
Improving Web Accessibility:
Computing New Web Page Design with NSGA-II

for People with Low Vision
Yoann Bonavero, Marianne Huchard, and Michel Meynard

LIRMM, CNRS and Université de Montpellier, Montpellier, France
Email: yoann.bonavero@lirmm.fr, marianne.huchard@lirmm.fr,

michel.meynard@lirmm.fr

Abstract—As society becomes increasingly aware of the need
to take disabilities into account, new information technologies
and intensive use of computers can be a chance or create new
barriers. In the specific case of people with low vision, efforts
to improve e-accessibility are mainly focused on the provision
of third-party tools. Assistive technologies like screen magnifiers
adapt graphical user interfaces to increase the quality of the
perceived information. However, when these technologies deal
with the Web, they are not able to meet all specific needs of
people with low vision. In this paper, we propose an approach to
make Web pages more accessible for users with specific needs.
User preferences can concern font size, font family, text color,
word and letter spacing, link color and decoration or even more
complex features regarding brightness, relative size or contrast.
We also take into account and encode the designer’s graphical
choices as designer preferences. Solving preferences of the user
and of the designer to obtain a new Web page design is an
optimization problem that we deal with Non-dominated Sorting
Genetic Algorithm II (NSGA-II), a polynomial Multi-Objective
Genetic Algorithm. We conducted detailed tests and evaluated
the running time and quality of results of our tool on real Web
pages. The results show that our approach for adapting Web
page designs to specific user needs with NSGA II is worthwhile
on real Web pages.

Keywords– e-accessibility, Web page personalization, visually
impaired, low vision, evolutionary algorithm, NSGA-II.

I. INTRODUCTION

In this paper, we deepen the research work presented in
[1], where we developed an approach to improve Web page
accessibility for people with low vision.

Many countries are adopting laws or treaties for enhancing
digital accessibility. Some countries consider e-accessibility as
a very important issue and even as a citizens’ right. According
to recent estimates, about 285 million people are considered
visually impaired worldwide. 39 millions of them are blind and
246 million have low vision [2]. These figures are constantly
growing, mainly because of the increased life expectancy.

ICT (Information and communication technologies) are in-
creasingly used by everyone in everyday life. Unfortunately,
this can be a double-edged issue for people with visual
impairment, because these new technologies, which are able
to compensate for user disabilities, can also be a new source

of exclusion and discrimination. On the one hand, these tech-
nologies offer many solutions for everyday life activities. For
example, they allow online purchasing, dealing with adminis-
trative documents, managing bank accounts, or locating places
and finding routes. Beyond these services, ICT also bring a
social dimension. They potentially offer access to information
that was previously inaccessible for visually impaired people.
On the other hand, many issues remain, due to the technologies
used to design and develop websites.

Websites are composed of different kinds of data, including
text-based documents, images, videos, and sounds. These data
are displayed on pages formatted with respect to a visual style.
This visual style, often given by CSS (Cascading Style Sheets)
is written or used by the page author. The different choices
made by the designer create the graphical context of the Web
page. The graphical design of a Website reflects the brand
or organization, and constitutes a landmark for people. It is
also intended to influence the reader to recognize, assimilate,
memorize a page and associate it with the related brand or
organization. Moreover, it is intended to help users in their
tasks by describing a navigation template, an information
hierarchy and thus, it helps in understanding the page.

The publication language mainly used for the Web is HTML
(HyperText Markup Language). This publication language is a
very flexible and easy to understand language. Unfortunately,
this flexibility gives us many ways to do the same basic things.
For example, we can build the same (in terms of rendering)
navigation menu with only list tags such as UL (Unordered
List), LI (List Item), A (link to Another file), or with block
tags such as DIV (DIVision) or SPAN (to span).

The W3C (World Wide Web Consortium) and other organi-
zations publish sets of technical specifications in order to frame
the development of websites. The W3C also provides a set
of specifications to make accessible websites. The compliance
of websites to these specifications assumes that they can
be used by assistive technologies. Tools and guidelines are
provided to developers and end-users, such as the WCAG 2.0
(Web Content Accessibility Guideline [3]), the UAAG (User
Agent Accessibility Guideline [4]), the ATAG (Authoring
tool Accessibility Guideline [5]) and the WAI - ARIA (Web
Accessibility Initiative - Accessible Rich Internet Application
[6]). Organizations like BrailleNet have been created to op-

243

International Journal on Advances in Internet Technology, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

erationalize the different standards of the W3C guidelines,
including “AccessiWeb”.

Unfortunately, e-accessibility is not a main concern of web-
site designers and developers. It is often considered as a waste
of time or an additional development cost, giving unsightly
results that only target a small part of the population. Users can
use third-party assistive tools to cope with visual difficulties
when developers do not care about accessibility. Assistive
technologies have existed for several years and are widely
used by disabled people. Screen readers allow the user to get
information in another communication way: vocal synthesis or
braille display are used to vocalize information or display it in
braille. Although this technology is designed for blind people,
people with low vision also use it as a supplement to another
assistive technology. Visually impaired people with low vision
often use their partial sight as the principle means to access
information. Screen magnifiers are applications that improve
visual comfort and increase information acquisition. With these
tools, it is possible to use zoom and color filters to compensate
for visual issues. These tools are useful but frequently not
sufficient to ensure e-accessibility because they have a general
purpose, and they are not adapted to specific needs. This
is mainly due to the high maintenance cost to maintain the
compatibility with some applications like browsers, and to deal
with after-sales technical issues. Nevertheless, e-accessibility is
essential to ensure a quality of access to a large amount of Web
services and contents. Recently, e-accessibility understanding
is about to become a recognized professional skill for Web
developers.

In this paper, we address the problems of adapting Web page
design to the specific needs of a visually impaired person. Our
approach proposes to replace the current pixel-level treatment
process (in magnification filters) by an adaptation process
based on knowledge of the HTML elements. Each HTML
element has its own type and properties (color, size, position,
etc.). The adaptation is performed from a set of user wishes,
also called preferences. User’s preferences can be font size,
font family, text color, word and letter spacing, link color and
decoration or even more complex wishes regarding brightness,
relative size or contrast. We also take into account Web page
designer’s graphical choices as designer preferences. Solving
these user and designer preferences to get a new Web page
design is an optimization problem, that we manage with
NSGA-II (Non-dominated Sorting Genetic Algorithm II), a
polynomial Multi-Objective Genetic Algorithm.

In Section II, we explain how existing visual tools and
assistive technologies work, and we highlight their main draw-
backs regarding Web page context. We also present existing
approaches that are intended to adapt user interfaces or Web
pages in a personalized way. Section III presents how we
represent Web page elements to be adapted as well as user
(or designer) wishes. In Section IV, we describe how we are
using and tuning NSGA-II. Section V reports the results that
we obtained on several Web pages during our research. We
conclude, in Section VI, by giving some perspectives of this
work.

II. EXISTING WORK AND PROBLEM STATEMENT

In this section, we explore hardware and software solutions
developed to improve or provide website accessibility for
visually impaired people with low vision. In all of these
solutions we distinguish between two main kinds of tools and
approaches. Some of them are used at development time as
developer tools while others are used by end-users mainly on
the client-side (filters and style-sheet redefinition). Besides, we
describe more advanced proposals that try to partially automate
some personalized adaptations.

A. Standards, guidelines, tools for developers
The W3C (World Wide Web Consortium) is at the origin

of HTML and CSS standardization. It also works on ac-
cessibility via several initiatives, including WAI-ARIA (Web
Accessibility Initiative - Accessible Rich Internet Application
[6]). These standards have evolved through many versions
to address the emergence of new technologies. They have
two main objectives. The first is to ensure that resources can
be parsed and used by external assistive technologies. The
second is to provide minimal access to content for people
who do not use, for different reasons, assistive technologies.
One aim of these standards is to be independent of languages
like HTML, JavaScript or CSS. This ensures the definition of
robust standards regarding language diversity and evolution.
The separation between the content and the page display style
is the most important feature offered by HTML 4 and CSS 2.
This separation should provide easier access to content.

In addition to the standards, guidelines like WCAG (Web
Content Accessibility Guidelines [3]), UAAG (User Agent Ac-
cessibility Guidelines [4]) or ATAG (Authoring Tools Acces-
siblity Guidelines [5]), frameworks and tools are published to
ease the use of the standards. We can mention “AccessiWeb”,
developed by the BrailleNet organization, which provides a
simple operational interpretation of standards. WAI references
a set of evaluation tools [7]. WCAG contains all standards
about page content rendering, including the way the content
is displayed to the user in terms of size, contrast, etc. UAAG
gathers many required features of tools that browse Web pages.
Finally, ATAG is concerned with tools that generate source
code for Web content. The rules and standards are classified
according to their importance to make websites accessible.
Three increasing accessibility levels have been defined (A, AA
and AAA). The first level (A) gives basic mandatory advice
to ensure information accessibility. The second level (AA)
provides important recommendations to be respected to avoid
difficulties in accessing information. The third level (AAA)
is about additional and optional ways to improve information
access quality. When Web designers and developers include
accessibility dimension in their websites, they mainly try to
reach the intermediary AA level. Only a few very specialized
websites require the highest level AAA.

Many tools exist that allow developers to make accessible
websites or simply to get accessible existing websites. These
tools analyze the HTML source code and either automatically
rewrite it, or assist the developer to correct it, for example
through suggestions in accordance with the standards [8].

244

International Journal on Advances in Internet Technology, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Original publication page of the National Federation of the Blind.

These tools can be separated into two categories: evaluation
tools and transformation tools. The main drawback of these
tools is that they do not enable adaptation for very different
needs coming from various visually impaired people. Some
user needs can contradict each other. Conflicts can arise due
to dependencies between needs. For instance, high brightness
contrast (for readability) and low light emission (for reducing
the dazzle effect) can lead to conflictual needs (light emitting
elements are linked to brightness contrast between them).
Consequently, automated evaluation and transformation tools
can only assist developers to meet a general accessibility
requirement but are limited to implementation of the minimum
recommended by standards.

B. Improving accessibility tools for the end user (magnifica-
tion, browser options and extensions)

Some kinds of accessibility tools are available to get infor-
mation from websites and report it to the user through another
communication protocol. For example, for users with low
vision, it is possible to retrieve information by transforming
visual output with magnification applications or accessibility
browser options and extensions.

Magnification tools allow the user to zoom on windows
(e.g., Figure 2 zooms on Figure 1). Some of them propose font
smoothing to avoid blurred characters, and mouse pointer mod-
ification to improve tracking movements. As another example,
magnification tools can apply filters on the window. Filters
include “gray scale”, “one color scale”, “black and white”, or
“color inversion” (see Figure 4 for three of these filters). One
widely used color filter is the color inversion filter (Figure 3).
Its main purpose is to considerably reduce light emission when
the user is on pages with a light background.

Another way for adapting Web pages consists of using the
browser options and extensions that enable us to manipulate
style sheets. It is possible to completely remove style sheets or
to define a unique style sheet that will be applied to all Web

Figure 2. Applying zoom from a magnifier on the NFB publications Web
page.

Figure 3. Applying a color inversion filter from a magnifier on the NFB
publications Web page.

pages. To facilitate modifications, many browsers provide a
graphical interface to help in the configuration of properties
such as background color, text color, text size or link color.

With the two solutions defined previously (screen magnifier
and style sheet redefinition), we can theoretically adapt almost
all pages to be suitable for a large part of the impaired
population. However, it is more complex in practice. These
pages could be even better modified for the population, and
there is a requirement for additional tools to meet more needs
of visually impaired people. For various reasons, the existing
solutions are not suitable for everyone. In the following, we
highlight problems that occur when using filters (treatments on
global images), then issues related to style sheet modification.

1) Filters: Figure 4 illustrates three filter applications. In the
original A case, we represent a dark colored text background.

245

International Journal on Advances in Internet Technology, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Text Text

Text Text

Text Text

Text Text

Ct=2.5 Ct=2.5

Ct=2.5 Ct=1

A B

C D

Ct : Contrast between text and background

Color
inversion

Black and whiteGray
scale

Figure 4. Filter application.

From this first original case we apply some classical filters
encountered in magnifier tools. In B, we apply to A the widely
used filter inverting color of the display. We apply to A a gray
scale color filter to give C, and we obtain D by applying a
black and white color filter on A. For each case we associate a
brightness contrast between the text color and the background
color. Brightness contrast is the property that people with low
vision mainly use to quantify the difference between text and
direct background when they require an acceptable readability.
It is measured by a ratio, which is a floating number between 1
and 21. It often ranges from 1:1 to 21:1. 1 (1:1) denotes the null
contrast while 21 (21:1) denotes the highest contrast between
two elements. This representation comes from the WCAG
contrast computation. Regarding our filter, if the contrast is
originally low (A case), filters like color inversion and gray
scale filters cannot significantly improve brightness contrast
and therefore the readability. Black and white filters, which are
often efficient to increase the contrast, are no longer relevant
in this case. These filters use a threshold to separate elements
by their light emitting into two groups. Each element in the
group of darkest elements is assigned a black color while each
element in the second group is assigned a white color. If both
text and background have two light or dark close colors (both
below the threshold or both above the threshold), both elements
are assigned the same color (in Figure 4, they both become
white). Obviously, if both elements have the same color we
lose all readability and contrast falls to 1:1. To avoid this, the
filter must include a threshold, which would be customizable
either automatically or manually by the end-user. However, in
practice, this is not often the case, and when the threshold can
be changed, this is a complex task for a non-expert user.

2) Style sheet definition: Most current browsers have exten-
sions 5, modules or simply accessibility options to transform
and adapt Web pages. These transformations are based on the
manipulation of the Web page style sheet. In old browsers,
options are often available to simply disable the original style
sheet. This has the effect of only keeping the content without
any graphical style. In more recent browsers, there are more

Figure 5. Chrome change colors extension.

Figure 6. Google website with browser accessibility options enabled (top:
original, bottom: with some accessibility options).

options to individually select to display images, keep original
text font, etc. Sometimes this manipulation leads to huge
information loss. Consequently, we can lose the global page
context and also the brand or the organization design. This
loss is unavoidable if Web pages are not properly developed
in respect with the content and style separation rule given by
the W3C.

An intermediary approach is also provided by browsers.
Instead of disabling the entire style sheet, we can change a
part of it. Rewriting a section of the page style sheet allows
us to improve the readability of some elements. The end-
user can define some properties like text color, text size,
link color or background color. Some browsers allow more
advanced users to define and provide their own style sheet.
This alternative allows users to change all object properties.
With style-sheet rewriting, the original context is more or
less kept depending on the applied modifications. The global
context (layout, colors, brand chart, etc.) is inevitably lost if
there are major changes to compensate for complex disabilities.

Figure 5 shows how preferences can be adjusted in Chrome.
Figure 6 presents the result on the Google result page when
selecting some colors in accessibility options like background
color. On the top, we have the original page, the middle of the
page is removed to only show parts where alterations occurred.
The result is displayed below the original. As a consequence,

246

International Journal on Advances in Internet Technology, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Facebook website with browser accessibility options enabled.

buttons represented by an image included by the CSS file
as a background image disappear and are replaced by the
default selected color. Moreover, the main Google logo also
disappears.

The Facebook sign in page (Figure 7) and the BBC (British
Broadcasting Corporation) weather page (Figure 8) are deeply
altered by accessibility options. Important information is lost.
On the Facebook page, a recent version of HTML and styles
sheets are used to make many visual effects. Main modifica-
tions concern fields of forms. Borders of login and sign in
form fields become nearly invisible. Moreover, because of the
removal of the top header background, login fields cannot be
distinguished. Only the blinking caret is visible and allows
the user to detect them. Concerning the sign in form, nearly
invisible borders combined with lighter default text (text that
disappears when clicking or filling the field) give to a user
with low vision the impression that this text is the label of
the field. Thus, the user has to click on the text to see that it
is a field default text and not a label. The BBC weather page
also has many alterations. This time this is not an interaction
button that disappears but image justifying the position of
many links. Indeed, the map at the page bottom contains text
links to select a city. However, the world map seems to be
inserted as a background image and not as an image. Thus,
when accessibility options are set, the user is faced with a
link disposition that is not logical. On this website, we also
observe that the logo disappears and the search field is hard to
find. Furthermore, here again, the location field appears with
a nearly invisible border, which may generate ambiguity.

With style-sheet modification, the user often has to set many
properties, including text color, link color, visited link color,
hovered link color, title level 1 color, title level 2 color, etc.
As a result, he has to manipulate a set of technical terms
and a lot of options, and this task often is cumbersome and
time consuming. Furthermore, preferences defined through this
interface are the same for all pages. They are applied on all

Figure 8. BBC website with browser accessibility options enabled.

Web pages independently of their original style. Unfortunately,
a single global configuration made by the user may not be
relevant for all Web pages.

C. More advanced personalization approaches

Beyond the modules or extensions mentioned above, some
more evolved proposals provide greater physical characteristic
configuration support [9]. These end-user side applications
allow the user to configure text properties such as size, letter
spacing, or line spacing, colors of the text, background and
links. They also allow the user to configure the image display
(show or hide) and table display. Once the modifications
are applied, almost all information about website colors may
disappear. Then the original site ambiance may be lost.

User actions on websites can be used to adapt the Web page
or the navigation: In [10], the authors propose to configure
Web page display according to user actions and behavior.
Depending on the clicked links and interactions, content can
be hidden to highlight important content. This approach also
allows to module menu content for adding potentially useful
content. However, this approach must be taken into account
at the development time. In [11], the authors propose to
personalize Web display (shopping gallery) to a specific user
or user group. The analysis of user usage on existing websites
allows Web pages to be shown with different structure and
navigation.

Several research studies have dealt with the generation of
adapted user interfaces (UI). The SUPPLE++ systems [12]
targets people with low vision or motor disability. For people
with low vision, they propose users to control only the visual
cue size. The tool is based on an optimization algorithm to
combine adaptations to both low vision and motor disability.
In [13], an abstract description of the UI and an ontology
modeling the context (user capabilities, devices, etc.) are used

247

International Journal on Advances in Internet Technology, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to automatically generate adapted accessible mobile user inter-
faces (for ATMs — Automatic Teller Machines, information
kiosk, etc.) for people with disabilities. Although we do not
focus on UI, here these works may be a source of inspiration,
especially [13], which uses abstract models of the UI and of
user preferences.

Some approaches focus on a particular visual problem,
like the modification of colors for dichromate users while
preserving the contrast [14].

Other approaches concentrate on accessing the structure of
the page because it helps to understand and use the content.
In [15], a configuration interface helps the user to specify
elements of the Web page (title, content, navigation menu) that
he wants to be shown depending the platform used, namely
a Personal Computer (PC) or a Personal Digital Assistant
(PDA). The KAI (Accessibility Kit for the Internet) system
[16] considers both the developer and the user point of view.
The user is able to choose what interests him the most in the
accessed Web pages. As HTML cannot be used to know the
real components due to its permissive syntax, BML (Blind
Markup Language), a new markup language, is provided to
the developer to annotate components of the page to be
used by assistive tools. This marking operation can be done
automatically for existing pages. Then a new HTML code is
built using the markup and the user’s preferences. It is used
either with a normal browser or with an audio-touch platform
that helps the user to access the page structure. During the
transformation process, metrics are computed to rank Web
pages according their accessibility. The transformation applied
to improve the Web page focuses on making the structure
accessible and not on specific visual problems.

D. Discussion
Standards, guidelines and evaluation tools are very useful,

but it is hard to force developers to follow their advice.
Statistics tell us that less than 10% of public websites are
fully accessible [17].

We saw on detailed examples that user-side tools that apply
global filters on the Web page, may improve some parts of the
page, at the cost of degradation of other parts and that they
can be totally inefficient in some situations. Using a style-sheet
redefinition approach or configuration tools does not ensure
that the original Web page design is kept. Besides, accessibility
of this approach is not evident, because people with low vision
may also have difficulty in editing or configuring style-sheet
content.

From the existing work on personalized approaches, we
learn that several issues are related to the Web page adaptation:
user preference elicitation, modeling structure and web page
design, modeling platform context (PC/PDA) and producing a
new Web page whose design is a trade-off between the respect
of these user preferences and the respect of the structure and
initial design of the page.

Our objective is to adapt a page in accordance with its
original appearance, with its structure and with the user
preferences. We aim at proposing a general method that is
able to take into account various visual needs. In our current

work, we do not deal with the user preference elicitation,
that we suppose is described in a simple formal language, as
well as initial developer choices. User preference and design
choice elicitation (explicitly or via a learning phase) will be
studied in a future work. We also do not take into account
various platforms at this stage, and we do not address content
and navigation adaptation, that we want to keep as in the
original page. We apply adaptation on the client side, using
the original Web page. We separately process page elements
according to their semantics, rather than applying a global
strategy. We propose a method for computing a compromise
between user preferences and developer choices on Web page
elements. In our previous paper [1], we showed that classical
representation and algorithms of Preference theory [18] did not
scale in our context, even with small preference sets composed
of basic preferences. In this paper, we focus on use of the meta-
heuristic NSGA II that demonstrated better performance.

III. OUR APPROACH

We aim to develop a global approach as independent as
possible from any specific Web page and also that would
be able to consider any specific user’s wish to find an
adaptation. The previous section highlighted some problems
related to the global treatment by magnifier software or to the
simplistic preferences expressed via style sheet manipulation
(browser accessibility options or dynamic tools). Our approach
addresses these problems by using an Artificial Intelligence
based approach.

In Section II, we illustrated the problem of the global
treatment by magnification tools. We have shown that filters
provided by a magnification tool can only be applied on the
image rendered by the graphic card. Therefore, we can only
apply filters on the entire screen or on an entire window in
some operating systems. To achieve a better adaptation by
taking all user needs into account, our approach is based on
smaller elements than the entire screen, and it considers the
following four components:
• Objects and properties (HTML elements and style) of

the page written in the HTML and CSS files;
• Variation points (for example the color of a specific

element or the size of the second level title);
• User’s wishes put forward to compensate for his disabil-

ities;
• Algorithms for finding an adaptation, from the initial

Web page, according to the user’s wishes, and such that
the adaptation also integrates designer initial choices.

We develop these elements in the following subsections.

A. Preference representation
Designers connect different HTML elements to build Web

pages. The element organization creates a tree structure. Each
tree node represents an element with its physical properties
like the position, appearance (size, color) or more abstract
properties describing the element type (menu, content, image,
link, etc.). In HTML5, which is the direct follow up of
HTML4, there is a set of new tags. These tags are used to

248

International Journal on Advances in Internet Technology, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Text color variable

Element Text Property: Color

Figure 9. Association of one element and one property to make a variable.

describe element types with more semantics like navigation
menu, article, section, complementary, etc. The old version of
HTML (HTML4) only provides some tags without important
semantics, like blocks. As a result, when a Web page is
developed in HTML5, we have much information allowing
us to express preferences and compute adaptations. However,
if the page is in an older version of HTML, it is necessary to
previously detect some important parts of the page, particularly
the menu, the main content and sections, before computing an
adaptation.

We define a set of objects (1) that represent all HTML
elements that are important and useful in the page modification
process. In other words, elements that will not be updated or
that will not be used in computing are excluded from the object
set. Excluding unnecessary elements allows us to reduce as
much as possible the number of combinations and finally the
search space size. HTML elements included in this set are,
for example: first level titles (h1), paragraphs (p), anchors (a),
images (img), articles (article), navigation bars (nav) etc.

Objects = {O1, O2, .., On} (1)

The variation points are a set of variables (2) induced by
properties. Properties can be either basic properties written
in the HTML or CSS files, or computed from these basic
properties. For example, height, width, position or color are
basic properties found in the HTML or CSS files, while area
is a computed property derived from both the height and width
of an element. To summarize, a variable is a specific property
of a specific object. An object gives rise to the creation of
x variables, when x is the number of properties taken into
account for this object. To be able to change the value of the
red color component of an object, a variable representing this
red component is created and added to the variation points.
The domain of this variable is the value set of the red color
component of the considered object. Thus, a variable is a pair
composed of an object and a property (Figure 9).

V ariationPoints = {V1, V2, .., Vm} (2)

From the list of defined variables, a user can define different
constraints (3). These constraints are also called preferences or
wishes.

Constraints = {C1, C2, .., Ck} (3)

For instance a user can say: “I prefer a dark color to a light
color for titles”. This preference means the user prefers to have

a dark color for all titles in the page rather than a light color.
This preference only concerns page titles and not the other
texts in the page. With this page element segmentation, we
can define different preferences for each object or each kind of
object. All choices made on one or more variables constitute
user preferences or user wishes. There is a main difference
with existing work using user preferences. Tools using user
preferences to adapt Web pages like in [9] use literal values
for object properties like red or blue for the color or 14 pt for
a text size. We instead use constraints to compute such values.

We represent two different levels of preferences: basic or
more complex preferences. The basic preferences, that come
from Preference Theory [18], are represented as in (4).

Vi op xi >p Vj op yj (4)

where Vi and Vj are two variables (with possibly Vi = Vj),
>p the preference symbol (A >p B means A preferred to B),
op is a Boolean operator like = and xi (resp. xj) is a value
in the domain of Vi (resp. Vj). To represent the user’s wish
“I prefer black text to blue text”, we use the variable cT to
represent the color of a text object T . The domain of cT is
{white, red, blue, black}. The user’s wish is expressed as in
(5).

cT = black >p cT = blue (5)

The basic representation also allows us to express condi-
tional preferences. With conditional preferences we are able
to represent preferences like “I prefer bold font to normal font
if the font color is yellow”. Here, we introduce a new variable
wT for representing the weight of the text concerned by the
preference. We also introduce a new operator ’:’ to separate the
condition from the remainder on the expression. A conditional
wish is shown in (6). This representation was considered in
our previous paper [1].

cT = yellow : wT = bold >p wT = normal (6)

Here we explore more complex preferences in which we
consider any complex function on variables and their domain
values. This allows us to express wishes like “I would like to
have a text size greater than or equal to 14 pt”, “I would
like to have bold text rather than regular text when text
size is less than 14 pt” or “I would like to have a contrast
between text and direct background greater than or equal to
50%”. In this last example, the contrast is a binary function.
It represents a distance between the colors of two objects:
with the textual element T and the object B providing a
background to T . To model this preference, we introduce two
new variables, cT that represents the text object color and cB
that represents the text background color. We define a contrast
function contrast(x, y) that returns the computed contrast
between x and y. The result of this computation is compared to
a user specified threshold. To determine the satisfaction of the
preference, we evaluate (7) where l is the required threshold.

contrast(cT , cB) ≥ l (7)

249

International Journal on Advances in Internet Technology, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Resolution algorithm

Different resolution algorithms exist. Choosing an optimiza-
tion algorithm is justified by the search space width. Properties
like contrast or brightness are not hard to compute on a given
solution. Nevertheless, the search space width in real cases
makes impossible the use of exact algorithms. For example,
with 9 color variables (our smallest experiment case), even if
we drastically reduce the domain to only 27 colors (3 values
for red, green and blue components), we get a search space
of about 7.6 × 1012 solutions. Let us remark that with such
reduction, the search space may not contain any good solution.

Our problem consists of choosing an adaptation that satisfies
several preferences, which can be modeled as a multi-objective
optimization problem. In the general case, such problems have
a set of solutions, known as Pareto-optimal solutions We are
interested in finding a subset of these optimal solutions if
any exists, or solutions that approach optimality. For solving
such problems, several multi-objective evolutionary algorithms
[19], [20], [21] have been proposed as an alternative to costly
deterministic methods. Among them, we choose NSGA-II
(Non-dominated Sorting Genetic Algorithm-II [22]), which is
popular in search based software engineering [23] due to its
performances in this domain. Evolutionary algorithms (EAs)
mimic the biological evolution of a population with the use of
evolution operators that select, cross or mutate individuals.

NSGA-II works as follows (efficient implementation is
described in [22]). The algorithm begins with an initial popula-
tion P0 of N solutions (or individuals), which can be randomly
built. Figure 10 presents the evolution of the population at
t + 1 iteration. Pt corresponds to the population of step t.
An offspring population Qt of size N is created from Pt

individuals using selection, crossover and mutation operators.
Pt and Qt are combined to form the population Rt. The N
best individuals of Rt in terms of non-dominance and diversity
are kept to form Pt+1, using the following principles. Several
groups of solutions, called fronts, are calculated. The first
non-dominated front (F1) groups non-dominated individuals,
corresponding to the best known solutions, with regard to at
least one objective. A solution s1 dominates another solution
s2 if: (i) s1 is no worse than s2 in all objectives, and (ii) s1 is
strictly better than s2 in at least one objective. The second non-
dominated front (F2) groups the non-dominated individuals of
Rt \ F1. The third non-dominated front (F3) groups the non-
dominated individuals of Rt \(F1∪F2), and so on. The k first
fronts whose union has less than N elements are included in
the Pt+1 population. To complete the Pt+1 population to get
N elements, individuals are selected in k + 1 front, based on
a crowding distance [24] and a binary tournament selection
operator. The crowding distance helps to select solutions that
have the lowest densities of surrounding solutions. For a
given solution s, this is measured as the average distance
of the nearest solutions (neighbors of s) along each of the
objectives. The resulting crowded-Comparison operator helps
to select scattered solutions. These steps are repeated until
some termination criteria are satisfied, for example when a
maximum number of generations has been reached.

In the next section, we present how we tuned NSGA II to

Pt

Qt

F1

F2

F3

Non-dominated sorting Crowding distance sorting

Rejected

Rt

Pt+1

Figure 10. NSGA-II iteration, taken from [22].

solve a set of complex preferences in the context of Web pages.

IV. EXPERIMENTAL SETUP

In this section, we describe our experimental setup. As
explained in the previous section, due to the nature of the
optimization problem, we choose to use the Non-dominated
Sorting Genetic Algorithm NSGA-II [22], which we imple-
mented in C++. The feasibility of finding an adaptation, in
accordance with user preferences, was already proved in a
previous (limited) case study [1]. In the current paper, we
extend our case study to five very different real Web pages. We
also consider an enhanced set of preferences and we run the
algorithms on a larger configuration set. In this experiment, we
aim to determine cases where this approach adequately works,
while giving trends about the running time, the number of
generations and the number of satisfied preferences.

The NSGA-II algorithm relies on three operators. Crossover,
mutation and selection operators are applied on a popula-
tion to generate an offspring. The population size can be
parameterized. The crossover and mutation operators are called
according to a defined probability. The algorithm iterates
through generations until some end criterion is satisfied.

In this setup, we configure the NSGA-II algorithm as follows
(Table I). In the literature, the chosen population is commonly
about 200. We decided to enlarge the population interval size to
analyze the impact of this parameter on our specific problem.
The population size can range from 100 to 300 individuals
by steps of 50. This gives 5 population sizes for each tested
website adaptation. Due to the O(MN2) complexity of this
algorithm, where M is the number of objectives and N is
the population size, we need to choose an upper bound for
N that is not too high (300). Besides, in the algorithm, N
represents the number of simultaneously treated individuals to
generate the offspring. Thus, if we have an excessively low N ,
we considerably decrease interactions between individuals and
reduce the population diversity. This is why we choose N ≥
100. We choose to set the probability to make a mutation rather

250

International Journal on Advances in Internet Technology, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. EXPERIMENT SUMMARY.

Parameter Value(s)

Population Size {100, 150, 200, 250, 300}
Crossover (resp. Mutation) prob. 0.94 (resp. 0.06)

Max exec time 10s
Max generations unlimited

Preference sets 4
Maximal brightness difference 40%

Minimal color distance 40°
Minimal contrast 30%

Repeat 60 times

than making a crossover to an invariant value. This choice is
based on the wish to have a more readable experimentation.
We conduct some very simple tests on different input data,
and we chose a probability of 94% for crossover (resp. 6% for
mutation).

The non-deterministic base of NSGA-II, and of genetic
algorithms in general, potentially induces local stagnation into
the search space. Consequently, a part of the executions may
stay blocked within a local optimum and will not return a
solution in acceptable time. To avoid time explosion of an
execution and disturbance in average running time, we limit the
maximum execution time for an execution to 10 seconds. This
time is justified by the practical end-user context. Adaptations
are possibly computed each time the user changes to another
page or another website. The non-terminated executions (time
over or equal to 10 seconds) are included in time or generation
statistics. Thus, when the number of non-terminated executions
is high, the average running time tends towards 10 seconds.
Besides, these non terminated executions are counted to get
a terminated execution ratio and other statistics. The limited
execution time is one of the two end criteria in this setup.
The second end criterion is the global preference satisfaction
level. For this experiment, we also decided to exit from the
algorithm when we obtain a solution on which each preference
is satisfied. Here we do not use the number of generations as
an end criterion, we only get it for statistics. To summarize,
we stop the algorithm if we find a good solution or if the
execution exceeds 10 seconds.

NSGA-II allows us to have non-dominated solutions regard-
ing several objectives. For this experiment, we define three
general preferences, which correspond to practical problems
of people with low vision:

• GP1 : Uniform background color brightness.
• GP2 : Minimal contrast between the text and its direct

background.
• GP3 : Keep original color for modified elements.

Here GP1, GP2 and GP3 are general preferences. When we
associate a general preference GPi to a specific website, we
obtain a set of preferences Pi. For example, for the Parempuyre
website, which is part of our experiment, we have variables
for the three backgrounds, including inputBckClr (input
background color), leftHdBckClr (left header background
color), and bodyBckClr (body background color), and vari-
ables for text colors including leftLkClr (left link color) and
hdClr(text header color). The preference sets corresponding

to the general preferences are as follows:

P1 ={proxBrightness(leftHdBckClr, bodyBckClr,

inputBckClr)}
P2 ={contrast(leftHdBckClr, hdClr) >= 30,

contrast(bodyBckClr, leftLkClr) >= 30, ...}
P3 ={distOrigClr(leftHdBckClr) < 40,

distOrigClr(bodyBckClr) < 40, ...}

The P1 preference set contains a global preference given by
the user to have a brightness that is comfortable for the eyes
for all backgrounds on the Web page. This global preference
is represented by an objective function, which refers to all
backgrounds. The objective function may concern a large
part of the variable set and often leads to huge dependencies
between many variables. If we represent preferences and their
dependencies with a graph, with only unary or binary objective
functions, we may often have several connected components.
When using a global objective function, we tend to group many
connected components to a larger single connected component.
To compute this objective function, we begin by computing
the brightness of every background using indications of [3]
(brightness values are in [0, 1]). Then we compare the differ-
ence d = max−min between the minimal brightness min and
maximal brightness max to a defined threshold maxDiff .
prefNb is the number of preferences used in the current
preference set in a case study.

The objective function for P1 is thus computed as follows:

If d >= maxDiff

return 0 + (1− d)/prefNb

else return 1 + (1− d)/prefNb

The two other preference sets are also based on colors. The
P2 preference set includes pairs composed of a text color
and background color. These pairs of colors are linked to
ensure minimal brightness contrast, suitable for readability. To
compute the associated objective function, we compute the
brightness of both colors and the contrast c using indications
of [3]. The contrast is computed from the relative perceived
brightness of the two colors. The WCAG computed values
are in [1, 21] and we normalize them to have values in [0, 1].
We compare the contrast to a minimum minContrast, which
is set at 0.3. This value is slightly higher than the stan-
dard requirement in the Web Content Accessibility Guidelines
(WCAG 2.0) for the AA level.

The objective function for P2 is thus computed as follows:

If c >= minContrast

return 1 + (c−minContrast)/prefNb

else return 0 + (c−minContrast)/prefNb

The last preference set, P3, allows the algorithm to keep as
much as possible the original color context of the page after
the adaptation. These preferences concern only one variable.
P3 corresponds to the designer preferences, because these
preferences are concerned by the proximity between colors in
adapted pages and initial colors. These preferences are binary

251

International Journal on Advances in Internet Technology, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

preferences, because they refer to two different color variables
to be able to compute the contrast. For color distance pref-
erence (P3), we compare the hue of the two colors horiginal

and hcurrent. From the representation of the two colors in the
chromatic circle, the color distance is the angle between the
two hues. We set the maximal accepted angle angleMax at
40°. To obtain the hue (in [0, 360]) of a given color from its
RGB (Red Green Blue color model) components, we use the
computation of the hue from the classical conversion function
from RGB to HSV (Hue-Saturation-Value) color spaces [25].

The objective function for P3 is thus computed as follows:

hd = |horiginal − hcurrent|
if hd >= 180 then hd = 360− hd

if hd < angleMax

return 1 + (hd/180)/prefNb

else return 0 + (hd/180)/prefNb

We compose the three initial preference sets to obtain the
four preference sets of our experiment.

S1 = P2 (8)
S2 = P2 ∪ P3 (9)
S3 = P1 ∪ P2 (10)
S4 = P1 ∪ P2 ∪ P3 (11)

The first preference set S1 corresponds to only one general
preference. It corresponds to a user that has issues with
readability when contrast is low. The second preference set
S2 groups P2 and P3 preferences. In this configuration, the
user possibly wants to increase contrast on the page (if the
current contrast is not suitable) but he does not want to
completely change the original page colors. The user may want
to keep the color context close to the original one in order to
recognize the browsed Web page or to avoid getting lost in
the navigation (because he memorizes colors assigned to some
parts of the web page). The third preference set S3 is suitable
for people who have a disease involving major light sensitivity.
They need to have minimal contrast between the text and the
direct background to improve readability, and also have similar
background brightness to avoid dazzle. The last preference set
S4 is a complex case of adaptation, which combines the three
preference sets. It also corresponds to existing real low-vision
user needs.

We implement the selection, crossover and mutation oper-
ators to make the population evolve. The selection operator
is based on the classical crowded-comparison operator. This
comparison is used after applying the fast non-domination sort
and with crowding distances assigned to each individual [22].
The selection operator keeps the diversity in the population.

We implement classical crossover and mutation operators.
Mutation modifies part of an individual or an entire individual.
Each component of the child individual has a ½ probability
of getting a random value. In other ½ cases, the child keeps
the parent value for this component. For an individual with x
components we have a probability of (½)x either keeping all of
them or changing all of them. For example, an individual with
4 components has a 0.0625 probability of completely changing

or of being identical to the parent, with 8 components we have
a 0.0039 probability. This probability is approximated, we do
not care about the probability of getting the original value
when we get a random value (in huge domains like color space,
it is very low). Thereby in most cases a mutation keeps some
parent components in the child.

The crossover operator also uses probabilities. However,
instead of getting a random value for some components,
we only get parent values. From two parents, the crossover
operator generates one child. Each component of this child
has a ½ probability of come-ing from the first parent. In other
cases, the component value comes from the second parent. As
in the mutation operator, the probability of entirely copying
one parent is low when the component number is high.

Domains of variables may have several dimensions. For
example, the text size variable domain generally has about 10
or 20 values. By contrast, the color variable domain can reach
224 values in a true context. The number of variables depends
on the type and complexity of the given user’s preferences. All
preferences defined in this setup are based on color variables.
Each color variable is implemented with an RGB color space.
This choice is based on the large size of the color domain. Each
component of the implemented RGB color space is set with
the sRGB (standard RGB) values of the Website. The domain
of the web sRGB color space is about 16.7 million colors,
but we use only 32.768 colors in the domain. Many picture
editing software systems have a Web color mode. This mode
contains substantially fewer colors in the domain. However,
experimentation shows that limiting the color domain may
have a negative impact on the resolution by the algorithm.
If the number of colors is too low, some problems may have
no solutions. Research also shows that the domain size has
no significant effect. Increasing or reducing the search space
does not change execution times because it is an optimization
problem, thus it does not examine the entire solution set. We
decide to have 32 values in each component (R, G and B) to
not limit the number of solutions, while avoiding a huge search
space. This size can be discussed and adapted to optimize color
features.

To study the effect of the number of objectives, we tested
two different objective function sets. We recall that the NSGA-
II algorithm is a multi-objective algorithm that exploits non-
domination sorting and has a complexity of MN2, where M
is the number of objectives functions. P2 and P3 preference
sets are used in two different manners to define the objective
functions. In the first case, for each preference, we make one
objective function, which returns a floating point value equal
to or higher than one when the preference is satisfied. In the
second case, for each preference set (P2 or P3), we make
two objective functions. Each of these two objective functions
groups half of the preferences, which are randomly chosen.

Like the elementary objective functions, an aggregated ob-
jective function returns a floating value in [0, 1 + 1/prefNb],
which evaluate the quality of one solution accordingly to
all embedded preferences. An aggregated objective function
computes the average objective functions associated with the
embedded preferences. The formulas of objective functions for
P1, P2, P3 have been designed to prevent compensation for

252

International Journal on Advances in Internet Technology, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

objective function values and prevent acceptance of a solution
as a good one when one of its elementary objective functions
is not satisfied.

To illustrate our chosen representation, the “Facebook”
registration page will be represented by about 40 variables to
implement the preference: “contrast between text and direct
background higher or equal to x”. For this preference we
have to extract all text elements and their direct backgrounds,
making color variables. For the Google search page (not the
result page), we obtain about 17 variables, while for the “BBC
News” home page we obtain about 200 variables. These values
are rounded because large parts of websites are dynamic and
regularly change (these computations were done on November,
14, 2013). The five websites were selected for the diversity of
their architecture, their number of objects and the colors used.

For the first tested website, we combine the two possible
variations on population size and objective function number.
For the other websites, we set the population size at 250.
In a configuration, we set a population size and a number
of objective functions for a specific website. The execution
of each configuration is repeated 60 times. This number
of executions may seem high, but this algorithm is highly
stochastic: the higher the execution number, the more precise
the results are. Of course, we need to make a trade-off because
a higher execution number leads to a smoother result, but it
also corresponds to a very long experimentation time.

In the next section, we report and discuss the results
obtained with all the previously described configurations on
the selected websites.

V. EXPERIMENT RESULTS

In this section, we present the results obtained using the
experimental framework presented above (Section IV), with
our C++ implementation of NSGA-II. We selected websites
for their diversity regarding the number of objects and colors
on the page. These websites have no specific global theme
or architecture. The chosen websites have been highlighted
by users with visual impairment as websites with accessibility
issues.

A. Parempuyre website
The “Parempuyre” website is our first example. It is a rather

small website with a dozen color variables. The variables are
text colors or background colors. They are selected from the
previously defined preferences. We present the results for the
non-aggregated case, and then for the aggregated case.

1) Parempuyre website without aggregation: For S1 prefer-
ences that concern the minimal brightness contrast between
a text color and its direct background color, we get all
relevant textual elements from the Web page. One textual
element associated with its foreground color property gives one
variable. Other variables are also associated with background
colors (three in this case). We run the algorithm with all
preference sets and all configurations. The detailed results for
the S1 preference set is shown in Table II.

We recall that the presented figures are the result of the
average of 60 executions. We have 3 backgrounds and 9 texts,

TABLE II. “PAREMPUYRE” S1 - EXPERIMENT FIGURES.

Variables Prefs – obj. functions search space

12 9 – 9 ' 2× 1054

XXXXXXX
Pop. size 100 150 200 250 300

Exec. time (s)
Average 0.18 0.24 0.29 0.42 0.43

Standard deviation 0.08 0.09 0.10 0.19 0.12
Min 0.05 0.06 0.12 0.18 0.22
Max 0.42 0.52 0.57 1.11 0.78

Generations
Average 37 27 21 20 15

Standard deviation 17.1 10.5 7.0 9.1 4.4
Min 11 7 9 9 8
Max 88 58 40 54 28

Non cpltd. exec.
Percentage 0 0 0 0 0

Satisfied obj. fct (avg.) – – – – –
Standard deviation – – – – –

Min – – – – –
Max – – – – –

giving 12 variables when associated with their color property.
We have 9 contrast constraints. All executions terminate before
10 seconds. This means that the algorithm always finds a
solution satisfying all defined preferences in the S1 set. The
population size has an impact on the number of generations
needed to find these solutions: the higher the population size,
the lower the number of generations. We find a satisfactory
solution on average in less than 430 milliseconds. The maximal
time for discovering a good adaptation is less than one second,
and in the best cases only 50 milliseconds are needed. The
generation number goes from 7 to 88, and is less than 37
on average. In this case study, the minimal requested contrast
is 30%, which gives, for each constraint, 70% of satisfactory
values in the search space.

On the contrary, the executions with the S2 preference set
give worse results (Table III). We still have the 12 vari-
ables representing objects associated with color properties.
In addition to the minimal contrast preferences, we have a
constraint in order to keep colors as close as possible to
the original colors. There are 21 preferences on variables:
9 contrast preferences and 12 color closeness preferences. In
this configuration, all preferences are implemented as objective
functions, thus there are also 21 objective functions. With
this constraint of staying close to the original colors, we
considerably reduce the number of good solutions in the entire
search space.

In this configuration, with these 21 objective functions,
no execution returns a good solution. This is mainly due
to the low number of good solutions regarding the search
space. Adjusting the contrast means changing the color of
one variable that also impacts its closeness to the original
color. Even if the algorithm does not return a good adaptation,
about 6 of the 20 objective functions are completely satisfied
when we reach 10 seconds. The other objective functions (non-
satisfied objective functions) may not have such bad values.
This phenomenon is due to the fact that, NSGA-II is an elitist

253

International Journal on Advances in Internet Technology, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III. “PAREMPUYRE” S2 - EXPERIMENT FIGURES.

Variables Prefs – obj. functions search space

12 21 – 21 ' 2× 1054

XXXXXXX
Pop. size 100 150 200 250 300

Exec. time (s)
Average 10.00 10.00 10.00 10.00 10.00

Standard deviation 0.00 0.00 0.00 0.00 0.00
Min 10.00 10.00 10.00 10.00 10.00
Max 10.00 10.00 10.00 10.00 10.00

Generations
Average 1,123 582 374 274 211

Standard deviation 14.8 13.5 12.6 12.8 15.4
Min 1,093 554 346 244 179
Max 1,156 614 409 313 256

Non cpltd. exec.
Percentage 100 100 100 100 100

Satisfied obj. fct (avg.) 5.7 6.2 6.4 6.6 6.8
Standard deviation 1.7 1.7 1.9 1.6 1.7

Min 3 3 3 3 3
Max 11 10 11 11 11

TABLE IV. “PAREMPUYRE” S3 - EXPERIMENT FIGURES.

Variables Prefs – obj. functions search space

12 10 – 10 ' 2× 1054

XXXXXXX
Pop. size 100 150 200 250 300

Exec. time (s)
Average 1.10 0.49 0.56 0.64 0.70

Standard deviation 2.15 0.47 0.46 0.41 0.36
Min 0.04 0.09 0.17 0.18 0.22
Max 10.00 2.29 2.58 3.49 2.72

Generations
Average 196 53 38 30 24

Standard deviation 339.1 49.6 29.3 18.6 12.0
Min 8 10 12 9 8
Max 1,599 240 168 157 91

Non cpltd. exec.
Percentage 5 0 0 0 0

Satisfied obj. fct (avg.) 4.7 – – – –
Standard deviation 1.2 – – – –

Min 3 – – – –
Max 6 – – – –

algorithm, it selects and keeps the best evaluated solutions for
all objectives even if they are not satisfied.

In Table IV, we present figures of executions with the S3

preference set. In this preference set, we introduce a “global”
preference. By “global” preference, we mean a preference that
covers all background color variables. Here this preference is
an n-ary predicate involving the three background color vari-
ables. Introducing this preference concerning the uniformness
of the three background color brightnesses results in adding
dependencies with the contrast preferences. In this “Parem-
puyre” website configuration, the NSGA-II algorithm returns
good solutions before 10 seconds for nearly all executions,
even if the number of good solutions in the search space is
reduced by the constraints.

TABLE V. “PAREMPUYRE” S4 - EXPERIMENT FIGURES.

Variables Prefs – obj. functions search space

12 22 – 22 ' 2× 1054

XXXXXXX
Pop. size 100 150 200 250 300

Exec. time (s)
Average 10.00 10.00 10.00 10.00 10.00

Standard deviation 0.00 0.00 0.00 0.00 0.00
Min 10.00 10.00 10.00 10.00 10.00
Max 10.00 10.00 10.00 10.00 10.00

Generations
Average 944 495 322 234 181

Standard deviation 149.3 76.4 47.8 31.1 26.8
Min 755 391 247 174 136
Max 1,100 600 389 280 234

Non cpltd. exec.
Percentage 100 100 100 100 100

Satisfied obj. fct (avg.) 6.4 6.4 6.9 7.3 6.9
Standard deviation 1.5 1.5 1.7 1.8 1.6

Min 4 4 3 4 4
Max 10 11 12 12 12

Most of the executions return a good solution in less than
1 second on average. For a population of 100 individuals, we
exceed 1 second, due to the 5% of non-terminated executions
that add 10 s to the average time computation. The best
executions return a good adaptation only in a few generations
(less than 53). However, while with S1 preference set less
than 100 generations are needed in the worst execution to find
a good solution, here the worst executions need up to 1,599
generations. That has an impact on the average execution time.
It tends to be seven times more regarding the values obtained
with S1. Returning a good adaptation solution may take up
to a second compared to less than 450 milliseconds in S1

configuration (on average).
In the last case (with the S4 preference set), we apply all

preferences: minimal brightness color contrast, preservation of
the original color context and uniformity of background bright-
ness color (Table V). Independently of the chosen website,
this configuration is the most complex configuration of our
experiment. The association of many preferences may give
many dependencies between variables. Here again, the global
background uniform color brightness constraint tends to group
many variables mainly if there are many background variables.

It is worth noting that even when we complicated the pref-
erence set compared to S2, the number of satisfied objective
functions is slightly higher. We apply three preferences instead
of only two but, on average, when the maximal execution
time is reached, we have satisfied one more objective function.
Moreover, the worst executions discovered solutions with up to
12 satisfied objective functions among the 22 of this problem.
In other words, while adding one more preference, we increase
the number of satisfied objective functions. In some cases, the
fact of having more preferences and finally more objective
functions may help and guide the algorithm to find a good
adaptation solution more rapidly. Some implicit rules are
somehow given to the algorithm to converge to a good solution.

In all of the previous cases, each preference was represented

254

International Journal on Advances in Internet Technology, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE VI. “PAREMPUYRE” S1aggr - EXPERIMENT FIGURES.

Variables Prefs – obj. functions search space

12 9 – 2 ' 2× 1054

XXXXXXX
Pop. size 100 150 200 250 300

Exec. time (s)
Average 0.08 0.26 0.15 0.20 0.27

Standard deviation 0.09 1.27 0.03 0.04 0.05
Min 0.03 0.07 0.09 0.07 0.17
Max 0.74 10.00 0.22 0.29 0.43

Generations
Average 12 21 8 7 7

Standard deviation 14.1 101.7 1.6 1.4 1.2
Min 5 6 5 3 5
Max 114 803 12 11 12

Non cpltd. exec.
Percentage 0 2 0 0 0

Satisfied obj. fct (avg.) – 1.0 – – –
Standard deviation – 0.0 – – –

Min – 1 – – –
Max – 1 – – –

by one objective function. For the contrast constraint between
the text and its direct background, each pair of text color vari-
able and its associated background color variable corresponds
to one objective function. We may obtain different results if
we aggregate (see Section IV) objective functions. Instead of
having one objective function for each contrast constraint, we
group them into aggregated objective functions.

2) Parempuyre website with aggregation: The next tables
present the same four preference sets, but now with aggrega-
tions of objective functions.

There are significant differences in the results obtained with
the first preference set S1, as shown in Table VI. The algorithm
spends up to 270 milliseconds to return a good solution instead
of up to 430 milliseconds. The time tends to be doubled when
we do not use an aggregation configuration (with aggregated
objective functions). Note that the number of generations is
really stable, except for the 100 and 150 individual population.
Note also that there is 2% of non-completed executions with
a population of 150 individuals. The number of objective
functions is reduced to only 2, which has an important role
in the time needed to compute each generation. Excluding
the population of 100 and 150 individuals, we only need 3
generations in the best cases and 12 generations in worst
cases. In general, executions spend less time than in the non-
aggregated S1 configuration and need only a few generations.

In the S2 preference set, the aggregation is much more
useful: let us recall that in non-aggregated configurations, no
execution terminates before 10 seconds.

Aggregation allows the algorithm to find a good adapta-
tion in up to 46% of executions (with a population of 300
individuals). Whereas with the non-aggregated configuration
(Table III), all executions reach 10 seconds without returning
any solution that completely satisfies all preferences. With
the aggregation, we highly improve the situation for the S2

configuration. This example highlights the importance of the
population size. This size plays an important role in the number

TABLE VII. “PAREMPUYRE” S2aggr - EXPERIMENT FIGURES.

Variables Prefs – obj. functions search space

12 21 – 4 ' 2× 1054

XXXXXXX
Pop. size 100 150 200 250 300

Exec. time (s)
Average 10.00 9.35 7.67 6.83 5.63

Standard deviation 0.00 2.43 4.08 4.49 4.67
Min 10.00 0.15 0.26 0.37 0.43
Max 10.00 10.00 10.00 10.00 10.00

Generations
Average 1,819 900 471 292 166

Standard deviation 12.3 233.6 249.3 190.5 135.2
Min 1,797 16 18 18 15
Max 1,859 979 621 433 300

Non cpltd. exec.
Percentage 100 94 75 67 54

Satisfied obj. fct (avg.) 1.4 1.6 1.6 1.9 1.9
Standard deviation 0.5 0.6 0.6 0.7 0.7

Min 1 1 1 1 1
Max 2 3 3 3 3

TABLE VIII. “PAREMPUYRE” S3aggr - EXPERIMENT FIGURES.

Variables Prefs – obj. functions search space

12 10 – 3 ' 2× 1054

XXXXXXX
Pop. size 100 150 200 250 300

Exec. time (s)
Average 0.05 0.08 0.11 0.16 0.19

Standard deviation 0.03 0.02 0.02 0.05 0.03
Min 0.03 0.05 0.04 0.09 0.10
Max 0.25 0.21 0.16 0.54 0.26

Generations
Average 10 9 8 8 7

Standard deviation 6.8 2.6 1.6 2.7 1.2
Min 6 6 3 5 4
Max 52 24 12 27 10

Non cpltd. exec.
Percentage 0 0 0 0 0

Satisfied obj. fct (avg.) – – – – –
Standard deviation – – – – –

Min – – – – –
Max – – – – –

of terminated executions. With a population of 300 individuals,
we saw that 46% of executions returned one good solution,
whereas with a population of 200 we have 25% of terminated
executions, and we have 0% with a population of 100 individ-
uals. Terminated executions return a good adaptation in about
half a second.

Table VIII shows aggregation results for the S3 preference
set on the “Parempuyre” website. These executions are made
with objective function aggregations.

While in the case of the aggregation of the S1 preference
set we reduced the execution time by twofold, here the impact
is even more significant. On average, the aggregation allows
us to reduce the execution times by threefold. The aggregation
of objective functions for S3 has a very positive impact (Table

255

International Journal on Advances in Internet Technology, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE IX. “PAREMPUYRE” S4aggr - EXPERIMENT FIGURES.

Variables Prefs – obj. functions search space

12 22 – 5 ' 2× 1054

XXXXXXX
Pop. size 100 150 200 250 300

Exec. time (s)
Average 9.84 9.03 7.67 7.03 5.78

Standard deviation 1.26 2.91 4.07 4.37 4.54
Min 0.18 0.23 0.33 0.45 0.61
Max 10.00 10.00 10.00 10.00 10.00

Generations
Average 1,676 812 440 281 161

Standard deviation 214.2 261.0 231.6 172.0 122.8
Min 34 24 22 21 21
Max 1,741 917 581 403 281

Non cpltd. exec.
Percentage 99 90 75 69 54

Satisfied obj. fct (avg.) 2.3 2.7 2.8 2.9 3.0
Standard deviation 0.7 0.7 0.6 0.6 0.5

Min 1 2 2 2 2
Max 4 4 4 4 4

VIII).
In the case of S4, the aggregation now allows us to have

terminated executions leading to good adaptation, as is already
the case for the S2 aggregation case. Moreover, the population
size seems to again have its importance in the number of
terminated executions. With a population of 100 individuals,
only 1% of executions are not interrupted before 10 seconds.
A population of 200 individuals allows us to obtain 25% of
terminated executions and we reach 46% when the population
size is equal to 300 individuals. However, many executions
remain not completed. In this last case, nearly 60% of objective
functions are completely satisfied.

B. Godaddy website

The “Godaddy” website has more objects on the page and
finally has more variables. From previously chosen prefer-
ences, 22 color variables are created to solve the problem.
Table X gives results of the application of all the preference
sets. For each preference set, we use a population size of 250
individuals. The population size has an impact on the compu-
tation efficiency, but this impact is not necessarily similar for
all configurations. A population of 100 individuals sometimes
leads to unusual results. The population of 250 seems to be a
good trade-off between the execution time and the number of
completed executions. We associate with each preference set
its aggregation version in order to easily compare them.

For the S1 preferences set, we can improve the computation
efficiency and reach 100% of completely satisfactory solutions
returned with the aggregation of objective functions. Without
aggregation, not all executions give a completely satisfying
solution. Some of them are interrupted by the end time
criterion. When executions are not completed, on average,
returned solutions satisfy a good part of all objective functions
(10 out of 14). In best cases, up to 12 objective functions
out of 14 are satisfied. The aggregation configuration allows

us to reach 100% of executions, leading to good solutions.
Moreover, the execution time is highly reduced. The algorithm
returns a good adaptation solution in about 300 milliseconds
instead of 5 seconds. The number of generations is closely
linked to the running time. The generation number is also,
like the execution time, highly reduced. We need less than
20 generations to get one good adaptation solution. Without
aggregation, it takes 215 generations instead on average.

Similar to this case, with the S3 preference set, we get
a major improvement. From 18% of completed executions
without any aggregation, we get 98% of completed executions
with an aggregation configuration. Moreover, the running time
for the executions is considerably reduced. We only need 500
milliseconds on average to get one good adaptation solution as
compared to 9.67 seconds on average without an aggregation
configuration. As in the previous example, the number of
generations is also highly reduced on average. We need about
23 generations on average as compared to 358.

For the S1 and S3 preference sets, the aggregation achieves a
substantial improvement in execution time and in the quality of
the adaptation returned. It allows us to obtain adaptation solu-
tions for a real-time use. Unfortunately, it does not improve all
configurations. The complexity of the two other configurations
is too high to get good adaptation solutions with or without
aggregation.

In the S2 preference set configuration, none of the ex-
ecutions gives a completely satisfactory solution even with
aggregation. Without aggregation, we satisfy at least 5 of
the 36 objective functions and up to 11 of the 36 objective
functions in the best cases. With aggregation, we do not satisfy
any objective function in the worst cases, whereas in the best
cases we satisfy 3 of the 4 objective functions. Similarly, in the
S4 preference set configuration, we satisfy on average about 8
out of 37 and 1.6 out of 5 objective functions respectively, for
non-aggregation and aggregation configurations. In the best
cases, we satisfy 12 out of 37 objective functions without
any aggregation as compared to 2 out of 5 with aggregation.
Finally, in the worst cases, only 1 out of 5 objective functions
are completely satisfied in the aggregation configuration and
4 out of 37 with aggregation.

In these two last cases (S2, S4), from the results obtained,
the aggregation of objective functions seems to have no
positive impact on the execution of the NSGA-II algorithm.
However, these figures do not especially mean that the aggrega-
tion only improves simple configurations. Another aggregation
(objective function repartition) with more aggregated objective
functions for example, may give different results. In all cases,
with less complex configurations, aggregation has a notable
positive impact on the quantity of the solutions returned.

C. ReasonFrance and UBOLEA websites
The “ReasonFrance” website (Table XII) and the

“UBOLEA” website (Table XI) are the two largest websites
in our experiment. The two tables show the results for all
preference sets and configurations with a population size of
250, with and without aggregation. With 27 variables, the
“UBOLEA” website returns some good adaptations for the

256

International Journal on Advances in Internet Technology, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE X. “GODADDY” ALL PREFERENCES - EXPERIMENT FIGURES.

Variables search space

22 2× 1099

hhhhhhhhhh
Prefs. set

S1 S1aggr S2 S2aggr S3 S3aggr S4 S4aggr

Preferences 14 14 36 36 15 15 37 37
Objective functions 14 2 36 4 15 3 37 5

Exec. time (s)
Average 5.28 0.32 10.00 10.00 9.67 0.50 10.00 10.00

Standard deviation 1.61 0.03 0.00 0.00 0.98 1.24 0.00 0.00
Min 3.13 0.24 10.00 10.00 5.18 0.25 10.00 10.00
Max 10.00 0.39 10.00 10.00 10.00 10.00 10.00 10.00

Generations
Average 215 15 197 400 358 23 191 372

Standard deviation 61.7 1.5 8.3 4.2 38.0 52.5 10.1 2.5
Min 133 12 184 373 206 12 176 365
Max 398 19 222 407 407 426 232 378

Non cpltd. exec.
Percentage 5 0 100 100 82 2 100 100

Satisfied obj. fct (avg.) 10.0 – 7.8 1.0 9.9 2.0 7.8 1.6
Standard deviation 2.8 – 1.5 0.9 3.9 0.0 1.7 0.5

Min 6 – 5 0 3 2 4 1
Max 12 – 11 3 14 2 12 2

S1 case. For the other preference sets, we do not get any
good adaptations. In the S1 case, the aggregation provides
substantial improvement. It allows us to increase the number
of terminated executions by up to 86%, whereas without
any aggregation it is about 6%. Moreover, it allows us
to considerably reduce the execution time from nearly 10
seconds to less than 2 seconds. The execution times that
enable good solutions is around the minimal execution time
(about 500 milliseconds). The minimal execution time in the
best cases is about 7 seconds, but only about 350 milliseconds
when aggregation is used. In the same way, the average
number of generations is reduced from 323 to 77 generations.
The minimal number of generations is also highly reduced
when we use aggregation. The maximal number is still high
because at least one execution is not completed and gives a
high number of generations.

The other three preference sets (S2, S3, S4) do not return
any good adaptation in less than 10 seconds. Nevertheless,
aggregation gives a slight improvement in the number of satis-
fied objective functions. For instance, in the S2 preference set,
on average, 8.9 of the objective functions are satisfied out of
the 48 objective functions in the non-aggregated configuration.
This ratio becomes 0.7 out of 4 satisfied objective functions
when we aggregate them. The number of satisfied objective
functions is thus equivalent from about 18.5% to 17.5%. In the
S3 preference set, the number of satisfied objective functions
is increased from about 16.8% to 33%, and it is increased from
18.8% to 26% in the S4 preference set case.

For the “ReasonFrance” website, the behavior of executions
with or without any aggregation is quite similar. The results
are improved for only the first preference set S1 when using
aggregation, allowing us to obtain up to 60% of terminated
executions. A good solution is returned in less than 5 seconds
with aggregation and some terminated executions provide a

good solution in less than 1 second. In best cases, this time is
about 750 milliseconds. In all preference sets (except S2), the
aggregation allows us to really improve the number of satisfied
objective functions even if no good solution is found.

D. NFB website
The last studied website is presented in Section II. It

corresponds to the publications Web page of the National
Federation of the Blind (NFB, nfb.org/publications, may 2014).

1) Execution results: We applied the same preference sets,
again with a population size of 250. Table XIII presents figures
on all of these executions.

Good adaptations usually correspond to aggregated config-
urations. Without aggregation, in the most complex problems
(S2 and S4), the algorithm gives a few solutions (S2) or
none (S4). In two other cases, with or without aggregation,
all executions terminate before 10 seconds.

The S1 preference set gives quite good adaptations in less
than 200 milliseconds. The aggregation configuration for the
S1 preference set only achieves negligible improvement. In
this second configuration, the execution time falls to 100
milliseconds. Furthermore, the average number of generations
and the maximal number of generations is about twofold
lower. On the same website, the S3 preference set gives
good results. Without any aggregation, a good adaptation is
computed on average in about 260 milliseconds versus 130
milliseconds with aggregation. The aggregated configuration
thus brings an improvement, while also reducing the average
number of generations and the maximal number of generations
by about twofold. In the aggregated configuration or in the
non-aggregated configuration, all executions lead to a good
adaptation in less than 400 milliseconds.

Solving the S2 preference set is highly facilitated by ag-
gregating objective functions. When only six percent of the

257

International Journal on Advances in Internet Technology, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE XI. “UBOLEA” ALL PREFERENCES - EXPERIMENT FIGURES.

Variables search space

27 8× 10122

hhhhhhhhhh
Prefs. set

S1 S1aggr S2 S2aggr S3 S3aggr S4 S4aggr

Preferences 21 21 48 48 22 22 49 49
Objective functions 21 2 48 4 22 3 49 5

Exec. time (s)
Average 9.91 1.70 10.00 10.00 10.00 10.00 10.00 10.00

Standard deviation 0.45 3.26 0.00 0.00 0.00 0.00 0.00 0.00
Min 6.74 0.34 10.00 10.00 10.00 10.00 10.00 10.00
Max 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Generations
Average 323 77 176 375 250 417 171 351

Standard deviation 24.0 147.6 7.1 2.8 24.3 7.6 6.3 5.9
Min 242 16 161 368 210 365 161 310
Max 364 459 208 381 346 425 196 358

Non cpltd. exec.
Percentage 94 14 100 100 100 100 100 100

Satisfied obj. fct (avg.) 7.4 1.0 8.9 0.7 3.7 1.0 9.2 1.3
Standard deviation 4.2 0.0 1.6 0.6 1.4 0.3 1.4 0.6

Min 1 1 6 0 2 0 6 0
Max 19 1 13 2 7 2 12 3

TABLE XII. “REASONFRANCE” ALL PREFERENCES - EXPERIMENT FIGURES.

Variables search space

59 3× 10266

hhhhhhhhhh
Prefs. set

S1 S1aggr S2 S2aggr S3 S3aggr S4 S4aggr

Preferences 41 41 100 100 42 42 101 101
Objective functions 41 2 100 4 42 3 101 5

Exec. time (s)
Average 10.00 4.51 10.00 10.00 10.00 10.00 10.00 10.00

Standard deviation 0.00 4.49 0.00 0.00 0.00 0.00 0.00 0.00
Min 10.00 0.74 10.00 10.00 10.00 10.00 10.00 10.00
Max 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Generations
Average 271 175 198 317 312 348 193 293

Standard deviation 18.6 173.9 11.1 1.6 15.8 5.9 14.0 1.8
Min 230 29 171 313 279 307 167 289
Max 318 397 225 321 360 356 229 297

Non cpltd. exec.
Percentage 100 40 100 100 100 100 100 100

Satisfied obj. fct (avg.) 4.7 1.0 16.6 0.0 8.0 1.3 16.8 0.9
Standard deviation 1.6 0.2 2.3 0.1 3.2 0.7 2.3 0.4

Min 1 0 12 0 2 0 13 0
Max 9 1 22 1 17 2 23 2

executions without aggregation lead to good adaptations in
nearly 10 seconds, the aggregation configuration achieves 70%
of terminated executions in less than 4 seconds. In addition,
the average number of generations is 156 in the aggregated
configuration, while it is 325 generation without. Solving the
last preference set (S4) is also highly facilitated when using
aggregation. Aggregation allows us to increase by up to 60%
the number of terminated executions before 10 s, compared to
0% without any aggregation.

2) Visual examples of computation: We randomly chose so-
lutions returned by our implementation of NSGA-II algorithm
and we manually applied them on the NFB website. We recall

that the original appearance of this website is shown in Figure
1. We hereafter discuss the displayed results.

The first preference set S1 includes preferences that guaran-
tee minimal brightness contrast between the text and its direct
background. The minimal required contrast is slightly over
the contrast recommended by the Web Content Accessibility
Guidelines (WCAG 2.0). Figure 11a is the application of one
computed adaptation. In the left menu, in top navigation bar
and the content, the contrast is not especially high, but it
satisfies the minimal requested contrast. The first part of the
menu is somewhat light green and the second part yellow.
These two colors are far from the original colors. The same

258

International Journal on Advances in Internet Technology, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE XIII. “NFB” ALL PREFERENCES - EXPERIMENT FIGURES.

Variables search space

9 4× 1040

hhhhhhhhhh
Prefs. set

S1 S1aggr S2 S2aggr S3 S3aggr S4 S4aggr

Preferences 5 5 14 14 6 6 15 15
Objective functions 5 2 14 4 6 3 15 5

Exec. time (s)
Average 0.16 0.10 9.73 3.49 0.26 0.13 10.00 4.66

Standard deviation 0.05 0.02 1.17 4.37 0.05 0.02 0.00 4.61
Min 0.07 0.05 2.54 0.21 0.13 0.07 10.00 0.30
Max 0.30 0.14 10.00 10.00 0.39 0.20 10.00 10.00

Generations
Average 8 5 325 156 13 7 325 184

Standard deviation 2.3 1.1 37.3 192.7 2.5 1.2 13.9 181.3
Min 4 3 112 11 7 4 298 15
Max 16 8 385 447 20 11 367 424

Non cpltd. exec.
Percentage 0 0 94 30 0 0 100 40

Satisfied obj. fct (avg.) – – 8.3 2.1 – – 7.9 2.9
Standard deviation – – 1.8 0.4 – – 1.6 0.8

Min – – 5 1 – – 5 2
Max – – 12 3 – – 13 4

applies for the color of the top navigation bar and the color
of the main content. The computed colors only satisfy the
minimal brightness contrast constraint.

When we add to the minimal brightness contrast constraint
and the color closeness constraint, we reduce the possible
colors for each object. Figure 11b shows the application of
an adaptation computed using the S2 preference set. If we
consider the left menu, the new colors of the background and
of the text allow us to have the minimal required contrast.
Moreover, the background colors are not too far from the
original colors chosen by the designer. We have a problem
with the top navigation menu. This is normal regarding our
implementation of the distance between two colors. We will
explain this effect in the application of the S4 preference set.

In Figure 11c, instead of adding the color closeness con-
straint, we add the uniform background brightness constraint.
This constraint allows us to have near light emission for all
backgrounds on the page to avoid dazzle. Like in the first
example (Figure 11a), colors are randomly chosen during the
computation process. However, the minimal required contrast
is respected, and all backgrounds are dark. Thus, the uniform
background brightness constraint is also satisfied.

With all preferences (S4 preference set), the result is not
totally satisfactory. The minimal required contrast is respected.
The near background brightness is also satisfied. Unfortu-
nately, the closeness to the original colors is not very good.
As already noted in the S2 example, some colors are far
from the original colors. This is especially the case for grey-
based colors, including black and white. The color difference
is revealed by comparison of the hue of the two colors. The
hue of the black, the white and all grey colors is actually equal
to 0 (there is no hue). Colors have hues from 0 to 360 degrees,
thus, colors with a degree of around 0 are considered close to
all grey scale colors. The white background of the main content

can thus to be transformed into a dark colored background. In
a future work, we will study how to change the implementation
of our color distance function to avoid such effects.

E. Threats to validity

1) Construct validity: We have considered several configu-
rations to apply the NSGA-II algorithm, especially for analyz-
ing the effect of the population size and the potential benefit
or drawback of aggregated objective functions. During the
experiment, we collected information, including the execution
time, the number of generations, and the number of satisfied
objective functions (aggregated or not). The execution time
tells us whether all objective functions could be satisfied in
less than 10 seconds and indicates if the approach can be used
in practice. The number of generations allows us to analyze the
effect of the population size regarding the elapsed time. For
the same time, a larger population can correspond to fewer
generations (this refers to the complexity of NSGA-II). For
the non-terminated executions, we collect the number of sat-
isfied objective functions to get a quality indication. For each
preference set, we compare the non-aggregated implementation
with the aggregated one. The case without aggregation is easy
to interpret because it easily shows quality results for each
preference. However, the aggregated configuration allows us to
reduce the number of objective functions, which plays an im-
portant role in the complexity of the algorithm. Unfortunately,
with aggregation, it is harder to know the impact of changes
on each preference. Furthermore, in aggregation, we chose to
associate two objective functions to a general preference, but
we could associate more objective functions. However, with
two objective functions, we study configurations, which are
very different from the non-aggregated configurations, while
keeping a multi-objective approach. Other values could be

259

International Journal on Advances in Internet Technology, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a) S1 on the NFB website (b) S2 on the NFB website

(c) S3 on the NFB website (d) S4 on the NFB website

Figure 11. Adaptations of the NFB website.

chosen for the mutation (versus crossover) probability. The
analysis of the results would have been more complex, without
giving any substantial benefit.

2) Internal validity: The extraction of variables from the
websites was done manually. Two persons participated in
gathering this information. All colors were obtained from Web
pages using two different software systems: the “gcolor2”
on Linux system and the digital colorimeter included in
the MAC OS platform (OS X 10.8.5). Even if colors can
differ from one screen to another, such software systems, by
getting values from the “display manager” functionalities, are
not concerned by this issue. The defined model (variables,
constraints) simplifies pages by only encoding variables and
constraints concerned by the currently used preferences.

3) External validity: We have considered five very different
websites in terms of size, architecture and colors used. Web-
sites were also chosen for noticed accessibility problems for
visually impaired people. People who reported accessibility
problems have a visual impairment (low or high). We focused
the study on the contrast problem and brightness problem
because they are the most difficult problems to solve today
with existing assistive technologies. Several dimensions of
the search space and variables included in the constraints
were considered with the aim of studying variations in the
resolution. We feel that the variability in the results obtained
between NSGA-II executions is significant on this kind of

input data.
4) Conclusion validity: We have considered several mea-

sures, including min, max, standard deviation and average
execution time, generation number and number of satisfied
objective functions. We considered 60 executions for each
configuration. In our previous paper [1], we compared results
of NSGA-II with results obtained with an exact algorithm from
preference theory. The exact algorithm appeared to be totally
unusable (on a standard computer) when we had a search space
of 105. We also checked if there are cases where our algorithm
returns a good solution in the random initialization phase.

VI. CONCLUSION AND FUTURE WORK

Widely used assistive technologies now partially meet their
objective of helping people with low vision. However, their
general purpose often leads to rather simple adaptations that
do not provide relevant improvement for specific visual impair-
ment. Moreover, they may also radically change the appearance
of websites: part of the website design may be lost, while
navigation marks (deliberately placed or not) helping internet
users may disappear. As there is a substantial website diversity
in terms of architecture, number of objects, colors used or
even in font styles, we propose and test a new approach to
adapt Web pages. This approach is based on real user needs
(modeled by preferences) to find an adaptation that fits for
these preferences.

260

International Journal on Advances in Internet Technology, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

To address scalability issues when we work with real
websites, our approach is based on a multi-objective opti-
mization algorithm (NSGA-II). We describe and carry out an
experimentation on five very different websites. The chosen
websites have been noticed by users with some impairment
as websites with accessibility issues. Research has shown that
this approach works fine for small and some medium websites
with contrast or color distance preferences. We also learn
lessons about limitations of the algorithm regarding running
time and the number of considered objects (variables). This
experiment also highlights the significant benefits provided by
the aggregation of objective functions.

As future work, we plan to investigate other resolution
approaches by modeling our problem as a CSP (Constraint
Satisfaction Problem). The evaluation of our CSP modeling on
existing constraint solvers will be compared with the results
obtained with NSGA-II. The main and original target is to
help people with low vision, thus we will test our approach
in real conditions with users with visual impairment. This
evaluation will be conducted on frequently visited websites by
previously defining quality indicators. Testing websites with
visually impaired people may help us to get information on
how to facilitate the expression of preferences by the concerned
end user. In parallel, we will work on object or structure
recognition from Web pages. This phase is important to
automate the whole process. Object and structure recognition is
especially complex and requires refined heuristics for HTML4
Web pages because they are not explicitly defined in the source
code.

ACKNOWLEDGMENT

The authors would like to thank Berger-Levrault, which
supported this work with a grant, and Rémi Coletta for his
valuable remarks about the way of reporting the evaluation.

REFERENCES

[1] Y. Bonavero, M. Huchard, and M. Meynard, “Web page personalization
to improve e-accessibility for visually impaired people,” in Proceedings
of the Second International Conference on Building and Exploring Web
Based Environments (WEB 2014,), 2014, pp. 40–45.

[2] “Visual impairment and blindness, fact sheet n°282,” World Health
Org., http://www.who.int/mediacentre/factsheets/fs282/en, Oct. 2013,
accessed: 2014-11-09.

[3] Web Content Accessibility Guidelines, World Wide Web Consortium,
http://www.w3.org/TR/WCAG20/, accessed: 2014-11-09.

[4] User Agent Accessibility Guidelines, World Wide Web Consortium,
http://www.w3.org/TR/UAAG20/, accessed: 2014-11-09.

[5] Authoring tools Accessibility Guidelines, World Wide Web Consortium,
http://www.w3.org/TR/ATAG20/, accessed: 2014-11-09.

[6] Web Accessibility Initiative - Accessible Rich Internet Applications,
World Wide Web Consortium, http://www.w3.org/WAI/intro/aria, ac-
cessed: 2014-11-09.

[7] “References on evaluation tools by WAI,” http://www.w3.org/WAI/ER/
existingtools.html, accessed: 2014-11-09.

[8] M. Y. Ivory, J. Mankoff, and A. Le, “Using automated tools to improve
Web site usage by users with diverse abilities,” Information Technology
and Society, vol. 3, no. 1, 2003, pp. 195–236.

[9] J. T. Richards and V. L. Hanson, “Web accessibility: a broader view,” in
WWW ’04: Proceedings of the 13th international conference on World
Wide Web. ACM Press, 2004, pp. 72–79.

[10] C. Domshlak, R. I. Brafman, and S. E. Shimony, “Preference-based
configuration of Web page content,” in Proceedings of International
Joint Conference on Artificial Intelligence (IJCAI), 2001, pp. 1451–
1456.

[11] B. Mobasher, R. Cooley, and J. Srivastava, “Automatic personalization
based on Web usage mining,” Com. ACM, vol. 43, no. 8, 2000, pp.
142–151.

[12] K. Z. Gajos, J. O. Wobbrock, and D. S. Weld, “Automatically generating
user interfaces adapted to users’ motor and vision capabilities,” in
Proceedings of the 20th Annual ACM Symposium on User Interface
Software and Technology (UIST), C. Shen, R. J. K. Jacob, and
R. Balakrishnan, Eds. ACM, 2007, pp. 231–240.

[13] J. Abascal, A. Aizpurua, I. Cearreta, B. Gamecho, N. Garay-Vitoria, and
R. Miñón, “Automatically generating tailored accessible user interfaces
for ubiquitous services,” in Proceedings of the 13th International ACM
SIGACCESS Conference on Computers and Accessibility (ASSETS),
K. F. McCoy and Y. Yesilada, Eds. ACM, 2011, pp. 187–194.

[14] A. Mereuta, S. Aupetit, and M. Slimane, “Improving Web accessibility
for dichromat users through contrast preservation,” in Proceedings od
the 13th International Conference ICCHP (International Conference on
Computers Helping People with Special Needs), ser. Lecture Notes in
Computer Science, K. Miesenberger, A. I. Karshmer, P. Penáz, and
W. L. Zagler, Eds., vol. 7382. Springer, 2012, pp. 363–370.

[15] L. Balme, A. Demeure, G. Calvary, and J. Coutaz, “Sedan-Bouillon: a
plastic Web site,” 2005, plastic Services for Mobile Devices (PSMD),
Workshop held in conjunction with Interact’05, Rome, 12 Sept. 2005.

[16] M. Macías, J. González, and F. Sánchez, “On adaptability of Web
sites for visually handicapped people,” in Proceedings of the second
International Conference on Adaptive Hypermedia and Adaptive Web-
Based Systems (AH), ser. Lecture Notes in Computer Science, P. D.
Bra, P. Brusilovsky, and R. Conejo, Eds., vol. 2347. Springer, 2002,
pp. 264–273.

[17] K. Cullen, L. Kubitschke, T. Boussios, C. Dolphion, and
I. Meyer, “Web accessibility in European countries: level of
compliance with latest international accessibility specifications,
notably WCAG 2.0, and approaches or plans to implement those
specifications,” http://ec.europa.eu/digital-agenda/en/news/study-
report-web-accessibility-european-countries-level-compliance-latest-
international, 2009, accessed: 2014-11-09.

[18] S. Kaci, Working with Preferences: Less Is More, ser. Cognitive
Technologies. Springer, 2011, iSBN:978-3-642-17279-3.

[19] J. Horn, N. Nafpliotis, and D. Goldberg, “A niched Pareto genetic
algorithm for multiobjective optimization,” in Proceedings of the First
IEEE Conference on Evolutionary Computation. IEEE, 1994, pp. 82–
87.

[20] J. Knowles and D. Corne, “The Pareto archived evolution strategy:
A new baseline algorithm for Pareto multiobjective optimisation,” in
Proceedings of the Congress on Evolutionary Computation, vol. 1.
IEEE, 1999, pp. 98–105.

[21] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a
comparative case study and the strength Pareto approach,” IEEE Trans.
Evolutionary Computation, vol. 3, no. 4, 1999, pp. 257–271.

[22] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evolutionary
Computation, vol. 6, no. 2, 2002, pp. 182–197.

[23] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software
engineering: trends, techniques and applications,” ACM Comput. Surv.,
vol. 45, no. 1, Dec. 2012, pp. 11:1–11:61. [Online]. Available:
http://doi.acm.org/10.1145/2379776.2379787

[24] M. Laumanns, L. Thiele, K. Deb, and E. Zitzler, “Combining con-
vergence and diversity in evolutionary multiobjective optimization,”
Evolutionary computation, vol. 10, no. 3, 2002, pp. 263–282.

[25] “Conversion from RGB to HSV,” http://en.wikipedia.org/wiki/HSL_
and_HSV, accessed: 2014-11-09.

261

International Journal on Advances in Internet Technology, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

