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Abstract—The usage of the Web has experienced a vertiginous
growth in the last few years. Watching video online has been one
major driving force for this growth lately. Until the appearance of
the HTML5 agglomerate of (still draft) specifications, the access
and consumption of multimedia content in the Web has not
been standardized. Hence, the use of proprietary Web browser
plugins flourished as intermediate solution. With the introduction
of the HTML5 VideoElement, Web browser plugins are replaced
with a standardized alternative. Still, HTML5 Video is currently
limited in many respects, including the access to only file-based
media. This paper investigates on approaches to develop video live
streaming solutions based on available Web standards. Besides
a pull-based design based on HTTP, a push-based architecture
is introduced, making use of the WebSocket protocol being
part of the HTML5 standards family as well. The evaluation
results of both conceptual principles emphasize, that push-
based approaches have a higher potential of providing resource
and cost efficient solutions as their pull-based counterparts. In
addition, initial approaches to instrument the proposed push-
based architecture with adaptiveness to network conditions have
been developed.

Keywords-HTML5, Video, Live Streaming, DASH, WebSockets,
Adaptive Streaming

I. INTRODUCTION

The access of video content in the Web is evolving rapidly,
as the internet traffic increases, with live video streaming
becoming web-native as well [1]. According to the Cisco Vi-
sual Networking Index Global Forecast and Service Adoption
for 2013 to 2018 [2], consumer Internet traffic has increased
enormously on the last years and the expectations are that this
trend continues growing due to more users and devices, faster
broadband speeds and more video viewing. Already today,
monthly web traffic is at 62 exabytes a month, meaning a 62%
of the whole traffic. The forecast includes concrete numbers on
Internet traffic predictions, indicating that the annual global IP
traffic will surpass the zettabyte (1000 exabytes) threshold in
2016. In other words, it will reach 91.3 exabytes (one billion
gigabytes) per month in 2016, going up to 131.6 exabytes per
month in 2018. The latter figure means that it would take an
individual over 5 million years to watch the amount of video
that will be crossing global IP Networks in one month in 2018.

The increase in Internet usage is mainly driven by online
video consumption, for which the expected proportion of
all consumer Internet traffic will account 79% in 2018, up
from 66% in 2013. Moreover, adding related forms of video

distribution to this calculation such as video on demand and
video exchanged through peer-to-peer file sharing would mean
between 80 to 90% of global consumer traffic. Regarding to
the number of users online video will then be the fastest
growing Internet service with a Compound Annual Growth
Rate (CAGR) of 10 percent from 2013 to 2018, growing from
1.2 billion users to 1.9 billion users by 2018, as shown in
Figure 1.
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Figure 1: Estimated monthly consumer video traffic and total
data traffic on the Internet [2]

In the early days of the Internet, video content has been de-
livered by specific streaming protocols such as Real-Time Pro-
tocol (RTP) [3] or Real-Time Streaming Protocol (RTSP) [4]
in conjunction with specialized server-side software to handle
the stream. These protocols break up the streams – it can be
more than one, such as a video and multiple audio channels –
into very small chunks and send them from the server to the
client. This method is also denoted as push-based delivery.

Such streaming protocols suffered, however, from un-
favourable firewall configurations restricting in many cases the
access to media data. HTTP progressive download [5] has
been developed partially to overcome this issue and to get
multimedia streams past firewalls. The basic concept behind
HTTP progressive download is to play back the media content
while the resource is being downloaded from the Web server.
This approach is also known as pull-based delivery, since the
file containing the media data needs to be pulled from the
server by a client’s request.

While capable of reliably finding the path from a requesting
client to a responding Web server, HTTP progressive download
still not offers true streaming capabilities. This lack motivated
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the introduction of methods for adaptive streaming over HTTP.
To provide a streaming behaviour, adaptive streaming over
HTTP segments the media stream into small, easy-to-download
chunks. The adaptiveness is realized by encoding the media
content at multiple distinct bitrates and resolutions, creating
chunks of the same media fragment in different qualities and
sizes. The available encodings enable the client to choose
between the provided quality levels and then adapt to lower
or higher definition automatically as network conditions keep
changing. In order to inform the client about the offered video
quality levels and the corresponding names of the resources, a
meta file containing this information is provided by the server.
The client then chooses a suitable quality level and starts
requesting the corresponding chunks in order and with the file
named specified in the meta file. This pull of media data needs
to be performed by the client in a continuous manner in order
to construct an enduring stream out of the obtained chunks.
In an equivalent fashion an updated version of the meta file
needs to be requested periodically as well, so that the client
retrieves information on upcoming chunks to request.

The arena of technologies for adaptive streaming over HTTP
has been dominated by proprietary vendor-proposed solutions,
as will be discussed in the subsequent Section II. To harmonize
the scattered picture a standardized approach known as MPEG
Dynamic Adaptive Streaming over HTTP (DASH) has been
ratified in December 2011 and published by the International
Organization for Standards (ISO) in April 2012 [6]. Although,
adaptive streaming over HTTP has been standardized lately
and largely build upon Web standards, the play back still
requires propietary extensions to be included into the Web
browsers. Thus, from a perspective of a live video streaming
that is native to the Web, the following set of requirements can
be defined as necessary foundation:

• Live content support
Delivering live content by the concept of chunk-based
distribution.

• Web-native
Building solely upon Web standards, so that no addi-
tional components are needed to develop and use the
streaming services (e.g., by being HTML5-compliant on
the client-side).

• Minimal meta data exchange
Avoiding of extra message exchanges required for media
stream control (e.g., by the adoption of communication
patterns following the push model instead of the pull
model).

• Low protocol and processing overhead
Reducing overheads introduced by communication and
processing means.

In the following section, available technologies will be
reviewed in the light of these requirements. After that, in
Section III, the proposed approach of a Web-native live Video
Streaming will be introduced in terms of an architecture. Sec-
tion IV then introduces an implementation of the introduced
architecture, which serves as foundation for building various
evaluation test beds as described in Section V. Finally, a
detailed discussion of the evaluation results obtained from

performed test runs will conclude the contribution of the
present paper.

II. RELATED WORK

Microsoft Smooth Streaming (MSS) [7] has been one of
the first adaptive media streaming over HTTP announced in
October 2008 as part of the Silverlight [8] architecture. MSS
is an extension for the Microsoft HTTP server IIS (Internet
Information Server) [9] that enables HTTP media streaming of
H.264 [10] video and AAC [11] audio to Silverlight and other
clients. Smooth Streaming has all typical characteristics of
adaptive streaming. The video content is segmented into small
chunks that are delivered over HTTP. As transport format of
the chunks, MSS uses fragmented ISO MPEG-4 [10] files. To
address the unique chunks Smooth Streaming uses time codes
in the requests and thus the client does not have to repeatedly
download a meta file containing the file names of the chunks.
This minimizes the number of meta file downloads that in turn
allows to have small chunk durations of five seconds and less.
This approach introduces, however, additional processing costs
on the server-side for translating URL requests into byte-range
offsets within the MPEG-4 file.

Apple’s HTTP Live Streaming (HLS) [12] came next as
a proposed standard to the Internet Engineering Task Force
(IETF). As MSS it enables adaptive media streaming of H.264
video and AAC audio. At the beginning of a session, the HLS
client downloads a play list containing the meta data for the
available media streams, which use MPEG-2 TS (Transport
Stream) [13] as wire format. This meta data document will
be repeatedly downloaded, every time a chunk is played
back. The media content is embedded into a Web page using
the HTML5 VideoElement [14], whose source is the m3u8
manifest file [15], so that both the parsing of the manifest
and the download of the chunks are handled by the browser.
Due to the periodic retrieval of the manifest file, there exists
a lower bound for the minimal duration of the chunks, which
is commonly about ten seconds. A drawback of HLS is the
current lack of client platforms support, with an availability
at the moment mostly restricted to iOS devices and desktop
computers with Mac OS X [16]. At the moment, the support
for Android Operative System is only available on a few
Android devices running Android 4.x and above, although still
presenting several inconsistencies and difficulties. Moreover,
for desktop no other web browser than Safari has native
support for HLS and specific player plugins are therefore
necessary in other browsers to play the streams back [17].

With the announcement of HTTP Dynamic Streaming
(HDS) [18] Adobe entered the adaptive streaming arena in
late 2009. Like MSS and HLS, HDS breaks up video content
into small chunks and delivers them over HTTP. The client
downloads a manifest file in binary format, the Flash Media
Manifest (F4M) [19], at the beginning of the session and
periodically during its life time. As in MSS, segments are
encoded as fragmented MP4 files that contain both audio and
video information in one file. It, however, differs from MSS
with respect to the use a single metadata file from which
the MPEG file container fragments are determined and then
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delivered. In this respect, HDS follows the principle used in
HLS instead, which requests and transmits individual chunks
via a unique name.

These three major adaptive streaming protocols have much
in common. Most importantly, all three streaming platforms
use HTTP streaming for their underlying delivery method,
relying on standard HTTP Web servers instead of specialized
streaming servers. They all use a combination of encoded
media files and manifest files that identify the main and
alternative streams and their respective URLs for the player.
And their respective players all monitor either buffer status or
CPU utilization and switch streams as necessary, locating the
alternative streams from the URLs specified in the manifest.
The overarching problem with MSS, HLS and HDS is that
these three different streaming protocols, while quite similar
to each other in many ways, are different enough not to be
technically compatible. Indeed, each of the three proprietary
commercial platforms is a closed system with its own type
of manifest format, content formats, encryption methods and
streaming protocols, making it impossible for them to work
together.

As introduced in Section I, it is a well-known fact that the
consumption of video on the Web is growing every day and,
moreover, consumers are moving from desktop computers to
smartphones, tablets, and other mobile devices to watch video.
All these devices present huge differences in compatibility.
Despite that, the same experience is expected on all of them,
maintaining the high quality and availability. To enable the
delivery of video to any platform, a number of streaming
protocols and different applications have to be supported. The
situation would change greatly if it was possible to have a
single distribution method and a single cross-platform client
application. On the other hand, removing the requirement of in-
stalling plugins on the client side removes a significant obstacle
for many users. Furthermore, for cross-platform compatibility,
security and stability, many browser vendors have already
decided they are not supporting plugins in the future. All
those reasons have as a consequence the intention of avoiding
solutions that involve plugins and opt for a Web-browser-native
approach.

Recognizing this need for a universal standard for the
delivery of adaptive streaming media over HTTP, the MPEG
standardisation group decided to step into. MPEG DASH (Dy-
namic Adaptive Streaming over HTTP) [6] is an international
standard for HTTP streaming of multimedia content that allows
standard-based clients to retrieve content from any standard-
based server. It offers the advantage that it can be deployed
using standard Web servers. Its principle is to provide formats
that enable efficient and high-quality delivery of streaming
services over the Internet to provide very high user-experience
(low start-up, no rebuffering, trick modes). To accomplish
this, it proposes the reuse of existing technologies (containers,
codecs, DRM, etc.) and the deployment on top of Content
Distribution Networks (CDN). It specifies the use of either
MPEG-4 or MPEG-2 TS chunks and an XML manifest file,
the so-called Media Presentation Description (MPD), that is
repeatedly downloaded to the client making it aware of which
chunks are available.
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Figure 2: Characteristics of HTTP-based adaptive live stream-
ing platforms

Although the DASH standard may become the format of
choice in the future, there is a lack of native Web browser
integration. Initial steps towards a browser-native integration
of MPEG-DASH using the HTML5 VideoElement have been
undertaken. In these implementations, the browser is in charge
of parsing, decoding and rendering the media data while, tradi-
tionally, applications like Adobe Flash or Microsoft Silverlight
have been used for these features, in form of plugins. With
JavaScript most of them can be achieved but still remains as a
pitfall how to feed media data to the HTML5 VideoElement,
a core issue to enable live streaming and adaptive streaming,
where the source to play is a sequence of chunks and therefore,
the ’src’ parameter needs to be updated accordingly.

On this research several different solutions have been in-
vestigated in order to overcome the problem of the integration
of DASH with HTML5 VideoElement, described in detail in
Section IV.

The DASH-JS [20] project from the University of Klagen-
furt introduces an approach to overcome this lack of native
Web browser support. It proposes a seamless integration of
the DASH standard into Web browsers using the HTML5
VideoElement and the MediaSource extensions [21]. The Me-
diaSource extensions enable a seamless playback of a chunk-
based stream, by defining a JavaScript API, which allows
media streams to be constructed dynamically. They are still
a W3C working draft and are currently supported by some
of the major browsers: Chrome, Firefox Internet Explorer,
Safari, Windows Phone 8.1 and Chrome for Android. This
API solves the problem simplifying the process, taking care
of the playing as the segments are downloaded and creating a
sequence that is played back by feeding it chunk-wise into the
HTML5 VideoElement. The media segments are downloaded
and appended to a MediaSource buffer and this sequence will
then be used as source for the HTML5 VideoElement. The first
of the chunks consists of initialization data, which has to be
appended to the buffer on the first place. After this initialization
data has been loaded, the media segments will be retrieved
and played back in the required sequence. Listing 1 shows the
major parts of the MediaSource API and their usage in order to
construct a steady media stream constructed out of the media
fragments downloaded from the Web server via continuous
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requests issued by the XMLHttpRequest (XHR) [22] API. The
second part is repeated as long as the session is open.

Figure 2 summarizes the characteristics of the discussed
adaptive live streaming platforms over HTTP in the light of
the requirements defined for a Web-native live video streaming.
As can be observed, none of the currently available platforms
covers all of these characteristics, leaving space for further
research and development.

Listing 1: Usage of the MediaSource API for fragmented
media access.
//URL of next chunk
var url = (...);

var mediaSource = new MediaSource();
var video = document.querySelector(’video’);
video.src =

window.URL.createObjectURL(mediaSource);

(...)

var sourceBuffer =
mediaSource.addSourceBuffer(
’video/mp4; codecs="avc1.42c00d"’);

var xhr = new XMLHttpRequest();
xhr.open(’GET’, url, true);
xhr.responseType = ’arraybuffer’;
xhr.onload = function(e)
{

data = new Uint8Array(this.response);
if (data == "false")

mediaSource.endOfStream();
else

videoSource.appendBuffer(data);
};

xhr.send();

III. ARCHITECTURE

The basic idea of the proposed architecture is to ground the
live streaming approach on a distinct communication protocol
other than HTTP, which is still native to the Web but allows
for a different communications design.

The WebSocket protocol was standardized by the IETF as
RFC 6455 in 2011 [23]. As a flanking W3C standard, the
WebSocket JavaScript API [24] provides an entirely event-
driven interface for browser applications to use the WebSocket
protocol. WebSockets are supported by all major browsers such
as Chrome, Internet Explorer, Firefox, Safari and Opera in their
desktop as well as mobile occurrence, as shown in Figure 3.

The protocol operates on top of a standard TCP socket and
offers a bidirectional communication channel between a Web
browser and a WebSocket server. The WebSocket is established
by a HTTP-based opening handshake commonly operated on
port 80, which preserves firewall-friendliness.

The code running on the browser side acts as client while
there must be a server program running waiting for connec-
tions, usually installed on a Web server.

Figure 3: WebSocket browser support [25]

Web Browser
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WebSocket Channel

WebSocket Client
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Web
 Application



...

Video Chunks

WebSocket
Server

Media Server
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Figure 4: Proposed push-based Web-native live Video Stream-
ing architecture

Figure 4 illustrates the architecture of the developed system,
where the two different communication protocols used are
represented, as well as a sample of the message exchange.

The communication between the Web browser and the Web
server will be the first to be executed, as for every Website, via
HTTP. After the Web browser has downloaded the Website, the
JavaScript code on the Web Application will attempt to start
the communication via WebSocket with the media server.

The communication between client and media server starts
with a two-way handshake, as can be seen in Figure 4, before
the actual data transmission. The way the data transmission
between the two parts takes place, facilitates its use for
live content and real-time applications. This is achieved by
enabling the server to send content without the need of the
client asking first for it, creating a real bidirectional connection
that remains open for both parts to send data at any time.

The fact of being able to follow a push model is the core
principle of this architecture, where a lot of real-time data
needs to be sent, and will be sent from the server periodically,
as soon as it is available instead of using a request-response
procedure.
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Figure 5: Prototype implementation of the proposed push-
based Web-native live Video Streaming architecture

IV. IMPLEMENTATION

A prototype implementation of the proposed pushed-based
architecture has been developed as a foundation for analysing
the properties of the introduced approach. The technologies
and components used for developing the prototype are depicted
in Figure 5.

The initial Web page is delivered by an HTTP server and
contains a JavaScript program, which gets downloaded by the
browser. The browser will also be in charge of rendering the
video while it is being downloaded.

As introduced at the beginning of this paper, for this research
several different solutions have been investigated in order to
overcome the problem of the integration of DASH with the
HTML5 VideoElement. The trivial approach of updating the
source of the VideoElement when the previous chunk has
come to an end gives as a result quite a noticeable gap
between sources for the user watching. Another approach, from
which a better seamless switch could be expected, utilizes two
VideoElements at the same position. This can be understood
as one on top of the other in a certain way, letting at every
moment just one of them to be visible. In this case, the next
chunk to play would always be loaded on the hidden element in
advance, carrying out the switch at the exact end of the playing
chunk. The behaviour this technique produces is in fact very
similar to the previous approach, showing gaps between the
chunks to play for a short time during the switch.

Furthermore, the use of some publicly available APIs to
reproduce a list of files using the VideoElement, such as
SeamlessLoop 2.0 for JavaScript [26] and an own version
of it replacing the audio by a VideoElement has also been
considered, without success solving the problem.

As a consequence, from all options investigated the only
remaining possibility to overcome this issue at the moment

of implementing this system is to use the already mentioned
MediaSource API for the implementation.

Afterwards, the JavaScript code, which will be executed on
the client after downloading, creates an HTML5 VideoElement
object and a MediaSource object and connects them using
the API. This API allows the construction of media stream
objects for the HTML5 VideoElement through which the
media segments can be passed to the HTML5 VideoElement
for play back. Thus, the decoding and rendering parts will be
natively handled by the browser.

In what follows, the client needs to create the WebSocket
connection and to assign the according event listeners to
specific functions waiting for the next content chunks to arrive
so that they can be added to the corresponding MediaSource
buffer. This will be performed until the end of the session,
which is reached either when the server has no more content
to deliver or when the user decides to stop watching.

The WebSocket server application is implemented in Python
language, using Pywebsocket [27], an extension for the Apache
HTTP Server. This API makes possible to develop a server for
the test, which resulted consuming very low RAM memory
even for a large amount of clients connected, which is actually
translated to a large amount of threads for the operative
system. Just like most server applications, it does not start
connections by itself but waits for connection requests. After
the establishment, the client applications emit a starting signal,
with which the video session begins and remains open as long
as there is more content available.

V. EVALUATION

To evaluate the proposed approach two distinct test beds
have been implemented. Test bed A (browser-based, in
JavaScript) is targeting the amount of metadata, i.e., data not
part of the video, required to be exchanged between client and
server. Test bed A (not browser-based, in Python) is concerned
with the processing overhead on the server-side and the number
of simultaneous clients servable from one server instance.
These test beds have been realized for both a DASH-like HTTP
transfer and the proposed WebSocket-based approach.

To perform the first evaluation (Test bed A), two browser-
based clients have been developed: a version over HTTP, which
avails itself of Apache HTTP server and another one over
WebSocket, which, after establishing the connection, connects
to our WebSocket server application.

To perform the second evaluation (Test bed B), all com-
ponents have been implemented in Python language. For the
clients, the modules used are websocket-client [28] and httplib
[29], respectively. The server-side of the HTTP approach is
programmed on top of the HTTP protocol implementations
provided by the Python modules BaseHTTPServer [30] and
SocketServer [31]. Based on these components, the implemen-
tation of a multi-threaded HTTP and WebSocket server has
been undertaken. The server-side of the WebSocket approach
is the same described in previous section.

The video used to perform the evaluation is the open source
movie Big Buck Bunny [32], which was produced by the
Blender Foundation and has been released under Creative
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Commons License Attribution 3.0 [33]. The AVC codec is used
in an MP4 container. The test video’s bitrate is 100 kbps, the
duration is 9’ 56” and the total file size is 6.7 MB (6,656,763
bytes).

To simulate a live stream, the movie has been chunked
into separate segment files according to the MP4 standard.
These segments contain each a short portion of two seconds
of duration and are stored in the media server. Since the chunk
length is approximately two seconds, the number of chunks is
300.

A. Communication overhead
To gather the overhead introduced by each one of the two

investigated communication alternatives, the network traffic
has been captured, analysed and contrasted with theoretical
thoughts. The network packets exchanged in both scenarios
have been captured using Wireshark [34].

Each layer of the TCP/IP model introduces its own metadata
in form of a header and in some cases even a trailer, but
since Ethernet, IP and TCP are common to both compared
approaches, only the protocol elements of the application-level
are taken into account, which are the HTTP messages and the
WebSocket frames, respectively.

Figure 6: Captured HTTP request asking for video chunk #4

Figure 6 shows the typical size of an HTTP GET request for
retrieving the next video chunk, which has in this particular
case a size of 440 bytes.

Figure 7: Captured HTTP response containing video chunk #4

Figure 7 presents the size of an corresponding HTTP re-
sponse packet. The upper-most mark in the figure shows that

a total of 22,912 bytes have been transmitted in the HTTP
response. From the HTTP content-length header the amount
of video bytes contained in this chunk can be retrieved, which
is 22,617 bytes. With these two values, the size of the HTTP
response header can be calculated (300 bytes). This makes a
final amount of metadata of 740 bytes per chunk (440 bytes for
the whole request and 300 bytes for the response header). This
again sums up to an overall overhead of 222,000 bytes when
considering all of the 300 chunks. For transmitting the test
video of the size of 6,656,763 bytes, this method introduces
an overhead of 3.3% in relation to the media content.

Figure 8: Captured WebSocket frame containing video chunk
#4

The WebSocket protocol specification defines the header as a
variable size structure ranging from a size of at least two bytes
to a maximum of 8 bytes. This mainly depends on the size
of the payload carried by the WebSocket packet, since this is
encoded in a length field in the header, which grows depending
on the actual content size. In case of a minimal two bytes
header, the payload of the WebSocket frame can contain a
maximum of 125 bytes. Since all of the 300 two seconds video
segments are in any case larger than this mark, the resulting
WebSocket packets do all have a header of four bytes, as can
be observed from the captured WebSocket frame shown in
Figure 8. This is due to a required extended payload length
header field, which introduces additional two bytes. With this
two byte extended payload length header field a maximum
of 65,662 bytes of payload can be specified, which is large
enough for all of the 300 video chunks.

Since there are no requests required to retrieve a next
video chunk, this communication overhead from the DASH-
like approach is not inherent to the proposed WebSocket-based
transmission. Thus, the total amount of metadata introduced
per chunk is four bytes (zero bytes for the request since it
does not exist and four bytes for the header in the WebSocket
frame). For all of the 300 chunks this sums up to a total of
1,200 bytes for transferring the video from the server to the
Web client. This represents an overhead of around 0.02% in
relation to the plain multimedia content of 6,656,763 bytes.

When observing carefully the numbers given in the Figures 7
and 8 it appears that the sizes of the payloads found in the
HTTP response and the WebSocket frame differ by six bytes.
This constant six byte offset can be found in any WebSocket
frame in comparison to the corresponding HTTP response.
This is due to additional meta data added by the WebSocket
implementation used in this test bed (binaryjs [35]). Thus,
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the concrete WebSocket framework and libraries used for
development need to be examined whether they add additional
metadata to the payload, since this has an influence on the
overall efficiency. In this particular case, the exchanged meta-
data sums up to a total of 3,000 bytes, which represents an
overhead of around 0.05% in relation to the plain multimedia
content of 6,656,763 bytes.

B. Processing overhead

To further examine the potential benefits of the proposed
approach of using WebSockets as communication means for
video live streaming in the Web, an additional test bed has been
developed and operated; aiming at finding out the total quantity
of clients that one server is able to handle simultaneously.
Again, two equivalent instantiations of the test bed have been
deployed for the DASH-like and for the WebSocket-based live
video streaming.

...

CLIENT

CLIENT

...

CLIENT

CLIENT

...

CLIENT

CLIENT

SERVER

...

micro instancessmall instance

Figure 9: Architecture of the processing overhead test bed.

The machine used for this evaluation is an Amazon EC2
small instance server composed of one 64 bit ECU (EC2
Compute Unit), which provides the equivalent CPU capacity
of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor and
1.7 GB of RAM [36]. To simulate a large number of clients
a set of 15 distinct and distributed EC2 micro instances have
been deployed. An EC2 micro instance is equipped with up
to 2 ECUs for short periodic bursts and 613 MB of RAM.
The architecture of this test bed can be observed on Figure
9. The developed components described in Section IV have
been installed on these systems in order to setup and operate
the test beds. When building such a large scale test bed, the
OS settings for the maximum number of open files per user,
the maximum number of threads and the maximum number of
TCP connections need to be modified accordingly.

The clients are all set up at the same time. At the moment
the last of them connects to the server, all of them start being
simultaneously served with the test video. After each client
instance has received all content, it measures its own duration
time; measured from the moment it started receiving content,
to calculate the bitrate as follows:

Bitrate [bps] = Video size [bits] / Transfer time [s].

As mentioned previously, the video encoding bitrate is
around 100 kbps. Hence, as long as the receiving bit rate is
higher than the video bitrate, the user will be able to watch
the video without encountering any disturbance. The moment
in time when the number of clients is so big that the majority
of them cannot be served anymore at the required minimum
bitrate will be considered as the inflexion point. The expected
theoretical results of these tests are shown in Figure 10, with
a red dot symbolizing the defined inflexion point.

Figure 10: Expected curve of transmission bitrate

The number of clients has been increased stepwise starting
from 100 clients. On each run, all clients have been equally
distributed on 15 separate machine instances. Each run has
been repeated 10 times to obtain a mean value. In each
additional run, the server is restarted and the number of
concurrent clients is increased by 100, until reaching 2,000
clients in the final run.

Figure 11 shows the results obtained from the DASH-like
live streaming test bed. It can be observed that the graph for
HTTP transmission bitrate shows a corresponding shape as
theoretically expected and depicted in Figure 10.

The bitrate decreases from an average of 1,228 kbps, when
there are 100 simultaneous clients to an average of 49 kbps,
when the number of connected clients increases to 2,000. The
red point indicates the inflexion point, which lies between
1,000 and 1,100 active clients. This denotes the largest quantity
of simultaneous clients for this server, so that the minimum
required video bitrate can still be served to the connected
clients.

Figure 12 summarizes the results obtained from the
WebSocket-based live streaming test bed. The bitrate decreases
from an average of 4,067 kbps, when there are 100 simulta-
neous clients to an average of 170 kbps, when the number of
active clients increases to 2,000. Thus, the WebSocket-based
video server can still handle as much as 2,000 simultaneous
clients and provide each with a video stream that comes with
a bitrate still above the required encoding bitrate of 100 kbps.

The tests runs have been performed in both cases until 2,000
concurrent clients have been reached. Further measurements in
the WebSocket-based test bed have not been performed. When
extrapolating the obtained results, then the inflexion point will
be located at around 2,300 clients (see Figure 12).
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Figure 11: Average transmission bitrate for DASH-like streaming

Figure 12: Average transmission bitrate for WebSocket-based streaming

From these experiments it can be deduced, that be-
sides the communication overhead advantages, the proposed
WebSocket-based live streaming approach has additional ben-
efits in terms of processing costs. These efficiency advantages
result in a larger user base being servable with the same
amount of infrastructure resources.

To facilitate the task of evaluating the performance of this
implementation, a video encoded at very low quality has been
chosen. However, the obtained results are also to be applied
for different video qualities.

VI. FURTHER CONSIDERATIONS

Future research activities in respect to the proposed push-
based web-native live streaming approach need to focus on
further aspects. One is concerned with the adaptiveness to the
underlying network conditions, in order to provide a better user
experience in the presence of changing network properties.
Another aspect to focus on in further research and development

activities is the relation of Content Delivery Networks (CDN)
and connection-oriented protocols, such as the WebSocket
protocol.

A. Adaptiveness to the network conditions
Although adaptive bitrate streaming solutions are signif-

icantly more complex than constant bitrate streaming tech-
nologies, still, a method that determines the data throughput
capabilities of each user in real time and controls the quality
of the media stream accordingly, provides consumers with the
best experience available, depending on their specific network
and playback conditions. This can be achieved for the proposed
architecture by including an encoder, which generates multiple
distinct video encodings out of a a single source. The switch
between the different video qualities occurs when necessary,
attending to the network conditions. This can be achieved
in two different ways. The first one is to monitor the video
playback on the client-side and have the client notify the server
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when it should reduce or increase the quality. The second one
monitors on the server-side and takes the decision whether to
change to another video quality level directly there. Although
the first approach is currently used by most of the adaptive
video streaming systems, it introduces an additional overhead
due to the exchange of control messages between the client and
the server. Therefore, it would not be reasonable to adopt such
an approach for this architecture, where the focus has been to
reduce overhead coming from periodical control requests in
the first place. The second option, instead, is more reasonable
in the light of the proposed push-based approach. The status of
the WebSocket connection can be leveraged to facilitate this.
More concretely, the TCP channel underlying the WebSocket
can be used to monitor the current network conditions in terms
of the available data throughput rate and to determine the most
appropriate video delivery rate.

A first implementation of this concept has been developed,
with three video qualities:

• Low definition video (320x240, 100 kbps)
• Standard definition video (1280x720, 1,200 kbps)
• High definition video (1920x1080, 5,000 kbps)
It provides the adaptively by checking whether the fill level

of the output buffer increases, remains static or is empty during
a certain observation time. In the first case the server stops
sending data to the client until the buffer is drained and then
continues sending with a lower video quality, if available. The
second case does not require any specific action, since the
current streaming settings fit to the current network conditions.
In the last case, however, it seems that the client might be able
to consume a higher quality level, which will be delivered, if
available.

To verify this concept, a test environment has been
implemented. The adaptive streaming server has been based
on the Vert.x [37] application platform and concretely its
modules for WebSockets and Flow Control. To simulate
different network states a delay is introduced on every
packet sent using the tool Netem [38]. It is controlled by
the command ’tc’, part of the iproute2 package of tools. The
command to add a fixed amount of delay of n ms to the
outgoing packages is:

tc qdisc add dev eth0 root netem delay n ms

It has been observed that the server adapts to the current
state and selects the source video accordingly. For a case where
the client is connected through a high-bandwidth connection
with no delay, the client receives the High Definition video
on the browser. When there is a delay higher than n ms, the
client receives the standard definition quality and for any delay
higher than m ms the low definition video.

With this prototype implementation the server-side data
throughput monitoring and control has been proofed as a low-
overhead and seamless extension for the push-based live video
streaming system proposed in this paper. However, future work
should continue in this direction to provide a fully adaptive
implementation, which does not only reduce the quality for
a low-bandwidth or high-latency connection but also applies

Figure 13: Akamai CDN architecture [39]

more precise algorithms taking into account all parameters
taking part on the data throughput and delivery to select the
higher quality available for each user.

B. CDNs and push-based live video streaming
Currently, Content Distribution Networks (CDN) play a

significant role when referring to web-based video streaming.
The term refers to a large geographically distributed system of
servers deployed in multiple data centres across the Internet,
which has as a goal to serve content to end-users with high
availability and high performance. This is accomplished by
transparently mirroring content from customer servers, repli-
cated all over the world. Thus, users receive the content from
a server part of the CDN, which will be automatically picked
depending on the kind of content and the user’s location.
The architecture of Akamai, one of the current top CDNs is
depicted in Figure 13.

Content providers, and in particularly media companies,
require these services for delivering their content to end-users.
Referring back to the Cisco Visual Networking Index Global
Forecast and Service Adoption for 2013 to 2018 mentioned
in Section I, CDNs carried over 36% of the Internet traffic in
2013.

Therefore, the main issue they solve is the latency, the
amount of time it takes the server to receive, process, and
deliver a resource for a request by this mechanism, which
leads to low download-times, enabling that a live event can
be transmitted to every part of the world in real time as it is
being consumed, as well as to decreasing the vulnerability to
network congestion.

However, when proposing such a switch from HTTP to
WebSocket protocol for live video streaming, the real-time
nature of such content stream poses impediments concerning
caching and load balancing systems, the main advantages of
CDNs.

Web caching is used to store content for a certain amount
of time. A situation where this is extremely useful is one
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where a file will be repeatedly request by a big amount of
users. CDNs are equipped with a cache of static resources like
static images, CSS files, JavaScripts, as well as bigger files
like video and audio media to reduce latency and network
traffic. Certainly, most objects in the cache do not stay there
permanently but expire so that new content can be served.
How long the resources stay in the cache can vary very
much depending on the content from some minutes to years.
This mechanism is however not applicable to live content
whichthat needs to be consumed in real-time and for which
this does not provide an advantage. On the other hand, load
balancing systems distribute all requests over multiple servers
in order to avoid that a single server becomes overwhelmed and
provide the maximum availability. This target is also difficult
to accomplish with this mechanism when the media content to
be delivered is being produced in real-time and the protocol
used for delivering is WebSockets instead of the usual HTTP.

Further research should focus in finding options to take
advantage of the infrastructure of CDNs and investigate if
some changes would need to be made to use them for such
a live streaming implementation over WebSockets as the one
presented on this paper.

VII. CONCLUSION AND FUTURE WORK

Video content distribution in the Web is evolving greatly.
The adoption of HTTP for video streaming in the Web has its
pros and cons.

For the on-demand retrieval of file-based videos the compre-
hensive and pervasive HTTP guarantees a broad accessibility
of the content. This approach also fits well with the current
deployment and usages of CDNs, ensuring the necessary global
scaling of such an approach. However, these advantages do
not apply to live streaming of video content. First, CDNs
cannot exploit their strength, since the feeding of the content
to the distributed cache servers does not adhere to the real-
time character of live video streams. The idempotence of the
HTTP GET method is henceforth less relevant for live casts
and brings other drawbacks of HTTP back in focus. The client-
initiated request-response communication pattern is one major
source of issues when push-based communications need to be
implemented as it is the case for the transmission of media
content.

Currently, although file-based video content is still dominat-
ing, the consumption of live streams is on the raise. However,
the available standards and technologies for enjoying live video
content in a Web-native manner are still in their infancy. The
HTTP-based DASH is a first step in this direction.

This paper examined the possibility of developing a live
video streaming solution in a Web-native manner by means
of standards belonging to the HTML5 standards family. Such
an approach has been realized based on the HTML5 video
element and WebSockets as real-time communication means.
The performed evaluation of the developed video streaming
solution demonstrates that this approach is much more efficient
compared to methods relying on HTTP. Both, the communi-
cation as well as the processing overheads can be significantly
reduced by the proposed WebSocket-based solution in com-
parison to HTTP-relying methods such as DASH.

First steps towards an adaptive live streaming architecture
have been undertaken, proposing a mechanism situated on the
server-side to introduce adaptiveness to the underlying network
conditions to the proposed push-based web-native approach,
which has to be further developed in future research activities,
to enable a better user experience in the presence of changing
network properties.

Another significant issue for future research relies on the
relation of connection-oriented protocols, such as WebSocket
and CDNs, in order to investigate options to capitalize on
the infrastructure of CDNs for their use in a live streaming
implementation over WebSockets as the proposed.
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