the usability of the system with an overall average 
score of 2.16 (±0.58) on the PSSUQ. This indicates that the 
majority of participants liked to use the system and 
appreciated the possibility offered by the system to monitor 
their own health condition at home. 
 

 

 

D. Preliminary Experiments on UPDRS Assessment 

A preliminary experiment was conducted to assess the 
feasibility of the proposed system in the monitoring of PD 
patients at home. A small group of patients with PD (4 
subjects) used the system at home for a period of one week. 
Subjects were instructed to perform the FT, OC and PS tasks 
at home every day of the week, at different times from drug 
intake (30m, 1.5h, 2.5h, 3.5h). The intent was to evaluate the 
potential fluctuations in the motor performance of upper 
limbs in the period following the drug intake. 

Thanks to the data storage and the remote retrieving 
capability of the system, the test session data such as scores, 
parameters and, in particular, videos captured during the task 
execution, were remotely accessed, analyzed and evaluated 
by the neurologist for both the hands. 

In this experiment, the agreement between the automatic 
scores of the system and the video-based scores of the 
neurologist has been evaluated by the ICC coefficient (two-
way random effects model for absolute agreement). The ICC 
values have been evaluated for each task, collecting the four 
daily scores for the entire week, this for all patients. In Table 
V, the resulting ICC coefficients for the tasks are shown. 

To give insight of the experiment results, in Figures 13, 
14, and 15 are shown samples of the daily assessments by 
the system and by the neurologist for the FT, OC and PS 
tasks on the performance of a PD patient. This patient is a 
65-year-old male, diagnosed for PD at 60, non-fluctuating, 
and with more severe motor impairment on the right side. 

 

TABLE V.  INTRA CLASS CORRELATIONS FOR THE AGREEMENT 

BETWEEN NEUROLOGIST AND SYSTEM SCORES 

 

UPDRS task 

FT OC PS 

ICCNV-SY 0.80 0.61 0.58 

The ICC values of the neurologist-system agreement for the three 
UPDRS tasks. The neurologist assessments are based on the recorded videos 
of the performances of the four patients. 

 
 
 
 
 

 
 

Figure 11. The word cloud of the most voted characteristics indicated by 
the cohort of PD patients to describe their experience in the use of the 
system. 

 
 
Figure 12. Results of the PSSUQ questionnaire on the usability of the 
system. 
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The neurologist’s scores are based on the recorded videos 
of the patient’s performances: scores are evaluated and 
shown at four different times per day. To facilitate the 
interpretation, system scores expressed as continuous values 
W are connected by solid colored lines (red for the right 
hand and blue for the left hand, respectively).  

In Figure 14, the large difference between left and right 
hand scores for the OC task, occurring at 2.5 hours from 
drug intake, could be due to the subjective evaluation of the 
neurologist. This hypothesis is supported by the other 
performance scores of the neurologist for the FT and PS 
tasks at the same time, which show less differences between 
the two hands. The system scores are less fluctuating, 
compensating for possible incorrect subjective evaluations.  

As shown in the figures, on the average, there is a good 
agreement between system and neurologist scores. 
Nevertheless, the system can assess tasks on a continuous 
scale (W) respect to the standard discrete UPDRS score 
evaluated by neurologists. This feature could open the 
possibility to investigate the interaction between drugs and 
motor effects with a more objective, sensible and hopefully 
accurate approach.  

  

 

 
 

V. CONCLUSIONS AND FUTURE WORKS 

This work presents a non-invasive and low-cost system 
for the automatic assessment of subjects with PD that 
perform standard UPDRS tasks for upper limbs at home. The 
system is based on a new human computer interface that, 
through the accurate hand tracking, allows both the 
management of the system and the automatic and objective 
UPDRS assessment. 

The gestural interface makes it suitable for users with 
motor impairment, as are PD patients. The user interface of 
the system has been specifically designed for the home 
monitoring of people with mobility difficulties, as those 
affected by Parkinson’s Disease.  

The system interface of the remote supervisor provides a 
secure access to the clinical data. Furthermore, all relevant 
clinical data (videos, reports with automatic scores and 
information entered by the patient) are displayed and can be 
easily analyzed by the clinician. Textual messaging can be 
used by the remote supervisor to send messages, which are 
shown on the GUI of the patient subsystem at the start of the 
next acquisition session. 

The automatic assessment of UPDRS tasks is performed 
by a machine learning approach that uses some selected 
kinematic parameters that characterize the patient’s 
movements. The classifiers, one for each UPDRS task, were 
trained during an experimental campaign in which patients 
with PD were assessed at the same time by the neurologist 
and the system. The results obtained from the classifiers 
confusion matrices show that classification errors are limited 
to one UPDRS class and only in some cases, making the 
system suitable for the self-managed assessment of the upper 
limbs UPDRS tasks at home. Based on the classifier output, 
a new continuous estimate of the UPDRS score is introduced 
and its potential benefit is discussed.  

The clinimetric properties of the system and its usability 
for PD users have been evaluated. The results confirm that 
the system is suitable for the monitoring of Parkinson’s 
Disease at-home.     

 
 

Figure 13. Example of the automatic assessment of the FT task for the 
left (blue) and right (red) hand at different times from drug intake. The 
continuous assessment scores (System W score) by the system and the 
standard UPDRS scores (Clinical score) by neurologist are shown at 
four different time. To facilitate the interpretation, system scores are 
also connected by solid lines. 

 
 

Figure 14. Example of the automatic assessment of the OC task for the 
left (blue) and right (red) hand at different times from drug intake. The 
continuous assessment scores (System W score) by the system and the 
standard UPDRS scores (Clinical score) by neurologist are shown at 
four different time. To facilitate the interpretation, system scores are 
also connected by solid lines. 

 
 

Figure 15. Example of the automatic assessment of the PS task for the 
left (blue) and right (red) hand at different times from drug intake. The 
continuous assessment scores (System W score) by the system and the 
standard UPDRS scores (Clinical score) by neurologist are shown at 
four different time. To facilitate the interpretation, system scores are 
also connected by solid lines. 
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Preliminary results on the application of the continuous 
UPDRS score in the at home monitoring of patients with PD  
are presented. Further experiments are still needed to 
validate both the usability and accuracy of the system in  
home environment, and the usefulness of the continuous 
UPDRS score introduced here for monitoring fine 
fluctuations of motor impairment.  

Next steps will also cover the extension of this solution 
to the analysis of other UPDRS tasks, with the aim of 
obtaining a complete and comprehensive assessment of the 
neuro-motor status of PD patients. This would be important 
in the perspective of the optimization of the drug therapy, 
because the assessments could be carried out on demand at 
the patient's home whenever more frequent observations are 
needed to assess the worsening of motor symptoms. All 
these features are relevant to significantly improve both the 
clinical management and the patient's quality of life.  
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