

Development, Testing, and End-User Evaluation of Pervasive Community
Signatures and Micro-Agreements Infrastructure

Architecture, Android Implementation, Performance Tests, Usage Examples, and User Evaluation

Mitja Vardjan, Helena Halas, Simon Jureša, and Jan Porekar
Research Department

SETCCE
Ljubljana, Slovenia

{mitja.vardjan, helena.halas, simon.juresa, jan.porekar}@setcce.si

Abstract—Digital signatures are widely used for non-
repudiation and other purposes. In various cases, there is a
group of two or more parties that have to agree on a common
set of data and digitally sign it in order to provide the other
party or parties a proof of non-repudiation. A simple and
scalable infrastructure for community signatures or groups of
individual party signatures is described. It allows third party
applications to simultaneously digitally sign arbitrary XML
documents by any number of entities, for any purpose, using
high level interfaces, not having to deal with digital signatures
themselves. A dedicated backend server dynamically merges
received documents and signatures from all parties. When a
sufficient number of entities have signed the document, a signal
is triggered to announce the document finalization. Despite the
simple overall design, handling security issues and user control
at appropriate spots are crucial for any business application.
In the paper we present the performance and robustness tests
of the current prototypal community signatures infrastructure.
We also present the results of end user trials and measure the
quality of experience perceived by end-users that are using a
pervasive application that is interacting with the community
signatures infrastructure.

Keywords-community; agreement; digital signature; mobile
environment, pervasive, e-business, infrastructure

I. INTRODUCTION
One of the most used aspects of digital signatures is non-

repudiation. When electronic documents are digitally signed
by one or more parties, the signatures can be used to verify
the document integrity and, more importantly for this work,
to prove that the parties have agreed on the document and
stand behind it.

In many cases, only one valid digital signature is
provided with the document at any time. The goal in such
cases is usually to ensure document integrity, or to provide
non-repudiation of a single entity. In case of signing
contracts, agreements, and similar documents, two or more
entities are to provide non-repudiation to each other. Some of
these entities can be owners of internet connected pervasive
services or internet connected objects. The signing process
and distribution of digital signatures can easily get overly
complex or even infeasible for the entities, especially if their
number is large or arbitrary. This can be remedied in a

business process where the document format and the order,
in which it is signed by the entities, are determined by the
application or protocol.

The infrastructural service described here allows for
groups and communities to reach legally binding agreements
in an ad-hoc manner. Third party services can offload any
documents that need to be agreed over group of participants
or even whole communities. These documents range from
service level agreements, meeting minutes to non-disclosure
agreements or even business contracts that may have rich
content embedded. The work in this paper is a continuation
and complement of [1] and [2].

The functionality reuses the concepts of digital identities,
certificates and digital signatures. Documents are structured
with Extensible Markup Language (XML) and agreements
are signed using XMLDSig [3]. Both architecture and
implementation target mobile and pervasive environments by
providing an asynchronous and scalable solution that limits
bandwidth usage, avoids unnecessary communication, and
enables all user devices to be used from arbitrary local
networks that are connected to the Internet intermittently and
through firewalls.

Existing group signature and concurrent signature [4]
solutions, especially the improved and multi-party versions
[5][6][7] fit various purposes, but may not be most suitable
for use by third party application developers who prefer well
known solutions and expect fast and easy integration. Some
existing designs for group signature use their own custom
signatures and require additional solution-specific steps to
sign the data and to verify a signature [8][9], or allow only
community members to sign [10], which is not suitable for
communities that are formed in an ad-hoc fashion. Such
requirements can put additional burden to both
implementation of third party applications that use the
signature infrastructure, and to community administration. In
terms of efficiency and optimization, additional network
interactions are required, e.g., when the keystone is released
in case of concurrent signatures. Moreover, both group
signatures and concurrent signatures diverge even further
from the traditional way of signing paper documents, still
widely used. While the concept of fair exchange of
signatures and decreased verification time are highly
beneficial in some cases, the additional differences may

205

International Journal on Advances in Internet Technology, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

present an obstacle for adoption of the solution. For example,
if the identity of the first signers is not known to all,
subsequent signers may be less likely to be willing to sign
the document. This may be because in case of known
identities, they trust the party or parties who already signed
the document, or simply because they have a proof that the
party with known identity has already signed the document,
e.g., when negotiating a service-level agreement (see [2] for
examples). On the other hand, for communities where all
members are equal and do not know or trust each other, the
concurrent signatures are better in terms of fairness and non-
exposure, but they are not used in the presented work.

The next section describes the initial document creation
and its distribution to other users. The section is followed by
descriptions of document signing and finalization procedure.
Afterwards, various privacy and security aspects of the
whole process are explained. Next, the implementation of
community signatures infrastructure is presented and
afterwards thorough tests of both performance and
robustness to give an overview of its current capabilities and
features. This section is followed with usage examples to
illustrate a few implemented and suggested services that are
using the presented community signature infrastructure.
Special focus is dedicated to the “Pervasive Meeting
Minutes” application and service that allows for unobtrusive
capturing of meeting minutes. The application uses and
interacts with the community signature infrastructure. At the
end of the paper we present the results of the end-user trials
focusing on perceived added value of end-users and on how
the pervasive application, that is using the community
signatures infrastructure, adds to quality of experience.

II. DOCUMENT CREATION AND DISTRIBUTION
Initially, an XML document with arbitrary schema and

contents is created either by one party or in a collaborative
manner by multiple members of a community. The
document may hold a service level agreement, meeting
minutes, non-disclosure agreement, or even business
contracts that may have rich content embedded such as
images, video or voice recording.

Regardless of what the document represents, the
community members are expected to review it once it is
finalized and confirm they agree with it. Their consent is
formally expressed with their digital signature, appended to
the document as a detached XMLDSig [3]. Depending on the
application, a member may choose to sign the whole
document, only some of its parts, or nothing and leave the
document intact.

The initial document is distributed to the intended signers
or members by uploading it to a dedicated Representational
State Transfer (REST) server in a single HTTP PUT request.
The REST server stores the document under the name,
supplied by the client as resource name within the URL. The
name is generated as a random string of a fixed length. The
concept of resource name is similar to universally unique
identifier (UUID) [11] but the name is shorter because it is
checked for uniqueness at the server level when the resource
is initially uploaded. Unless a resource with same name
already exists on the server and the HTTP PUT request has

to be repeated with a new name, the upload is a single step
operation. The request includes the owner’s serialized X.509
certificate [12] as part of the URL. This certificate is stored
by the server for later authorization to access the document
by others. It is never used to sign the document, unless the
user chooses to do so. Therefore, it could be anonymous or
generated ad-hoc by the initial document uploader. Its
corresponding private key is used to sign the resource name.
This signature is not supplied with the initial upload, but
with another URL, generated by the community signature
infrastructure.

Whenever a document is downloaded or a new version of
existing document is uploaded, digital signature of resource
name is passed as a URL parameter. The same URL is used
for downloading and updating documents. The URL of the
uploaded document is distributed to the members as an
invitation for them to agree with and digitally sign the
document.

Figure 1. Document creation and distribution.

The members list is usually application specific and the

URL distribution is handled in the background by an app that
is using the community signature infrastructure. If this is not
the case, the URL and the document can still be accessed
manually within the signature infrastructure itself (Figure 1).
This lightweight and easy to implement process is suitable
for the uploader device and signer devices, which are usually
smart phones or tablet PCs. When a user chooses to reject or
ignore the invitation to sign the document before he even
reads it, bandwidth usage is negligible.

III. MICRO-AGREEMENTS AND DOCUMENT FINALIZATION
In the process of agreeing, the canonical form [13] of

agreement document is digitally signed with a private key
that is stored in participant’s smart phone’s secure storage
(see Figure 2 for more) The meeting participants do not need

206

International Journal on Advances in Internet Technology, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to sign the document immediately but can postpone the
signing of the agreement.

After the agreement is signed by a participant it is
uploaded back to the community sign service using the same
URL that has been used to download it. The reasoning is that
for community signatures, anyone who is authorized to
download the document should be able to upload the signed
version as well. If this is not the case, the concept of
authorization signature in the URL can be easily expanded to
include option to allow download only or both upload and
download. An example solution is to sign document resource
name, suffixed with an appropriate parameter, known to the
service. The community sign service at the REST server
verifies whether the digital signature is valid and whether the
content of the agreement has not been modified in any way.

The community signature functionality allows third party

services that are using it to specify the minimal number of
community members that need to agree in either relative
terms such as percentage of community or fixed threshold
numbers. Every time the document with a new signature is
uploaded to the community signature service backend node,
this micro-agreement is merged into the main document
stored on the server. Due to the nature of detached
XMLDSig, the merges originating from various signers can
be performed in any given order and the signers will
experience a convenient and seemingly parallel signing
procedure.

Figure 2. A community member receives invitation to sign a document.

The resulting document at any moment contains

signatures from all parties that have signed the document and
sent it back to the server so far. When number of parties that
signed the document exceeds the given threshold, the
community signature service backend server signals
completion and participants can now download the final
agreement, which now contains at least the required number
of signatures (Figure 3) and represents a common and a
legally valid agreement. Depending on the implementation,
the document finalization can be signaled to the original

document creator, e.g., meeting organizer, who can first
inspect the document and the signers and then choose to
signal document finalization to the other selected parties. At
any point, the parties can see the current status of any
document they have signed, or were invited to sign. Figure 4
shows the status of a document in the process of being
signed (left) and the status of that same document at a later
time, when one more party has signed it and the number of
signers reached the required threshold (right). If concurrent
signatures were used, full status with signers’ identities could
be displayed only after the keystone is released.

Unlike a group signature [8] where multiple individual

signatures are replaced with a single group signature,
individual signatures are preserved and any party can verify
individual signatures using a standard verification procedure.
Due to the nature of XMLDSig, any party can also get the
list of all signers solely from the document.

Figure 3. Community signature and document finalization.

The downside of not using the concept of group signature

[8] is that processing power and time to verify all signatures
increase with number of signatures in the final document. As
the increase is only linear, this is usually not problematic in
terms of scalability. If all parties can be forced to use a
specific key-pair type, then verification of multiple
signatures could be sped up [14][15], although care must be
taken because some such solutions have issues [16].

207

International Journal on Advances in Internet Technology, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Viewing current status of the document signing process.

IV. PRIVACY AND SECURITY ASPECTS
The two main groups of information that could be treated

as sensitive are the document contents and the list of entities
who have signed the document. The document itself has to
be made fully available to all entities that are given the
option to sign it. Same applies to the list of signers because
they all receive the final document in the end, leaving no
alternative to ultimately trusting the entities not to disclose
any sensitive information they receive.

Various notifications about document finalization do not
carry any personal or document data and usually do not need
to be secured. A few other points where it makes sense to
take security into account are described below.

A. Document Distribution

3. Download document

 Smart phone
Document owner

REST Server
Document storage

and merging

 Smart phone
Community member

1. Initial upload,
using the first URL

2. Pass document URL
(the second URL, used to

download and
update the document)

Signature in URL
(for authorization)

Signature in the document

4. Sign and
upload document

Signature in URL
(for authorization)

Figure 5. The two roles of signatures.

There are established protocols to encrypt the network

traffic from eavesdropping. However, a custom solution
described in Section II is used as a secure and convenient
method to authorize the clients to download and upload the
document. With the proposed solution, the clients (entities)
are given only one URL that already contains all necessary

tokens (Figure 5). As the digital signature of requested
resource is part of the URL, the certificate owner can easily
disable access by removing the public part of his certificate
at the service backend (Figure 1 and Figure 5).

Figure 6. Third party app requests to sign a document have to be explicitly

confirmed by the user.

Alternatively, when the certificate is revoked, access is

automatically disabled, provided that the service backend
implementation does check certificate revocation lists.

In any case, the number of network operations from
mobile devices is limited and the authorization is integrated
into the simple and widely used HTTP methods, so third
party developers are not required to implement any
authorization procedures.

B. Storage of Certificates on Android
With any digital signature based system, it is vital to

protect the private keys from unauthorized use. The
prototype has been implemented for Android where a secure
storage is provided by the operating system. This storage is
used for storing user’s certificates and private keys. It is
accessed in two significantly different ways, depending on
Android version. For Android versions up to 4.2.2, the API
is not public and the operating system grants requests to the
storage based on the requestor process ID. The concept is
described in [2]. For Android versions 4.3 and newer, the
access to the secure storage is possible only through the new
and official API for storing and accessing certificates and
keys. To support all versions, the app implements both
strategies and chooses the appropriate one dynamically.

C. Using the Securely Stored Private Keys on Android
To sign an arbitrary XML document, our prototype app

can be used directly. However, in most cases it is to be used
by other apps that parse the document and show the user a
human readable and application specific document
representation before the user authorizes signing. The
problem is to access the user’s private keys, which are not
available to third party apps and not even to the operating
system. As a solution, the third party app can simply invoke
in the background our prototype app with access to private
keys to sign the given document.

208

International Journal on Advances in Internet Technology, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

It is vital for the prototype app to show the user which
app is trying to sign the document in the background, to
prompt the user to authorize signing (Figure 6) and choose
the identity to use (if multiple certificates are stored). The
key itself is never exposed to third party apps, so only the
data explicitly approved by the user are signed.

V. PERFORMANCE TESTS
Commonly, the primary reported problems after field

release of software are not crashes or incorrect responses, but
poor performance or inability to achieve required system
throughput [17]. It is not uncommon that although the
software has gone through extensive functionality testing, it
has never been really tested to assess its expected
performance. Such neglect of planning for performance
issues often leads to performance problems once the
software is released to the field, which in turn often
significantly impacts the project’s ultimate success or failure.
The presented implementation has been continuously tested
for functionality issues as its parts were developed. Once it
reached sufficient level of completion, but still at early
prototype phase, it has been tested also for performance
issues that could possibly arise from the following two
reasons:

� Multiple users are signing the same document and
due to large number of users, thus, large number of
signatures being appended and verified, the overall
signing process takes more time to complete.

� Multiple users are signing the same document
simultaneously. In addition to the reason above, the
server load is increased because multiple HTTP
requests and multiple database read/write requests
are served in same time interval.

The tests were divided into two groups accordingly.
Aspects of performance include latency, throughput,
scalability, and reliability. In terms of reliability, the
prototype performed successfully every time in each test. No
errors were observed, except the out-of-memory error
described in subsection C “Verifying signatures on the
Android client”. In some of real world tests and
demonstrations, unreliable network and outbound port
filtering used on some public networks caused additional
delays and failures. While network connectivity related
delays are unavoidable and the solution is designed and
implemented to be used behind firewalls that filter out all
incoming connections, outbound port filtering can usually be
amended by configuring the REST server to listen on a more
common port such as 80 or 443, which are usually not
outbound-filtered.

With a powerful cloud computing infrastructure, the
performance can be greatly improved, of course. However,
to assess possibility of using a cheap server solution, the tests
were carried out with a few years old everyday Core 2 Duo
desktop PC running all necessary server software, including
the database. For Android devices, Android software
emulator and Google Nexus 10 were used.

The aim of performance tests is to realistically model
expected common use cases of the implemented
infrastructure under test. On the other hand, the tests were

performed in a controlled environment so they could be
repeated with same parameters. In the real world, the
performance could be greatly affected also by various
unavoidable difficulties like intermittent or extremely slow
network, overloaded system resources on Android device,
caused by other apps or malware, etc. The effect of such
parameters is out of scope of these tests.

The following subsections focus on latency, throughput,
and scalability aspects of performance.

A. Subsequently Signing a Document
For the first group of tests, an initial document version

was uploaded to the REST server. Then, an Android client
downloaded it from the REST server, locally signed it, and
sent it back to the server. The server merged the signature
and notified the client about successful finish of operation.
For both the client and server, the real Android
implementation was used. The Android client was run in test
mode, which meant the user’s clicks on appropriate buttons
to approve the signing process and select the identity were
performed automatically. After the operation finished, the
whole operation (except the initial upload of the first
document version) was repeated until the document
contained 20 signatures. With every additional signature, the
document got larger and the XML manipulation took longer.
Besides, the signatures are verified at each step and as the
number of signatures increases, the overall verification time
at each step is increased. This effect is expected to be most
profound in case of documents with large content to sign. In
the tests, the whole document was being signed, except the
existing signatures from previous steps.

Figure 7. Time of subsequent signing.

Three different document sizes were used (Figure 7). The

smallest document (1 KB size) contained minutes of a very
short meeting. The larger 1 MB and 10 MB documents had
additional text inserted. In both cases, the text was generated
by a pseudo random generator, so the document could not be
efficiently compressed. This modelled small and XML-
embedded binary data that is already efficiently encoded or
compressed, e.g., voice recording or other multimedia
contents.

209

International Journal on Advances in Internet Technology, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

As expected and explained above, the time to verify the
signatures increases with their number, and this effect is
most noticeable with the largest document size.

Another increase in time is for the first signing process.
This increase too, is most evident for the largest document
size, but also noticeable for the medium size. It is expected
that the later signing processes are faster because of data
caching on the server and various connections and libraries
already initialized during the first signing. Thus, the
increased time of first signing procedure (or the decreased
time of subsequent signing procedures) is probably
unavoidable.

Median times of subsequently signing 1 KB, 1 MB, and
10 MB documents were 2.19, 4.09, and 18.21 seconds,
respectively. Despite using a low-end hardware, shorter
times were expected. Based on inspection of server logs,
some interactions with the database consistently took at least
half second and up to one second even for the smallest 1 KB
files. Inserting a new XML node with signature and storing
the new document also consistently took about one second
for small XML documents. This indicates bottlenecks in our
prototype that should be optimized first.

B. Simultaneously Signing a Document
The other test mimicked simultaneous signing of a

document by multiple users. For the most realistic test,
multiple Android devices should sign the document within a
short time interval. However, a more feasible approach was
used where the multiple Android devices or users were
modelled by multiple threads running on a single Android
emulator. This test is even more focused on the REST server
than the previous tests, so the local signing on Android was
skipped to avoid unnecessary load of already burdened
client. The threads on Android only downloaded a signed
document from the server and then uploaded it back. The
server would still perform the usual request authorization,
signature merging, and document update routines for each
request.

Figure 8. Time of simultaneous signing.

Figure 8 shows the time (from test start) until a thread

actually started (blue bars) and the time a thread took to

download the document, upload it to the server, wait for the
server to perform the usual verification and signature merge,
and receive notification about successful completion from
the REST server (red bars). To assess primarily the
concurrency issue, the 1 KB document was used here to
eliminate influence of network bottlenecks and other
consequences of large files. Time for simultaneously signing
a 1 KB document is represented by the red bars in Figure 8.
The median value was 4.37 seconds. The blue bars in Figure
8 mostly increase with thread index and some later threads
reach 2 or even 3 seconds. This indicates client overload
which possibly lead to over-estimated delays. However,
based on server logs, most delays are caused at the server
side, so the performance of a real setup would be only
slightly better. It should be noted that the variable idle time
of threads (blue bars in Figure 8) before they start the
download and upload routines more realistically models an
actual signing process than a strictly simultaneous start
would, because it is unlikely that all users would sign a
document at exactly the same time. So some randomness in
thread start is necessary for realistic results, provided that at
some point, all threads run simultaneously (between 3.2 s
and 4.3 s in Figure 8), because it is the simultaneous signing
that is being tested.

It should be stressed that the bar chart in Figure 8 is
monotonically increasing only because the threads in Figure
8 are ordered by the time they received notification about
successful completion from the server, not by the time they
started.

Obviously, the results could be greatly improved not only
by software optimization, but also by using more capable
server-side hardware.

C. Verifying signatures on the Android client
After the document signing process is finalized and a

user downloads the final document version, his Android
client verifies all signatures in the document. The benefit is
that the user does not have to ultimately trust the server, but
this additional verification takes additional processing time.

Time of document signatures verification has been
measured on Samsung Nexus 10 device with two different
documents: a document where 1 KB of contents has been
signed and a document where 10 MB of contents has been
signed. One signature has been added to both documents and
then same tests repeated with 10 signatures per document,
which resulted in four distinct tests. Each of those four tests
has been performed 20 times to account for variance in
results. The measured time includes the time spent by
invoking the digital signature app by sending it an intent and
getting the results back to the original app, as it is this
complete time that is relevant for a third party app that uses
the infrastructure.

It has been observed that on old devices like Google
Nexus S that have less memory than most modern Android
devices, a fatal out-of-memory error occurs during
verification of signatures for the 10 MB test document. The
error occurs also on modern devices when the document is
significantly larger, e.g., a 100 MB document on Nexus 10
tablet. The cause of this error is parsing XML with the

210

International Journal on Advances in Internet Technology, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

simple and easy to use Document Object Model (DOM) [17]
parser interface which was required by previous versions of
Apache XML Security for Java [19]. Since Apache XML
Security for Java version 2.0.0, released in May 2014, StAX
parser [20] can be used instead. Unlike the DOM parser,
StAX is a streaming parser and does not load the whole
document into memory. In case of large XML documents, it
is usually more efficient, faster, and consumes less memory.
It is expected that switching to StAX parser would not only
solve the out-of-memory errors, but also optimize the signing
and verification procedures on the Android client in terms of
speed and resource usage, especially in case of large XML
documents where only a small portion of the document is
signed or being signed. According to severity classification
of problems [17], the out-of-memory error is potentially a
critical problem and should be among the first issues
resolved.

TABLE I. VERIFICATION TIME ON ANDROID IN SECONDS

Document
size 1 KB 10 MB

Signatures 1 10 1 10
Time min 0.294 0.365 2.012 7.882
Time Q1 0.318 0.402 2.086 7.960
Time
median

0.328 0.425 2.113 8.053

Time Q3 0.352 0.436 2.188 8.114
Time max 0.397 0.466 2.225 8.177

Figure 9. Verification time on Android client for 1 KB documents.

The statistical parameters of elapsed time for all four

tests are listed in Table I and presented by box plots in
Figure 9 and Figure 10. Minimum, the first quartile, median,
the third quartile, and maximum are shown for verification
time of each document. As expected, the time to verify
signatures significantly increases with the size of signed data
in the document (which approximately matches the
document size). It also increases with number of signatures,
but this increase is, as expected, more evident with large
document sizes (Figure 9 and Figure 10). Unlike the server

processing times, the Android client processing times are
much more consistent and less variant. There is also no
noticeable difference between the time of first verification
after Android system restart and subsequent verifications.
These results confirm that the user would experience small
enough times of local verification in any case where the
number of signatures and the document size are not too
large. For cases where this assumption is not satisfied, an
alternative solution with group signatures may be more
appropriate.

Figure 10. Verification time on Android client for 10 MB documents.

VI. USAGE EXAMPLES
Examples of usage are described below. The community

micro-agreements are suited to also be used by applications
and services that enable governance tools to communities.

A. Pervasive Meeting Minutes
“Pervasive Meeting Minutes” application allows for

unobtrusive capturing of meeting minutes. The application
uses and interacts with the community signature
infrastructure. Community micro-agreements infrastructure
allows business communities to capture meeting minutes and
other meeting agreements in a legally valid and binding
manner. The meeting organizer can choose whether the
consensus is reached among only participants that are
physically present during the meeting or the whole
community.

Existing community signature prototype implementation
has been used by an example app to capture meeting
minutes. After users register to the meeting through this app,
they can actively participate in the meeting. Their input is
recorded by their Android devices and sent to a central
Android device, which has the role of the document owner.
When the meeting is finalized on that central device, the
minutes are uploaded to the document storage server (Figure
12) and its URL is distributed to meeting participants. The
REST servers which handle distribution of document URLs
and receive notifications about document finalization (Figure
12) are application specific, i.e., implemented as part of the
meeting minutes software, not the general community

211

International Journal on Advances in Internet Technology, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

signature software. Google Cloud Messaging (GCM) is used
to relay the messages to Android phones of users who are to
sign the minutes. At an earlier point, the meeting software
automatically registers Android devices of community
members with GCM to receive these messages. GCM is used
by the meeting software as a convenient way to push small
messages to Android devices, connected to the Internet
through firewalls, with variable network addresses, etc. The
community signature infrastructure does not require using
neither GCM, nor the additional REST server to distribute
document URL, but only to distribute the URL to
community members. Therefore, any alternative distribution
of the URL is valid. For example, the app on the central
device embeds the URL into a Quick Response Code (QR
code) and the physically present members can scan it (Figure
11), or – as the last resort – copy the URL that is displayed
below the QR code (Figure 11). Again, this is only an
alternative way of URL distribution and the primary way is
application specific automatic distribution in the background,
in this case through GCM.

Figure 11. Meeting attendants without the app can scan the QR code to

download the signed document.

Arrows in Figure 12 indicate information flow for the

implementation with GCM, starting with document upload
by the document owner to the first REST server shown at the
top center.

On the client side, directly seen by the users, the central

Android device is running the main meeting app, seen by all
users and shown in Figure 13. On the right, meeting details
and minutes are shown. On the left, list of currently
registered and manually added users is shown. Any number
of users can use this central tablet as an alternative for their
own Android devices to participate in the meeting. To
provide input, a user only has to click his name in the list and
speak or type his input. For the registered users, it is of

course more convenient to use their own smart phones and
tablets to provide their input, which is then automatically and
instantly distributed to the other users and the central
Android device in Figure 13 through dedicated REST server
and GCM, in similar manner as the document URL is
distributed in Figure 12.

Regardless of the implementation, the signatures are

always in standard XMLDSig form, as in Figure 14. In the
figure, XML nodes with signature and certificate values are
collapsed but the highlighted text shows the signatures refer
to the whole document, i.e., the whole meeting minutes. In
case a participant agreed only with part of the document, his
signature would refer to the relevant part only, provided that
the application specific implementation allowed signing only
a part of the document.

Figure 12. Process and information flow between devices in a chosen

implementation for capturing meeting minutes.

In this example, the omnipresent issue of identity

mapping is evident. Mapping between various identity types
is essential for any legally binging document. Typical
identity types relevant for community signatures are:

� Possible identities in the signed document. Figure 14
shows a case where identities are explicitly listed in
the signed document. This is not always the case.
The document could include only impersonal
statements.

212

International Journal on Advances in Internet Technology, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

� Identities in encoded X.509 certificates, contained in
the collapsed “ds:KeyInfo” nodes in Figure 14.

� Identities of the community members who signed the
document.

Clearly, any implementation should check:
� mapping between the certificate filed values, e.g.,

common name, and the document identities, if any,
� certificate validity and whether it is issued by a

trusted authority,
� mapping between certificate and real entity, e.g., by

checking the entity listed in the certificate is actually
a member of the community that is supposed to sign
the document.

Figure 13. Pervasive Meeting minutes app with a meeting in progress.

For large communities, this can be far from trivial, as the

certificate identities can be ambiguous and also because a
single entity can be listed under different names in the
certificate and community members list.

B. Crowd Tasking
A service called Crowd Tasking has been developed to

enable community members to create tasks (an example is
shown in Figure 15), propose solutions, post comments and
solve tasks. These tasks usually involve some physical
presence of people or physical work, which makes it
inconvenient or impossible to post either the solution, or
proof of the task solution to the service or to the Internet.

The service will integrate with the community signature
infrastructure to enable task members to sign the agreements
about the work to be done by each of them and to enable task

creators to confirm the task completion by additional
signature. As with any other usage of community signature,
the interactions of third party service with community
signature infrastructure and the document signing happen in
the background, except prompting the user to confirm
signing.

Figure 14. An example of meeting minutes document structure which is

signed by two parties.

Third party apps can also take a common approach to

integrate with the community signature solution and provide
a single complete service. E.g., within Crowd Tasking, the
user can initiate new meetings within a task or join existing
meetings to discuss task management and work distribution
with other users. The pervasive meeting minutes software
described in previous section is then automatically initialized
and shown on the central Android display (Figure 13). When
the meeting is finished, the users receive notification to sign
them within the Crowd Tasking app, which then uses
community signature solution to sign the document.

C. Service Sharing Within a Community
The policy negotiation described in [2] could be extended

by integrating with community signatures and micro
agreements presented here. A service provider would
negotiate a service level agreement (SLA) with a community
instead of only a single service consumer. The community
members would decide if a particular SLA is compatible
with community’s internal rules and sign the SLA so the
service could be shared within the community.

213

International Journal on Advances in Internet Technology, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 15. Crowd Tasking Service.

VII. USER EVALUATION
Separate user trials were organized in order to gain

feedback about the implemented functionality and features,
and how they could be applied to business communities. The
concept of focus groups has been used. A focus group is a
moderated discussion among a small group of people who
discuss a topic under the direction of a moderator, whose
role is to promote interaction and keep the discussion on the
topic of interest [21][22]. A focus group technique stems
from social research, but is now widely used to investigate
new ideas in many research fields. In design science focus
group technique can be useful as an exploratory method to
achieve incremental improvements in artefact design or as
confirmatory method to establish the utility of the design in a
field use [22]. In our case purpose of focus groups was to
collect ideas to improve user experience, which is very
important in pervasive environment.

Two focus groups with external users took place in

January and February 2014 at SETCCE research laboratory
in Tehnološki Park 21, Ljubljana, Slovenia.

Prior to conducting the focus groups, the software was
integrated with facilities in SETCCE research laboratory.
Then an internal evaluation with SETCCE employees took
place. The participants used software prototypes and gave
their opinion and propositions, which have been taken into
consideration when further improvements were made. The
improved version was used for both first focus group with

two participants and second focus group with three
participants.

A. The Trial Participants
The external participants selected for evaluation have

been chosen to represent the business communities. They are
SETCCE’s key customers coming mainly form
Telecommunication and Insurance industries. The
participants were all men, aged 31-60, and have from up to 5
years to over 10 years of experience in negotiation and
participation in business meetings and assemblies. They are
involved in decision making. They very frequently use
mobile apps (most use Android), but had not participated in
the design of the proposed solutions and were not familiar
with the proposed infrastructure and concepts. Because of
this, the evaluation was conducted as a focus group rather
than a “trial” where participants are given tasks and interact
with the software themselves. There are many possibilities
how Crowd Tasking can be used so we had to focus usage to
get relevant feedback.

B. Trial Objectives and Deployment
The meetings started with a demonstration video and

presentations to explain Crowd Tasking service and the
proposed infrastructure for community signatures. These
were followed first by prototype demonstration and then by a
moderated discussion and filling a questionnaire. During the
trials, the participants were given the smart phones and
tablets on which they were able to use the Crowd Tasking
service, the pervasive meeting minutes service, and
community signatures under moderated conditions. Four
Android devices were used: a tablet to capture meeting
minutes and serve as the initial document owner; three
Android smartphones / tablets were used as normal user
devices.

Demonstration consisted of the following steps:
� Creation of a new task and creation of a new

meeting within the task.
� A user starts the meeting and the other users check in

to the meeting.
� Holding a meeting.
� Meeting finalization.
Community signature solution is used in the last step.

When the participants agreed on details about further task
actions and solving, the meeting was finalized. Each
participant received a notification to sign the meeting
minutes. While one user signed the minutes, the others
watched their phones to see how the document status
changed when the first user signed it and how it changed
when the process finished when the required number of users
signed it.

The main objective is to get answers to the following
questions:

� Are the implementation concepts of collaborative
signature and micro-agreements suitable for use by
other applications?

� Are the functionality and main concepts of
collaborative signature easy to understand and be

214

International Journal on Advances in Internet Technology, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

accepted by typical business users? What are the
obstacles for adoption by business communities?

C. Trial Staff and Rollout
The moderator was responsible to provide an

introduction to the focus group, explain participants the code
of behaviour and confidentiality (the names of the
participants will not be made available publicly, no voice
recording takes place, except during voice to text conversion
during service demonstration, etc.), ask the questions as
specified by the questioning route (see below),
complement/clarify these questions if necessary, maintain
the flow of conversation, make sure everyone has a chance to
share their meanings, etc. He should create a comfortable,
open atmosphere and avoid head nodding and verbal
comments that signal approval of a meaning, avoid giving
personal opinions.

The two presenters are responsible for providing an
objective and balanced presentation of the concepts,
demonstration of the services, aiding the participants in
experimenting with the services themselves, etc. A presenter
should not try to address criticism that comes up during the
discussion. However, this was hard to avoid since both
presenters had the best knowledge and understanding of the
services and technologies used.

The assistant moderator is responsible to collect the list
of participants, write down relevant ideas, comments and
other parts of discussion, take notes throughout the session,
and record any non-verbal activity that might help to
correctly interpret the users’ comments, or that might signal
approval or disapproval.

D. Trial Questionnaire
Questionnaire consists of both open-ended questions

(respondent formulates his own answer) and closed-ended
questions (respondent picks an answer from a given number
of options). The latter type includes polytomous (respondent
has more than two options) and continuous (respondent
presented with a continuous scale) questions. When
preparing the questionnaire we strove that questions follow
each other logically, from the least sensitive to the most
sensitive, from the factual and behavioral to the attitudinal,
and from the more general to the more specific.

E. User Feedback
The users provided separate feedback for the Crowd

Tasking service and the underlying Micro-Agreements
functionality. The complete questionnaire and aggregated
answers are available in [23]. The items below summarize
their answers and draw some conclusions.

1) Feedback Related to Crowd Tasking and Pervasive
meeting minutes

Options to easily create new communities and invite
members to meetings have been unanimously marked as
useful.

Most of the questions about the usefulness and
appropriateness of the "Crowd Tasking" was answered
unanimously. Participants agree that the app has value in the
business world/business processes, that by using the app

some aspects of the business could be optimized and their
work could be simplified. The app is easy to use. The app
works as you would like, user experience is a positive one
and the app is not too complex. Different functionalities in
the app are well integrated, the app seems useful to them and
they would use it. They would recommend the app to a
colleague, customer, and partner. The app seems to be
appropriate to confirm the agreements reached in the
negotiations and to confirm decisions made at the Assembly
meetings.

The participants did not agree if the app supports all the
expected functionality and that the app is suitable for all
levels of users.

Participants would like to see support for different
workflows and better document visualization.

As positive aspects of the app they see mobility and
virtual business environment, interoperability of different
devices, simplicity and ease of use. A negative aspect is that
the app works only on Android platform. In particular
community there will be also someone with iPhone, Win
device. Participants said that their experience of this app was
wonderful, easy, satisfying and stimulating. Although most
of this feedback is not directly related to the solution
described in this paper, the feedback shows it is possible to
create a simple to use and satisfying app based on the micro-
agreements solution described here.

2) Feedback Related to Micro-Agreements platform
The existing and presented functionality of micro-

agreements has been estimated as useful and important by
the participants. Equally important was the ability to be
easily integrated and used by third party services. However,
suggested integration with other document repositories in the
cloud (e.g., DropBox and Google Docs) has been marked as
less important.

When signing contracts or agreements, trust in the other
party or parties is particularity important. The participants
feel that an assessment of trust level for other parties would
be very beneficial. The participants think that they would
benefit from clear visual presentation of trust levels at the
time of signing. Nevertheless, only some would be willing to
sign an agreement with users they are not familiar with, even
if they had their trust level displayed. This is yet another lead
to conclusion that the business users are still somewhat
conservative and cautious when adopting new solutions and
technologies that do not strictly mimic the established paper
based business practices.

In general, the participants did not bring up any big
privacy concerns or issues. They were more concerned about
the trust in other signers, as already described above.

An issue that does not seem to bother business users too
much, or not at all, is fair exchange [5][6][7] of signatures.
The signing process of micro-agreements uses the common
digital signatures with identity information embedded in
XML document (XMLDSig). When a user signs an
agreement, his identity is added to the signature and
subsequent signers of that document can see the list of all
previous signers. This is in contrast to the newer concept of
“fair exchange” of digital signatures where the identities are
not disclosed until a so called keystone is released. At that

215

International Journal on Advances in Internet Technology, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

moment, all identities become known to all users. While the
fair exchange concept is indeed fairer to members of
communities where all members are equal, the participants
valued the micro-agreements feature of showing the list of
identities that have signed the document so far. The business
users, especially the more traditional ones, may be reluctant
to sign a document where they cannot see the existing
signatures from previous signers. Premature exposure of
early signers’ identities seems to be necessary, even though it
does not result in a fair exchange of signatures.

Surprisingly, not all users considered asynchronous
signing (without a pre-determined order) very useful, which
again shows some users prefer traditional ways of signing
documents where the signers sign a document in a sequential
manner.

VIII. CONCLUSION AND FURTHER WORK
An infrastructure and prototype implementation of

community signatures and micro-agreements has been
presented, followed by usage examples. The design uses
digital signatures to sign XML documents, which can serve
as legally binding agreements. It is based on REST servers, a
database or other storage system, and Android devices. The
simple, scalable and generic main concepts allow for fast
integration of various third party services with it. Network
communication is optimized for mobile devices with limited
and intermittent bandwidth, but at least occasionally working
network connection is still required for all devices.
Compared to concurrent signatures, the presented approach
requires slightly less network interactions, is more similar to
traditional signing process of paper documents, and as such
does not exchange signatures between parties in a fair
manner, which has both advantages and disadvantages.
Ideally, the solution could offer both signature options to
cover additional possible scenarios. Other services are
planned to use the implemented community signature
infrastructure in an application specific manner.

The tests of implemented prototype showed it is usable
for small documents even if only a single low cost server is
used. With the exception of 10 MB documents, the signing
times are low enough for most realistic use cases, but should
still be significantly improved for a production version.

The focus group and observation meetings with the help
of business community users from telecom and insurance
industries were an enriching experience. We learnt about
their work process and extensively explored their needs. The
participants were open for new technologies and further
cooperation, and provided several suggestions and ideas how
their own business processes could be improved using such
technologies.

The trial participants expressed clearly that they would
prefer to use a system tailored to their business process and
business needs. They informed us that solutions built on
SOCIETIES results would need to reuse and reintegrate the
elements and approaches from SOCIETIES project [24] and
adapt them to their business context, rather than reuse the
whole integrated SOCIETIES platform. By conducting the
user evaluation we were able to gain information on how to

upgrade and improve the pervasive meeting minutes
application as well as the community micro-agreements
infrastructure in order the end-users’ experience.

Next steps will be to separate the community micro-
agreements infrastructure from the integrated SOCIEITES
open source platform. The focus will be to make a stand
alone prototype that will only feature the functionalities that
support the e-business community requirements and
scenarios. During this process we will improve the
implemented functionalities according to the trial results. We
will integrate it with different mobile e-business applications
that require digital signing capabilities to gain valuable
feedback from 3rd party application developers.

We plan to extend micro-agreements infrastructure to
support Stork2 eID based cross-border authentication [25]
and due to its open-source nature to promote is as one of
main candidates for smart phone authentication building
blocks for eSENS project [26] .

 Additionally we plan commercially reuse parts of
community micro-agreements infrastructure. To achieve this
we will need i.) to port the technology to others mobile
platforms such as Windows Phone and iOS, ii.) to improve
the verification of correct binding and mapping between
community member identities and X509 certificate based
identities used for digital signing, iii.) to extend the
infrastructure with e-signing and e-archiving capabilities and
finally to iv.) integrate results into SETCCE’s commercial
services and products, such as ePero®Start [27], eNvoices®
[28] and ProXSign® [29].

ACKNOWLEDGMENT
Authors would like to thank the SOCIETIES project [24]

consortium, the STORK2 [25] project consortium, the
eSENS [26] project consortium and the EC for sponsoring
the projects.

REFERENCES
[1] M. Vardjan and J. Porekar, “An infrastructure for community

signatures and micro-agreements,” ICDS 2014: The Eighth
International Conference on Digital Society, ISBN: 978-1-61208-
324-7, March 2014, pp. 13-19.

[2] M. Vardjan, M. Pavleski, and J. Porekar, “Securing policy negotiation
for socio-pervasive business microinteractions,” SECURWARE
2012: The Sixth International Conference on Emerging Security
Information, Systems and Technologies, ISBN: 978-1-61208-209-7,
Aug. 2012, pp. 142-147.

[3] XML-DSig, XML Signature Syntax and Processing, 2nd Edition
http://www.w3.org/TR/xmldsig-core/, [retrieved November, 2014].

[4] L. Chen, C. Kudla, and K. G. Paterson, “Concurrent signatures,”
Advances in cryptology - EUROCRYPT 2004, Vol. 3027, May 2004,
pp. 287-305.

[5] X. Tan, Q. Huang, and D. S. Wong, “Concurrent signature without
random oracles,” IACR Cryptology ePrint Archive, 2012.

[6] C. Shieh, H. Lin, and S. Yen, “Fair multi-party concurrent
signatures,” Proc. of 18th Cryptology and Information Security
Conference, 2008, pp. 108-118.

[7] J. Xushuai, Z. Zhou, W. Qin, Q. Jiang, and N. Zhou, “Multi-party
concurrent signature scheme based on designated verifiers,” Journal
of Computers, Vol. 8, No. 11, Nov. 2013, pp. 2823-2830.

216

International Journal on Advances in Internet Technology, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[8] L. Harn, “Group-oriented (t, n) threshold digital signature scheme and
digital multisignature,” IEE Proceedings - Computers and Digital
Techniques, Volume 141, Issue 5, Sep. 1994, p.p. 307-313, DOI:
10.1049/ip-cdt:19941293.

[9] L. Harn, C. H. Lin, and C. W. Hu, “Contract signatures in e-
commerce applications,” International Conference on Broadband,
Wireless Computing, Communication and Applications, Nov. 2010,
pp. 384-388, DOI: 10.1109/BWCCA.2010.101.

[10] C. M. Hsu, S. H. Twu, and H. M. Chao, “A group digital signature
technique for authentication,” IEEE 37th Annual 2003 International
Carnahan Conference on Security Technology, ISBN: 0-7803-7882-2,
Oct. 2003, pp. 253 – 256.

[11] ITU Recommendation X.667 (09/04), http://www.itu.int/rec/T-REC-
X.667-200409-S/en [retrieved November, 2014].

[12] X.509 standard recommendation, http://www.itu.int/rec/T-REC-
X.509/en [retrieved November, 2014].

[13] Canonical XML 1.1, W3C recommendation,
http://www.w3.org/TR/xml-c14n11/, [retrieved November, 2014].

[14] C. Li, M. Hwang, and S. Chen, “A batch verifying and detecting the
illegal signatures,” International Journal of Innovative Computing,
Information and Control, Dec. 2010, pp. 5311-5320.

[15] A. Atanasiu, “A new batch verifying scheme for identifying illegal
signatures,” Journal of Computer Science and Technology, Vol. 28,
Issue 1, Jan. 2013, pp. 144-151.

[16] M. S. Hwang and C. C. Lee, “Research issues and challenges for
multiple digital signatures,” International Journal of Network
Security, Vol.1, No.1, Jul. 2005, pp.1-7.

[17] E. J. Weyuker and Filippos I. Vokolos, “Experience with
performance testing of software systems: issues, an approach, and
case study,” IEEE Transactions on Software Engineering, Vol. 26,
No. 12, pp. 1147-1156, Dec. 2000, doi:10.1109/32.888628.

[18] Document Object Model (DOM), http://www.w3.org/TR/2000/REC-
DOM-Level-2-Core-20001113, [retrieved November, 2014].

[19] Apache XML Security for Java,
http://santuario.apache.org/javaindex.html, [retrieved November,
2014].

[20] StAX Java XML parser, https://sjsxp.java.net/, [retrieved November,
2014].

[21] D. W. Stewart, P. N. Shamdasani, and D. W. Rook, “Focus groups:
theory and practice,” 2nd ed., vol. 20, Sage Publications, Newbury
Park, CA, 2007.

[22] M. C. Tremblay, A. R. Hevner, and D. J. Berndt, “The use of focus
groups in design science research,” Design Research in Information
Systems, vol. 22, Integrated Series in Information Systems, DOI
10.1007/978-1-4419-5653-8_10, Springer US, 2010.

[23] SOCIETIES FP7 EU project deliverable D8.9, “Final evaluation
report,” 2014.

[24] Self Orchestrating CommunIty ambiEnT IntelligEnce Spaces
(SOCIETIES), EU FP7 project, Information and Communication
Technologies, Grant Agreement Number 257493. http://www.ict-
societies.eu/ [retrieved November, 2014].

[25] Secure idenTity acrOss boRders linKed 2.0 (STORK2), EU
cofunded project INSFO-ICT-PSP-297263, https://www.eid-
stork2.eu/ [retirieved November, 2014].

[26] Electronic Simple European Networked Services (e-SENS) is a large-
scale project that embodies the idea of European Digital Market
development through innovative ICT solutions, http://www.esens.eu
[retrieved November, 2014].

[27] SETCCE ePeroStart @ http://www.epero.si/ [retrieved November,
2014].

[28] SETCCE e-invoicing platform (eNvoices) @
http://www.setcce.si/item.php?catId=22&itemId=70§ion=4
[retrieved November, 2014].

[29] SETCCE ProXSign @ http://www.proxsign.com/ [retrieved
November, 2014].

217

International Journal on Advances in Internet Technology, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

