
A Lightweight Distributed Software Agent for Automatic
Demand—Supply Calculation in Smart Grids

Eric MSP Veith1, Bernd Steinbach2, and Johannes Windeln3

1,3Institute of Computer Science
Wilhelm Büchner Hochschule

Pfungstadt, Germany
e-mail: eric.veith@wb-fernstudium.de

1,2Institute of Computer Science
Freiberg University of Mining and Technology

Freiberg, Germany
e-mail: veith@informatik.tu-freiberg.de

Abstract—The number of renewable energy sources partici-
pating in the world-wide energy mix is increasing. However, they
come with different characteristics than the traditional power
sources. Energy generation happens on a smaller scale and is
more distributed, often because the location of such a power
generator cannot be freely chosen. Also, some sources like wind
or solar power depend on the weather, which is not controllable.
This poses more difficult challenges on every grid management.
We propose a distributed, self-adjusting agent-based solution for
smart grids. Based on a lightweight protocol, this distributed
software will dynamically and pro-actively calculate supply and
demand within the smart grid.

Keywords—smart grid; messaging; protocol description; agent
design; renewable energy sources.

I. INTRODUCTION

Two major parts contribute to the success of a distributed
agent software. First, the software itself, which must work
and act correctly. Second, a proper method of communication
must exist between any two agents. This does not only include
the information interchange itself in terms of encoding, but
also the correct behavior when sending or upon reception of
a message.

Therefore, the ground work for any distributed software is
the communication between the instances that are formed by
deploying the software. In [1], we have outlined a protocol
that focuses on the problem at hand: A distributed, i.e., non-
centralized, supply-demand calculation.

This completely distributed supply-demand calculation is
the primary goal of the architecture we propose in this
article. In his article “integration is key to smart grid manage-
ment” [2], J. Roncero shows how different technologies are
integrated in the rather abstract smart grid concept. Including
the customer via smart metering is typically considered one
of the cornerstones of the smart grid. However, the increasing
number of renewable energy sources with either a lower power
output than a traditional power plant or a not even completely
controllable output (e.g., a wind farm) will also introduce more
control logic at the producer side.

Considering a country such as Germany, an already high
number of 3841 wind farms [3] are controlled from only a
few control centers, which oversee a part of the transmission
net. Figure 1 shows control centers in Germany. Including
smaller, also distributed energy-generation appliances along
with photovoltaic and other renewable energy sources puts an

Figure 1. Control Centers in the power transmission system

increasing management strain on these control centers since
along with the number of small generators the data volume
also increases.

Distributing control logic along with distributed energy
generation is often proposed as a solution to this problem.
Several architectures exist, such as the one described by Lu
and Chen [4]. In these designs, the concept of microgrids often
plays an important role. Aggregating small distributed energy
generator along with consumers in a microgrid that acts as
one unit to the rest of the grid is considered necessary [5].
This still views energy generators as singular blocks within
the grid that yield a more or less constant behavior or can
even work in island mode, completely disconnected from the
rest of the power grid. While this accommodates the “central

97

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE I. Share of renewable energy sources in Germany’s energy
mix in 2012 [7]

Type Power Produced
[GWh]

Percentage of
Total Production

[%]

Water 21,200 3.6
Wind (on- and offshore) 46,000 7.7
Photovoltaic 28,000 4.7
Biogas 20,500 3.4
Geothermal Energy 25.4 0.004

control”-approach, it is also an argument for a less flexible
management of the power grid.

We propose an architecture that enables every consumer and
producer node in the smart grid to communicate. The primary
goal is to create a self-organized smart grid allowing for
greater flexibility and a more efficient usage of dynamic power
sources such as wind power or photovoltaic while reducing the
information load for central control facilities.

II. MOTIVATION

The number of renewable energy sources increases steadily.
For the European Union, a goal of 20%, 30% and 50% for the
years 2020, 2030, and 2050, respectively has been fixed [6].
Since wind turbines and photovoltaic panels are relatively
easy to set up compared to other renewable energy sources,
they already contribute the biggest part of power generated
from renewable energy sources (see Table I for Germany).
However, they are dependent on a source of energy that is not
controllable by mankind, i.e., the weather.

Having a wind farm permanently connected to the power
grid means that it feeds in a greatly variable amount of energy,
as can be seen in Figure 2. This contrasts with the demand of
a stable power supply. In order to integrate renewable energy
sources more tightly, the grid needs to accommodate this
dynamic energy generation characteristic. Also, wind farms
are raised at positions providing strong and steady wind
currents, which is typically not ideal regarding the spread
of the power grid. This and smaller, local power generators
lead to a distributed generation, a paradigm shift considering
traditional energy generation.

One approach is to aggregate distributed generators and
nearby consumers into microgrids [4] or to compensate vari-
ations in power generation by using buffers, i.e., batteries.
In [8], Vasirani et al. use electric vehicles as buffers that form
a virtual power plant (VPP) together with the wind farm.

These approaches still assume homogeneous behavior as
central attribute of the power grid and its connected devices
and thus favor the traditional, simplified “base load”-view. If,
however, both consumers and producers act together in a grid-
wide planing phase of a short period’s load profile, we assume
that a more dynamic profile will emerge that allows a more
efficient inclusion of renewable power sources.

In the past, the initial approach has been to place smart
meters at the customers’ side in order to exercise indirect
control of their energy consumption. Providing dynamic rates
and information feedback to the customer should contribute to

 0

 500

 1000

 1500

 2000

 2500

 3000

 0

 2

 4

 6

 8

 10

O
ut

pu
t [

kw
]

W
in

ds
pe

ed
 [m

/s
]

2011-03-19 2011-03-20 2011-03-21

Power Output of Wind Farm Drense
Wind Speed at 10m Height

Figure 2. Modelled Output of Wind Farm Drense in the County of
Brandenburg, Germany, and the corresponding Wind Speed during
the same time

a more efficient use of energy [9]. Field studies have offered
mixed results, with some even suggesting that few consumers
change their behavior [10], [11]. One can also argue that
electricity should be a “when you need it” resource instead
of something that must be conserved.

Still, industrial consumers, i.e., factories, could accommo-
date to changes in the availability of energy. Also, the behavior
of a large or a group of customers such as a neighborhood
can yield valuable information. If a wind farm also becomes a
smart node within the power grid, the additional information
can be used to plan power supply more effectively.

However, this requires to introduce forecasting since we
cannot control a wind farm or photovoltaic panels the same
way as an operator is able to control a traditional power plant.
Specifically, there is no possibility to increase power output
when there is no wind blowing or sun shining. With an in-
creasing numbers of electricity producers based on renewable
energy sources, we rely more and more on a power source
completely outside of our control.

Planning beforehand will therefore help to integrate these
renewable energy sources better since the smart grid will be
able to match a partly controllable power generation with
customer behavior beforehand. This also includes a grid-wide,
distributed calculation of energy storage.

To this end, we propose a protocol that defines the ground
rules for such a distributed system to work. The protocol’s
information fields are defined by the necessity to follow these
rules instead of the wish to query information. This provides
us with a lightweight core allowing software agents in a
smart grid to create short-lived contracts on the fly. Thus,
all agents participating in this protocol act pro-actively; a
consumer node is no longer a database that is queried from
remote. Instead, it signals an increase or decrease in power
consumption beforehand. This, in turn, triggers the mentioned
supply-demand calculation.

The reminder of this article is structured as follows. In
Section III we survey related work, especially paying attention
to technologies useful to reaching our goal. Section IV outlines
the design considerations shaping the actual protocol. The

98

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



then following Section V specifies the basic rules every node
implementing our protocol must follow in order to properly do
so. We then detail the actual message types in Section VI. In
order to test the rules we define as inherent part of the protocol,
we propose a modular agent architecture in Section VII.
Although it is only a high-level view of the architecture, it
identifies the important parts of an agent implementing our
protocol and serves as a implementation-agnostic test case
notation that we introduce in Section VIII along with a test
driver proposition for an actual implementation. Selected test
cases are then outlined in Section IX. We discuss all presented
parts in Section X before concluding and outlining planned
future work in Section XI.

III. RELATED WORK

Several protocol proposals have been designated usable or
even specifically developed for use in a Smart Grid scenario.

The Scalable and Secure Transport Protocol (SSTP) [12] by
Kim et al. uses the existing IP-networking [13] infrastructure.
It addresses security and durability against attacks as well as
resource usage. The latter is especially important in the case
of sensor hardware, where SCTP [14] alone is already too
heavyweight and IPSec/TLS for encryption add to this burden.
SSTP is also state- and connectionless for the same reason.

Although the authors of SSTP designate it as a “protocol for
Smart Grid data collection”, they do not explicitly specify data
structures specific to devices or device groups. SSTP resides
in layer 4 of the ISO/OSI stack just as SCTP or TCP [15] do.

The Open Smart Grid Protocol (OSGP) [16] offers a bit-by-
bit protocol design that also includes transmission security. It
allows remote querying of devices, mostly smart meters, which
offer a virtual table-based interface. The OSGP does not utilize
existing communication infrastructures such as IP networks.

The ISO/IEC 61850 standard for substation automation
has also been successfully used in a smart grid scenario by
Zhabelova and Vyatkin [17], where a substation shows self-
healing capabilities due to a multi-agent approach that allows
to detect errors and work around them.

The multi-agent approach has been chosen for several
problems in the context of the smart grid. Pipattanasomporn et
al. design and implement a multi-agent system for microgrids
in [18]. In their design, the agents perform different tasks
based on their roles, thereby breaking the complex problem of
centralized management of a microgrid into smaller problems.
Their system uses the IP. A similar approach is chosen by
Oliviera et. al in MASGriP [19]. The decision-finding process
among agents in the latter case is based on market competition.

In fact, agents competing in a market scenario is often
chosen as a way to motivate an agent’s behavior. The market
will, so the premise, be the basis for demands and supply,
and market competition will allow agents to have a scale for
evaluating offers in order to select the “best” one. In fact, a
price forms a simple yet effective “fitness value” for a goal-
oriented behavior of agents. Hommelberg et al. go as far as
to call automatic markets an “indispensable feature of smart

power grids” [20]. For reasons we discuss in Section X, we
advise against this.

Many distributed agent approaches are based on the Con-
tract Net Protocol proposed by Smith [21]. The semantics,
however, differ in the understanding of how work packages
should be handled. For the contract net, a work item can be
awarded to another node; however, each node is free to offer its
services as it deems fit. This can not prevail in the power grid,
where shortages must be handled by each agent. Considering
any problem as essential for each agent is essential for all
nodes to survive. Also, we do not propose any pre-selection
of nodes since all agents should be able to participate in the
global solution-finding process equally.

It is also important to note that many multi-agent approaches
that are—directly or indirectly—based on the original Contract
Net Protocol have the notion of one atomar work item that can
be awarded. In a smart grid, situations will arise where a node
cannot fulfill the whole contract, but only a part of it. Breaking
the work package into smaller sub-packages, however, is the
responsibility of the offering node. In the smart grid, this
would lead to an increased amount of negotiation for the
“right” work package size.

This detail excludes most service discovery protocols per
se, as they are not designed offer “half a printer”.

IV. PROTOCOL DESIGN CRITERIA

In striving to be as simple as possible, our protocol uses
already existing technologies. This has let us to choose the
ISO/OSI stack model as basis for our design, where it can be
placed on the application layer (layer 7) of the stack model.
This design choice allows us to draw upon the strengths
of already existing infrastructure used for transport via the
Internet Protocol (IP). Utilizing IPv6 [13], we gain an address
space large enough for our needs.

Choosing the ISO/OSI protocol stack model also helps to
integrate other technologies. We can choose between TCP/IP
with IPsec for security, or SSTP, which has been specifically
outlined in Section III for this purpose.

Integrating hardware in our system is possible as long as
it can be attached to an IP network. Thus, we do not need
to accommodate to vendor specifics and have access to a
wide range of hardware through layer 2–3 protocols. For
example, remote locations can use GSM or UMTS links [22] to
exchange information with other nodes within our distributed
system.

Nodes within the grid exchange data via Connections. We
explicitly introduce the connection concept since it is a virtual
concept not directly given by IP networks unless utilizing TCP
or another connection-oriented transport protocol is explicitly
chosen. Since we have already offered SSTP as possible
transport protocol, we introduce the connection concept.

Here, a connection means that two nodes are known to
each other; as long as message boundaries can be preserved
and a loss reduction algorithm is in place, the choice of the
transport protocol is up to the implementor. SSTP is therefore
suitable as layer 4 protocol for our own. Connections must

99

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



be established only between two adjacent nodes and are bi-
directional communication channels between exactly these two
nodes. Concepts such as multicast must be realized on top
of this. There is no explicit connection between two distant
nodes, i.e., there is no end-to-end connection concept that
crosses several hops such as TCP offers on top of IP nodes.

A connection serves three purposes. First, it identifies the
two endpoints. Second, by establishing a (largely virtual)
network of nodes and connections, this protocol creates a
communications structure that resembles the actual power grid,
recreating it on top of any other networking structure, such as
an IP-based wide-area network (WAN). This way, the power
grid and the telecommunications infrastructure do not have to
match in their layout. The layout recreation algorithm must be
implemented by the actual connection facilities, which, e.g.,
map to an IP network. Third, since one connection always
concerns exactly two nodes, it allows us to set individual con-
nection parameters such as compression that do not interfere
with other data links to other nodes.

Having those virtual connections represent the actual physi-
cal power supply line also enables us to model “dumb” cables,
which have no other properties than a maximum capacity and a
line loss. Taking these attributes into account, the actual power
transfer becomes part of the protocol. Smart power supply
lines that are equipped with, e.g., metering devices, become
nodes of their own. The simple power line–connection unit
then evolves into a connection–power line–connection building
block, which also adheres to the protocol semantics described
in the following section.

Messages can travel further than the node–connection–node
boundary. To enable nodes to answer to requests that do not
originate from their immediate neighbors, each node must be
uniquely identifiable. The Sender ID of a node must be unique
at any given time. It is an opaque bit array of arbitrary length
and must not contain any additionally information about the
node itself or anything else. Generating an Universally-Unique
Identifier (UUID) [13] whenever the node’s software boots is
one way to get such an identifier.

Each message must contain an unique identifier (ID). This
is important since messages fall into two distinct categories:
requests and answers. A request is sent actively by a node
because of an event that lies outside the protocol reaction
semantics, such as a changed forecast. Answers are reactions
that occur because of the protocol semantics as described
below. Since any reaction pertains to an original action, it
needs to identify this action, which is the reason for the unique
identifier of each message. Reactions must carry a new, unique
identifier, too, since they are messages of their own.

Identifying individual messages is also important in order
to identify duplicates. All messages within our design must
be idempotent, i.e., they must yield the same result every time
they are received. For example, a request for energy from one
node must always lead to an increase in energy production by
exactly the amount requested; if duplicates were not identified
as such, twice or even many times the amount requested could
be fed into the grid. Complex grid structures will eventually

lead to duplicates, and so it is essential to identify those.
The type of the message must be denoted by a Message

Type field. The mapping is outlined in Table II. These numbers
are simple integer values with no coded meaning whatsoever.
We do not distinguish between message classes or priorities
here: The goal of the protocol is to remain simple, and we
believe that the message types outlined here suffice in reaching
the primary goal of the protocol, i.e., energy supply-demand
mediation.

A message must also contain a Timestamp Sent field denot-
ing the time and day when the message was initially sent as
an Unix Timestamp (see [23] for the definition of the Unix
Timestamp).

To prevent messages from circulating endlessly, a Time-
To-Live (TTL) field is introduced. This TTL has the same
semantics as the IP TTL [24] field: It starts at a number greater
than 0. Whenever a message is forwarded or sent, the TTL is
decremented by 1. If the TTL reaches 0, the packet must not be
forwarded or otherwise sent but must be discarded. Messages
with a TTL value of 0 may be processed.

The TTL field exists in addition to the IP TTL mechanic:
First, because there is no vertical integration of our protocol
with the lower-layer protocols. Even though it might seem
unusual, other protocols can be used instead of IPv6 that do
not offer a TTL field in the same way IP does. Second, our
protocol creates an overlay network where a hop from one
node to another translates to any number of hops in the IP
network, which is even variable depending on different paths
chosen by IP-level routers. Thus, we need a separate TTL field
in order to preserve the semantics of this protocol.

Additionally, an Hop Count is introduced. The Hop Count
is the reverse of the TTL: It starts with 0 and must be
incremented upon sending a message. It allows to measure
the distance between two nodes in the form of hops.

A message must carry an Is Response flag to distinguish
original requests from responses. If the Is Response flag is
set, the ID of the original message is contained in the Reply
To field. If Is Response is not set, the Reply To field must
not be evaluated; however, if a response is indicated, Reply To
must contain a value that must be evaluated by the receiving
system.

An answer must also contain the original message’s Time-
stamp Sent field (in addition to its own), and the Timestamp
Received denoting the time when the original message was
received.

To summarize, each message must contain at least the fields
of the following enumeration. In parentheses, we give the
identifier used in the actual implementation.

1) message ID (ID)
2) message type (type), see Table II above
3) original sender ID (sender)
4) timestamp sent (sent)
5) TTL (TTL)
6) hop count (hops)
7) is response (isResponse)

100

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE II. Message Types

Value Type

0 Null Message
1 Echo Request
2 Echo Reply
3 Online Notification
4 Offline Notification
5 Demand Notification
6 Offer Notification
7 Offer Accepted Notification
8 Offer Acceptance Acknowledgement
9 Offer Withdrawal Notification

The message type defines what additional values a message
carries; these message types are described in Section VI. The
message type itself is a simple integer value field with type-
to-number mapping shown in Table II.

If Is Response is true, the following fields must be added:
1) Reply To (i.e., original message ID) (replyTo)
2) Timestamp Received (received)

V. COMMON PROTOCOL SEMANTICS

The following rules must be applied to each message,
regardless of their type.

First, a message must not be ignored (“no-ignores” rule).
This might seem trivial and obvious, but it is actually an
essential rule: If a request for electricity or for electricity
consumption would be silently ignored, other nodes would
not be able to react since they probably would not even
receive the message. This, in turn, would again lead to a
“dumb grid” behavior. For this reason, we do not propose a
mechanism for resending messages. Here, we differ from the
behavior implemented in the internet. The IP routing’s best
effort approach is dictated by scarce buffer space. If a router’s
buffer is full, a packet is simply discarded; the original sender
usually is not noticed about that. This behavior implicitly leads
to a conservation of the node itself. However, the primary
goal of a smart grid agent is to preserve the grid and not the
agent itself. If an agent fails due to overload, traditional grid
protection mechanism will still be available.

All messages except the Null Message, the Echo Re-
quest Message and the Echo Reply Message must be for-
warded, partially answered and forwarded, or answered. This
is the “match-or-forward” rule. It becomes important with
requests and offers and it is further specified in Subsections
VI-F and VI-G.

Forwarding denotes the general process of receiving a
message and resending it. The message may be modified in
this process, for example, the requested energy level must be
lowered when a node can fulfill a portion of the request (see
below).

When forwarding, message must be sent to all connected
nodes except to the node from which the original message was
received. If the message is an answer, the node may limit the
number of outgoing connections to those via which it can reach
the addressee. This prevents message amount amplification:
Would the receiver also send the message on the connection

on which it was originally received, it would be useless since
the original sender already knows about its offer or request. It
would thus only lead to additional processing and unnecessary
use of bandwidth (“forwarding” rule).

Each node must keep a cache of recently received messages.
If a message is received again, it must not be answered or
forwarded (“no-duplicates” rule). This cache should also be
used to forward answers to requests recorded in the cache
only on the originally receiving connection.

If a two nodes are connected via more than one connection,
only one may be used to send or forward a message. If the
sending node can determine the best connection in order to
reach its partner, it should choose it. However, what constitutes
this “best connection” is hard to define. Many properties a
connection between two nodes may have can be attributed
to the lower layers of the ISO/OSI stack and, therefore,
should not be known to the agent software. If, however, there
were two distinct connections between two agents, with one
encrypting traffic and the other one featuring low latency, these
properties are not comparable in an automatic and quantified
way.

Additionally, if an administrator wanted to achieve rendun-
dancy in order to implement a resistance against failures, he
can (and should) resort to proven algorithms on the ISO/OSI
layers 2, 3, and 4.

We therefore advise that the administrator establishes only
one connection between two nodes. As noted above, the
Connection concept serves to create an overlay network and
to define two connected endpoints (i.e., the agents). If there
still remains a wish for redundant connections, a connection
priority should be applied, and a lower-priority connection
should only be used when the connection with a higher priority
is disconnected.

VI. MESSAGE TYPES

These nine available message types constitute the minimum
set that is required for the distributed supply-demand calcula-
tion. Except for the Null, the Echo Request and Echo Reply
messages, all directly contribute to this task.

Any node must be able to signal its online or offline state.
This is not only important for scheduled maintenance, but also
allows a node to make itself known it its other endpoints.

During normal operation, two main cases must obviously be
handled: First, a demand for energy, and second, a possible
over-production that is advertised. The latter reason especially
applies to renewable energy sources. A wind farm, for exam-
ple, would signal an increasing power output due to increasing
wind speeds.

For an power request, the corresponding Demand Notifi-
cation must be used. It travels through the grid until either
its TTL reaches 0, or it is received and answered by another
node using a Offer Notification. In this case, the Is Answer
flag is true. However, as stated above, an over-production
can also occur, in which case the node will send an Offer
Notification without having received a message indicating

101

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



{
ID: "...eb9e90335495",
type: 0,
sender: "...e4d9b83d2bb7",
TTL: 42,
sent: 1367846889,
hops: 23,
isResponse: false

}

Figure 3. An example for a null message, encoded as JSON. The
UUID strings have been shorted for clarity.

demand beforehand. The Is Answer flag is consequently set
to false in this case.

What follows in both cases is the actual calculation. The
requesting node—whether it requests power or requests the
usage of power does not matter—receives offers or demand
notifications and now has to decide which offers it takes on.
Since there is no limit in how many messages related to the
original request may arrive, this explicit “contract-making”
needs to take place. This is the reason for the Offer Accepted
Notification.

An explicit acknowledgment is also introduced in form of
the Offer Acceptance Acknowledgment. The same offer could
have been made to different nodes, requiring the offering node
to withdraw all other offers as soon as one node takes it. This
is possible using the Offer Withdrawal Notification.

In the following subsections, we will describe these message
types in more detail, including the additional information fields
they introduce along with the corresponding concepts.

A. Null Message

The Null message is the simplest message available in the
protocol. It contains no additional information besides the
basic protocol fields each message carries.

Null messages can be used as a form of heartbeat informa-
tion. This is especially useful on weak links, for example for
a remote wind farm, which might only have a mobile phone
(GSM) connection. It thus can be sent at regular intervals to
keep the line open.

A Null message in JSON representation is shown as an
example in Figure 3. Please note that the message is formatted
to be easy to read. In an actual transmission, the JSON string
would be compressed, with unnecessary whitespace characters
removed.

B. Echo Request Message

An Echo Request can be sent on any connection to see if
the endpoint is still alive and reachable. It must be answered.
An Echo Request must not be an answer, and it also must not
contain any additional information.

C. Echo Reply Message

An Echo Reply is the answer to an Echo Request. It must al-
ways be an answer and thus cannot be sent independently. This
message type also does not contain any additional information;

the proposed common fields (Timestamp Sent and Timestamp
Received) are sufficient for Round-Trip-Time measurements.

D. Online Notification

Using this message, a node in the grid can notify its
neighbors that it is going online or will be online at a certain
point in the future.

To actually be able to carry the second kind of information,
i.e., going online at a certain point in the future, this message
contains two additional fields: Valid From (validFrom) and
Valid Until (validUntil). A message using validity dates
must use the Valid From field and may optionally make use
of the Valid Until field.

This concept of validity dates is used by other message
types, too. It denotes a timespan between the time indicated
by Valid From and Valid To, both inclusive. Both fields are
Unix timestamps like, e.g., the Timestamp Sent. Whenever a
node wants to indicate that a message is valid immediately,
it places the current time and date in the Valid From field.
A “valid until further notice” semantic can be achieved by
omitting the Valid Until field entirely.

Any protocol implementor, however, must take care to
adjust his implementation whenever the Unix Timestamp data
type changes. As the time of writing, a Unix Timestamp of
64 bit width is typically used in modern operating systems,
which provides enough seconds since midnight 1.01.1970
(UTC) for the whole lifetime of this protocol. Previously, the
time_t C type was specified as having 32 bits, which meant
that an overflow would happen on 19.01.2038, the so-called
“year 2038 problem”.

Note that the Unix Timestamp also allows for negative val-
ues to represent times before 1.01.1970. Although this would
not be a necessary feature in the terms of this protocol, we
advise against choosing an unsigned type as it would introduce
the need for additional programing quirks for implementors.

An Online Notification may be forwarded, but can also
be discarded. This type of message is important for all
directly connected nodes, because it has influence on the
wires connecting the originating and its neighbor nodes. Any
change in power levels, however, will be communicated using
demand/supply messages, which will be described later.

E. Offline Notification

The Offline Notification is the counterpart of the afore-
mentioned Online Notification. It notifies the neighboring
nodes that the originating node will be offline (i.e., possibly
disconnected from the grid), utilizing the same Valid From and
Valid To Timestamp fields. For all purposes of the protocol,
especially for complying with the “match-or-forward” rule,
the Connection to the node originally sending the Offline
Notification must be considered as inactive.

Unlike the Online Notification, this type of message must
be forwarded. It provides additional information to the energy
supply/demand solving algorithms of other nodes, which get
a chance to re-calculate their supply plans. It is assumed that
a demand or supply message that reaches the node sending

102

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



the Offline Notification means that the Offline Notification will
also be received by the original sender of the demand/supply
message since the Hop Count is the same both ways.

However, since the Offline Notification message does not
contain a field supplying the change in the grid energy level
when the shutdown happens, an additional supply/demand
message must be sent if the node has influence on the grid’s
energy level.

F. Demand Notification

A Demand Notification message indicates the need for
energy of a particular node. It carries the Valid From and Valid
To fields.

Primarily, it carries the quantified demand for energy in
watts in the Power (power) field. Fractions of watts are not
supported, i.e., the lowest amount that can be requested is 1 W.
The field must not be 0, as this would make the message itself
superfluous. This field must not carry negative values; those
would mean an offer, which has its own message type.

This message type additionally features the Answer Until
(answerUntil) field, which holds the date and time the
requester can, at the latest, meaningfully incorporate an an-
swer into its internal planning phase. This bit of information
accommodates a wide range of different constraints that apply
to a demand/supply calculation such as the time it takes to spin
up turbines or scale down production in case a request is not
answered as desired. This field must be present, and it must
contain a time that is before the one contained in the Valid
From field. At the time and date Answer Until indicates, the
internal process of solution finding may begin; definite answer
must not be sent until this time has arrived.

An answer arriving after the given date must not be consid-
ered by the requester. If a successful solution to the original
request can not be found by offers from other nodes alone, the
passing of this date and time indicates the need for an internal
solution, for example, the deactivation of some turbines within
a wind farm.

Demand Notification messages must be forwarded if they
cannot be (completely) fulfilled. Each node must try to react
to a demand message, i.e., try to match it and supply the
energy requested. This is called the “match-or-forward” rule
as described above. If it cannot fulfill the demand, it must at
least forward it under the semantics outlined in Section IV.

If the node can supply the requested amount of energy com-
pletely, it must notify the requester using an Offer Notification
message. It must not forward the original Demand Notification
then.

If, however, the demand can only be partially fulfilled, the
node must send an Offer Notification indicating the amount
of energy that can be offered. It must then subtract this value
from the original value indicated in the request and forward
the thusly modified message. It must not change the message’s
ID or the message’s sender ID (“same-ID” rule). The partial
matching described in this paragraph is depicted in Figure 4.

A Demand Notification message must not be an answer.

demand 500 kW

supply 250 kW

demand 250 kW

Figure 4. A Demand Notification having the “match-or-forward”
rule applied

{
ID: "deadbeef",
type: 6,
sender: "2d60a262",
TTL: 42,
sent: 1367846889,
hops: 23,
isResponse: false,
validFrom: 1367846889,
validUntil: null,
answerUntil: 1367846289,
power: 500000,
cost: 12

}

Figure 5. An example for an Offer Notification message that is
sent as a request to consume power in order to accommodate to
an over-supply of energy. Note the isResponse field, which is set
to false to express this circumstance. UUID strings are shortened
for clarity.

G. Offer Notification Message

This type of message indicates an offer to the grid. It carries
the fields Valid From, Valid Until, and Answer Until as they
are described in Subsection VI-D and the amount of energy
offered in the field Power. This number is an unsigned integer
and is expressed in units of watts with no fractions possible.

Additionally, the offer includes a field Cost, which carries
the cost of this offer in cents per kilowatt hour (ct/kWh). This
allows for implementing cost-based policies, such as accepting
energy only if it is cheap.

An Offer Notification may be an answer. If so, it is an
answer to a previous Demand Notification, as described in
the above subsection. A node receiving multiple offers must
prefer offers of lower hop count over those with higher hop
count. This favors micro-grids and reflects the actual flow of
energy.

However, Offer Notification messages may also be sent as
a request. This is the case whenever the agent estimates that
it will output more power than it currently does. Consider,
for example a wind park, which is dependent on the weather.
If the agent’s forecasting module predicts an increased wind
speed in an hour and therefore an increased energy output, it
may send an Offer Notification instead of pitching or stalling
the wind turbines. This could allow a factories to increase its
demand by powering up machines. Figure 5 shows an example
of such a message.

Just like a Demand Notification, such an original offer must
be matched by nodes in the grid. The difference between an
original offer and one that is an answer to a request is the

103

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



value of the Is Answer field: If set to false, a node must try
to match the offer.

For matching and forwarding, the same mechanics as for
the Offer Notification message type applies, especially if it
can only be partly fulfilled.

H. Offer Accepted Notification

Whenever a request for energy is made and the offers have
been received, there may arise a situation when more energy
is offered by all nodes than originally requested. For example,
if a wind park, a solar park and a traditional power plant send
Offer Notification messages after a request has been sent, the
sum of energy offered is likely to exceed the original amount
requested.

For this reason, a node must indicate which offer it accepts.
Otherwise, all offers would be fulfilled, leading to an over-
supply of energy in the grid, which would be fatal.

As soon as the node finishes its demand/supply calculation,
it must send Offer Accepted Notification messages to all nodes
that were offering energy. In the body of the message, it must
list the IDs of those nodes whose offer it takes, using the
Accepted Offers field (acceptedOffers). All other nodes
will notice that their ID is missing from the notification and
thus not actually deliver the energy they offered.

An Offer Accepted Notification must be an answer. It must
also be sent by the node that is taking on an original offer (as
indicated above). In that case, the Offer Accepted Notification
must be addressed to the offering node only, while the original
offer must be forwarded if it cannot be completely fulfilled as
described in Subsection VI-G.

I. Offer Acceptance Acknowledgement

After an offering node has received an Offer Accepted
Notification, it must reply with an Offer Acceptance Acknowl-
edgement to indicate that the offer is still valid. This message
type must always be an answer.

J. Offer Withdrawal Notification

If a node has offered a certain amount of energy, be it as an
answer or as an original offer, and it can no longer stand up to
the offer, it must withdraw it. This type of message is always
an answer, carrying the ID of the original offer (in case of an
original offer that was withdrawn) or the ID of the original
request in the Reply To field.

If a node can still offer energy, but the amount has changed,
the original offer must be withdrawn using this message type,
and the new amount must be separately announced.

VII. IMPLEMENTING THE DISTRIBUTED AGENT

The protocol itself defines the ground rules of a distributed
supply/demand calculation. In order to actually test it, how-
ever, an implementation adhering to the rules is necessary.
Our own implementation consists of several modules, each
contributing to a part of the agent’s behaviour. We will use the
route of an incoming message as common theme for describing
all parts of our design, although, of course, information can

flow in any direction. We will come to other reasons for action
later.

Each agent has exactly one Messaging Module that is its
interface to the rest of the world. It maintains connections to
other agents, and is responsible for receiving and correctly
sending messages.

The Messaging Module contains the Duplicate Message
Cache. Each message received is first checked against this
cache; only if it is not yet stored in this cache will it reach
the other modules. Otherwise, it will be silently discarded. It
is important to keep this filter in mind during the following
paragraphs as every notion of a message will mean an unique
sending from another agent.

This message cache is regularly cleared of old messages.
For our tests, we have chosen a message retention period of
15 minutes. An implementor can, of course, choose another
value. However, he must keep in mind that the Duplicate
Message Cache with its retention period is vital to preserve
the idempotence of all messages. A period that is too short
will harm the grid. The only reason to lower this period is to
preserve memory.

Instead of simply “throwing more hardware at the problem”
and setting a higher, but fixed time period for message re-
tention, a semi-dynamic cleanup should be implemented. The
Messaging Module can infer from Offer Acceptance Acknowl-
edged messages that a particular planning phase has ended
and clean up its cache accordingly. Of course, a maximum
retention period should still exists as a fall back.

When sending messages, the Messaging Module also takes
care to use the correct agent connection, which particularly
includes the application of the “forwarding” rule.

An incoming, unique message is then routed to the Gover-
nor. It has two main tasks. First, during startup, it initializes
all other modules, including the Messaging Module, monitors
them throughout the lifetime of the agent instance and is finally
responsible for resource deallocation on shutdown. Second, it
contains the business logic that allows it to act on incoming
messages, machine sensor readings or forecasts. The latter one
is, obviously, essential to the actual agent behaviour.

Upon receiving a new message, the Governor creates a
Requirement class instance. Requirements are the building
blocks the agent uses internally for bookkeeping and the
actual demand/supply calculation. Therefore, it contains two
attributes: The actual power delta and the immediately associ-
ated messages. The power delta is a deviation from a balanced
state of the grid, i.e., it is a relative value. Since it can attain
both positive and negative values, the Requirement class
allows us to treat both an anticipated excess in energy offered
as well as an anticipated demand uniformly. Consequently,
Demand Notifications and Offer Notifications constitute two
different Requirement instances that are matched against each
other in the agent’s demand/supply calculation.

The requirement class can store power deltas as
IEEE 754 [25] binary32 single precision floating point vari-
ables. Variances as they typically occur when using this data
type and prompt developers to use x + 1.0 == 1.0 when

104

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



t [s]

Δp [kW]

R1 R2

R3 R5

R4

R7
R6

Figure 6. A simplified illustration of the timeline concept

checking whether x is 0 or not are small enough as to not
harm the grid. However, an implementor should incorporate
proper safeguards against over- and underflows.

This is the main reason for the introduction of the classes
in the Winzent::Unit namespace, such as KiloWatt.
History has shown that simple floating point or integer vari-
ables can lead to a mixing of units in calculations with
possibly horrible results, such as the loss of the Mars Climate
Orbiter [26].

This calculation is done in the Supply/Demand Module.
Requirements are inserted into a timeline, which can be viewed
as a graph representing the power variances over time. For
the module, ∆p = 0 means a balanced grid, but not a power
level of 0.0—hence the delta. It might be noteworthy that the
Supply/Demand Module at no point has any knowledge of an
absolute energy level, but only needs relative levels in order
to work.

Figure 6 shows a very simplified, symbolic illustration of
the timeline. Requirements form blocks that are inserted into
the timeline. The module tries to find the optimal solution
within the search room of all blocks. Positive and negative
deltas cancel each other until the grid is, from the perspective
of the agent, balanced again. From an electric engineer’s point
of view, a total balance of ∆p = 0 will hardly ever be achieved
or even be desirable; we retain this formula for the sake of
simplicity but point out that, when deploying, a shift will have
to be taken into account.

This search is triggered by the answerUntil field of the
Offer Notification and Demand Notification messages. Typi-
cally, the module has no simple 1-to-1 matching of offers and
demands, but can choose from a number of blocks, including
the possibility of the agent to adjust itself. For example, a
wind farm signalling an offer pro-actively originating from a
forecasted increase of wind speed can either try to literally
collect Demand Notification messages until the excess energy
is used completely, or it can throttle itself and pitch or stall
turbines.

This exemplary case also introduces another module within
the agent: The Forecast Module. Incoming requirements must
be matched—or, at least, the agent must try—, and thus

the basic question is: “Can we scale up (or down) in order
to accommodate the new situation?” The Forecast Module
therefore contains the logic of the node’s ability to change
its production or consumption.

How this is done, depends on the actual node. A traditional
power plant will start its own planning phase in order to
spin up or down turbines, whereas a wind farm will try to
forecast weather conditions. Such a local forecast could be
done using Artificial Neural Nets, which have already been
proposed and successfully used for weather forecasting, for
example in [27], or even in connection to load forecasting [28].
An incorporation of weather forecasting in our agent is still
future work as we detail in Section XI.

As we previously noted, the Supply/Demand Module does
not have knowledge about absolute numbers. In an ideal world,
this is not a problem as the agent’s foremost goal is to provide
a stable power supply. However, constraints limit the solution
space. Such a constraint is hardware-based, e.g., in the form of
transformers, which have a limited capacity. All solutions are
therefore first checked against the output of the Constraints
Module. This module also allows administrator interaction,
which gives us the possibility to set policies, for example,
to not accept a power offering exceeding a certain cost.

As stated, this largely forms the way the agent behaves
upon incoming messages. However, this is obviously not the
only source of activity for a node—that initial request has to
come from somewhere. Within the agent, the Forecast Module
continuously creates new projections for the node. Once this
forecast has a variance that exceeds a certain limit, it creates
a Requirement of its own. The Governor then prompts a new
demand/supply calculation, which will, in many cases, yield a
deficit, i.e., no solution to the current situation. This, in turn,
prompts the Governor to create a request of its own, i.e., a
Demand Notification or Offer Notification message, which is
sent to other agents.

Although this might seem an obvious course of action, it is
not negligible. The continuous forecasting and adjustment of
forecast constitutes the very source of our agent’s pro-active
behavior. Thus, it is not a finite state machine at its heart, but
a long-running, stateful software agent.

All parts described live in the Winzent::Agent names-
pace as depicted in Figure 7.

VIII. TESTING THE PROTOCOL

A. Notation

To ensure that our protocol implementation, or, in fact, any
implementation of our protocol adheres to the rules defined in
the previous sections, we have created a test suite. This test
suite consists of two parts:

1) A written definition for test cases, initial situation and
expected results

2) A software implementation of the unit tests
The latter is tied to the implementation that is being tested.

We therefore provide the definition of our test cases in order
to document how we assert that the behavioral rules defined

105

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 7. The Winzent Agent design

through the protocol itself ensure that the system as a whole
works correctly if every agent adheres to the rules.

In our definition, we denote agents with upper case letters,
starting from A. Connection between agents are written down
as tuples. Since all connections are bi-directional, we simply
order the letters by the alphabet. For example, (A,C) defines
a data link from agent A to agent C and, at the same time, a
link from C to A.

We further define the inner state of any agent also by the
following quadruplet:

Agent = (Messaging, Forecast,Demand/Supply,

Constraints)

This can be shorted to (M,F,D,C) for brevity. A module
of a specific agent has the agent’s letter as subscript, e.g.,
FM denotes the Messaging Module of agent F. A subscript x
denotes a do-not-care, i.e., “any node” or “any value”.

Each module, finally, also has a state. Initial as well as
final module states are sets of items specific for the particular
module. All noted sets are interpreted as subsets of the actual
state. For initialization, this allows for local or implementation-
specific extra values, while for the final state, it defines the
way a successful or failed test run is determined. The final
state set must be a real subset of the actual state set of
an agent: Required ⊂ Actual. This is especially necessary
for the Messaging Module, where a correctly working agent

implementation can send Echo Request messages at any time,
which would lead to test case failures without this definition.

The state of the Messaging Module is defined by a list of
messages; we simply note the JSON text representation as it
is already quite easy to read. Message fields that do not matter
for the final result are omitted; in this regard, it follows the
real subset rule already employed for the module states.

The id field is never originally considered for subset
matching since it is opaque and implementation-specific to
begin with. However, we use it on a meta level to identify
individual messages in our notation. This way, we can track
messages on their way. The same technique is applied for
senders and receivers, where the actual ID of any agent
is similarly opaque. For example, { answerTo: "m1",
sender: "A" } would correctly describe a message that is
an answer to another message identified as m1 in our notation
coming from agent A. In reality, not only would a full message
travel across the line, but also would it contain ID strings like
4c23a34fab0.

In order to keep definitions clean, we refer to individual
messages with lower-case m letter with number subscript,
mi|i = 1, 2, 3, · · · , n. The combination of these specifics
allows us a more efficient notation: We can identify the
original message through the mi notation and refer to it using
the id field in our notation while leaving out all fields that
do not change. Also we do only note those messages that
were received since they are already stored in the duplicate
message cache. Otherwise, duplicate messages on forwarding

106

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



would clutter the notation too much.
Please note that an ASCII-based JSON text does not allow

subscripts and thus m1 becomes m1, but otherwise remains
the same.

The Forecast Module is defined by a list of forecasts notes
as tuples in the form of (Timestamp, Power). Alternatively,
for the initial state, an alternate form containing only the
forecast is also used; in this case, these values are emitted
when queried.

The Demand/Supply Module features a similar tuple form,
i.e., (Timestamp,Delta).

Constraints typically do not change over time. Aside from
the fact that the Constraints Module is also defined as a
possibly empty list of single constraints, they must be un-
derstandable by a human. For example, the maximum power
that can be forwarded by a node could be written as Cx =
((Pmax = 1000kW )).

In cases where the state of a module does not change
from the initial setup, we simply note the upper case letter
in the final state definition. If the state is of no interest,
we use the subscript x notation, meaning “any value”. E.g.,
A = (· · · , Fx, · · · ) would mean that, for the results, any state
of the Forecast Module is allowed for Agent A.

B. The Test Driver

Although our notation abstracts the actual tests from the
details of an agent implementation, it leaves an implementor
with the task of carefully reading a written definition and
creating actual unit tests out of it. This will again create
tests that only check whether an implementation works with a
set of tests specific to exactly this implementation. The only
advantage the written definition provides here is that it forms a
common ground to agree upon when it comes to the scenarios
that deserve testing.

Also, most implementation-specific unit test suites will be
exactly that: Code written in an imperative style. To that end, a
developer has translated the set form of the original definition
in source code. If two implementations yield different results,
the unit test code will have to be re-translated, at least
implicitly in the developer’s mind, to the set definition in order
to find out where things go wrong. This is obviously an error-
prone process.

For this reason, we have defined a test driver that reads
a JSON representation of the notation we introduced in the
previous paragraph and sets up a test bed for the agents. The
adapter an implementor has to create comes in the form of
interfaces or abstract classes.

The test driver is initialized using the Manager class,
which sets up the necessary environment. It creates
TestCase objects, with one object representing one distinct
test case. This class reads and parses the JSON notation of
the test case itself and is responsible for setting up the test,
running it and cleaning up afterwards. Success or failure is
indicated by the return value of the run() method, which is
a simple Boolean value indicating success on true or failure
on false.

During setup, agents are created and initialized accord-
ing to the initial state description. This is the responsi-
bility of the AgentFactory class. This factory, along
with the Agent class instances it creates, is an ab-
stract class: The concrete factory as well as the con-
crete agent must be implemented by the vendor wishing
to test his product. Along with the interfaces representing
the modules, i.e., MessagingModule, ForecastModule,
DemandSupplyModule, and ConstraintsModule, this
forms the API an implementor must use when attaching his
own agent code.

Although this API carries the spirit of the design we propose
in this article, it can be understood as nothing more than a
mere wrapper; the concrete classes implementing the module
interfaces can be shallow wrapper classes.

All these module interfaces simply provide a getter and a
setter for a set of objects. The setter is used during initializa-
tion to establish the initial state, while the getter allows us to
retrieve the final state. The Set class finally implements two
set primitives: equals() and isSubsetOf(). These two
are necessary for testing the success of a test case. Since the
final state consists of sub sets of the actual state, the success
or failure of any test case boils down to a number of subset
checks. If, and only if, all succeed, the test case itself succeeds.

The test driver architecture itself does not need many classes
in order to provide the necessary API. Figure 8 shows an
overview in form of an UML class diagram.

In order to work, this architecture needs test case definitions
in a computer-parsable format. We have again chosen JSON
for this for the same reasons we use it for the message format:
It is easy to read and write for a human and likewise easy to
parse for a computer. Also, reliable parsers exist, i.e., it is no
obscure, exotic format.

A test case is a JSON object consisting of three root
attributes: a list of agents, a list of connections, a list of initial
states, and a list of final states. Basically, it is a transcription of
the formal definition in JSON that adjusts the written notation
to the idiosyncrasies of JSON’s syntax.

The list of agents, agents, simply introduces the agent
IDs in much the same way the formal notation does. The same
is true for the connection list, connections, that contains
tuples in the form of JSON arrays with two elements.

The last two attributes, initialStates and
finalStates, contain the state sets of the
agents. All agents are listed here along with their
modules: messagingModule, forecastModule,
demandSupplyModule, and constraintsModule.
Each of them contains a list with items as defined in our
formal representation. As variables with subscripts do not
exist in JSON, references and do-not-cares, e.g., Fx or MA

are strings without subscripts in the same way as we refer
to messages: m1 becomes "m1", and subsequently MA

becomes "MA", Dx is written as "Dx".
Figure 9 has an exemplary test case definition where two

agents, A and B exist. For the test case to succeed, A is required
to send an Echo Request message to B, which the latter one

107

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 8. The Test Driver implementing the Test Case notation

answers with an Echo Reply message.

IX. SELECTED TEST CASES OF THE PROTOCOL TEST
SUITE

This chapter illustrates how we test the semantics of the
protocol and the correct functioning of our implementation
using selected test cases. We refrain from publishing the full
source code of each test case for the sake of readability. Also,
this does not constitute a complete suite of test cases. Its intent
is to illustrate not only the application of the implementation-
agnostic description, but also to show how nodes that correctly
implement the protocol behave.

Therefore, we illustrate the important parts using the test
case notation introduced in the previous Section VIII.

A. Test Case: “Forward” Rule

Three agents are connected in a linear fashion, i.e., A—B—
C. The correct notation of this layout is:
Agents (A,B,C)
Connections ((A,B), (B,C))

A sends a Demand Notification message for 500kW , which
B and C cannot answer. The test case ends when C receives
the message that B has to forward. This test case proves the
correct working of the “forwarding” rule.

Thus, for the initial state, we need only to define the
Demand/Supply Module of all three agents, all other state
tuples remain empty. The final state then has to show that
a message has travelled to both nodes B and C, but no
answer has been transmitted. Agent A’s Demand/Supply tuples
therefore remains the same, while the Messaging Module tuple
of A and B each have to list one message.

The complete source code must contain a definition of this
message. Both its Type and Power fields have to be defined
in order to indicate that A and B have received a Demand
Notification message. We thus note:
Initial State

A = ((), (0,−500000), (), ())

B = ((), (0), (), ())

C = ((), (0), (), ())

Final State

A = ((), Fx, (0,−500000), C)

B = ((m1), F,D,C)

C = ((m1), F,D,C)

Together with the definition of the message m1, this test
case completely defines initial and final state of the simulated

108

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



{
agents: ["A", "B"],
connections: [ ["A", "B"] ],
initialStates: {

A: {
messagingModule: [],
forecastModule: [],
demandSupplyModule: [],
constaintsModule: []

}, B: {
messagingModule: [],
forecastModule: [],
demandSupplyModule: [],
constaintsModule: []

}
},
finalStates: {

A: {
messagingModule: [{

type: 2,
hops: 1,
sender: "B"

}],
forecastModule: [],
demandSupplyModule: [],
constaintsModule: []

}, B: {
messagingModule: [{

type: 1,
hops: 1,
sender: "A"

}],
forecastModule: [],
demandSupplyModule: [],
constaintsModule: []

}
}

}

Figure 9. A Test Case Definition in JSON notation for a “ping”
example: A sends an Echo Request message to B that the latter one
answers.

system concerning the transmission of messages and the
agent’s reactions to it.

B. Test Case: TTL

The setup is similar to the previous test case, however, an
additional node D with connection (C,D) is introduced. The
message TTL of A’s Demand Notification is 2. Thus, C may
not forward the message on the connection (C,D) and the
final state of MD = () must exist.

Also, the notation of messages needs to change. A and B
have now received messages which have changed regarding
the value of the TTL field. Thus, we note the TTL field with
the changed value for both messages and therefore need to
assign different indexes to them:

Final State

A = ((), Fx, (0,−500000), C)

B = ((m1), F,D,C)

C = ((m2), F,D,C)

D = (M,F,D,C)

Even though we need to distinguish the two messages in the
test case definition by writing m1 and m2, we can still show
that the message carries the same ID. We do so by indicating
the ID field of m1 and setting it to the identifier m2. Thus,
the message can be traced while still showing that a part of it
has changed its value.

C. Test Case: Simple Demand and Supply

This test case will, again, use the topology of the first
test case. But now, agent C is able to completely answer A’s
request for energy.

This seems to be the simplest of all test cases, but, in fact,
more messages than for the previous ones are required. Here,
we need to explicitly confirm the offer using an Offer Accepted
Notification.

This test case serves to check an implementation for all
defined rules of behavior. It applies the “forwarding” rule and
will modify a message’s TTL field in the same way as the
other two test cases, combined.

Additionally, it shows the application of the “match-or-
forward” rule. The agent C is required to answer the Demand
Notification, which can be checked using B’s message cache.
We discuss this imperative in Section X. Also, the correct
formation of the implicit contract can be monitored.

The creator of the test case therefore needs to track a number
of messages: First, the forwarding of the initial Demand
Notification with modified TTL Values. Second, the Offer
Notification message which travels back to the requester and
must be recorded in both B’s and A’s Message Module’s
duplicate request cache. In the same way, the Offer Accepted
Notification is sent by A and reaches C via B, being recorded
in the same way as the previous two messages. Finally, an
Offer Acceptance Acknowledgement is sent by C to A.

With the reception of the final message, the Message
Module of A and C must contain two received messages, while
that of B holds copies of all four. The reception of the Offer
Acceptance Acknowledgement also marks the formation of the
contract between A and C. Thus, the Supply/Demand Module
of the requester must appear as balanced in the final state
definition.

D. Test Case: Circular Demand/Supply with Partial Offers

This test case offers a more complex topology featuring
one requester and three suppliers. Since the setup is harder
to imagine than the previous ones, instead of a written prose
description or the formal connections notation, it is depicted
in Figure 10.

This test case serves to test the protocol-implementing
nodes’ behavior on a more complex topology. It also uses

109

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



partial offers, which increases the amount of messages that
need to be sent in order to arrive at a working contract.

Initially, the requesting node A sends a Demand Notification
message for the same amount used in the previous two test
cases. However, now three other agents answer with an offer.

First, the agents C and F will offer one half of the requested
power, while agent H is able to supply the complete power
needed. This tests not only the “forwarding” rule, but also
“match-or-forward”. The agents C and F not only have to
send their offer, but also forward a modified version of the
initial request. This forwarded version can be found in G’s
Messaging Module’s cache.

G and H also serve to test the correct implementation of
the “no-duplicates” rule. G will, via E and D, receive two
modified Demand Notification messages. However, it may
forward only one of the two. This means that the cache of H
may contain exactly one Demand Notification message which
can easily be identified using its ID field as the one originating
from A. The transmission of the Demand Notification message
therefore stops at G and also B, effectively preventing an
endless circulation.

This original requester will finally have three Offer Noti-
fications received. Since we advise preferring messages with
a lower hop count, it will accept the two partial offers. This
Offer Acceptance Notification must be recorded by all three
offering agents. This is vitally important since all parties have
now knowledge of whether they need to provide the advertised
power or not.

Applying the same rules, the final Offer Acceptance Ac-
knowledgement messages will then travel through the network
back to A.

Please note that it is not necessary to list all transmitted
messages in order to show that the actual demand/supply
scenario is solved. In fact, the Message Module tuple of
A’s final state alone suffices to show that three agents have
sent their offers. Listing its Demand/Supply Module definition
serves to verify that it has accepted the two partial offers.

However, if all described messages are recorded in the test
case definition, we can also show that an endless message
circulation is prevented by the duplicate message cache. There-
fore, this additional information asserts an important part of
the behavioral rules of this protocol and are included.

X. DISCUSSION

A. Comparison with SIP and RSVP

Our protocol seems to share some features with already
deployed, well-known protocols such as the Session Initiation
Protocol (SIP) [29], or the Resource Reservation Protocol
(RSVP) [30]. SIP is especially designed to to be usable on
exiting protocols in Layers 1–6, thus being not vertically
integrated similar to our protocol. However, there are several
differences that justify the creation of this Layer 7 protocol.

Traditional SIP relies on proxy servers. Here, individuals
register in order to be locatable. The proxy server typically
serves a domain and makes up the domain part of a SIP URI,
e.g., sip:bob@biloxi.com. These proxy servers create a

A

FC

H

B

D E

G

Figure 10. Topology of a circular demand/supply test case

layer of indirection in performing their duty. In our approach,
there could theoretically be any number of proxy servers from
1 to n, with n being the number of nodes in the grid. These
proxy servers create points of failures while also partially
obscuring the direct mesh that is used for routing the offers
and demand messages.

Using a Peer-to-Peer architecture (P2P) seems to be the next
logical step in order to rely on already existing architectures.
SOSIMPLE by Bryan, Lowerkamp, and Jennings [31] is a
“serverless, standards-based, P2P SIP communication system”.
The routing of requests still requires an a-priori knowledge of
the (potential) location of the callee in the grid: “Node A is not
responsible for that Resource-ID, so it sends a SIP 302 Moved
Temporarily reply, including the node it thinks is closest [. . . ]
in the headers [. . . ].”

Both SIP and RSVP are based on the premise that the
initiating client knows its counterpart, i.e., the caller knows
its callee as well as the video-requesting client knows which
server offers the desired video. In our case, however, there is
no a-priori knowledge about potential contract partners. Each
node has the same chance to match an offer, and therefore,
our protocol relies on and uses the meshed architecture of the
power grid that is re-created in the communication network.

In that regard it also becomes apparent that there is no
explicit session that is created and maintained by the protocol.
Sessions require a setup, potentially keep-alive and a teardown.
However, our protocol does not need the explicit notion of
sessions that are maintained. The power grid itself provides
the “session” since nodes act and react based on the state of
the power grid itself.

It can also be noted that we do not establish an end-to-end
connection in the protocol. It is the basis for a negotiation, but
the actual connection—if one would call it so—is done in the
power grid itself by initiating the flow of energy based on the

110

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



negotiation that took place earlier and was facilitated by the
protocol.

In summary, intermediate nodes are not required to keep
track of contracts made in order to reserve a specific capacity
once the flow of power has been initiated. We assume that
a node that requests a certain amount of power for a certain
amount of time does so truthfully, i.e., that it actually con-
sumes or delivers the power. In contrast, traffic on an Internet
channel such as one created by RSVP does not necessarily
flow continuously.

B. Message Transmission Volume

The test cases show clearly that there is room for im-
provement regarding efficiency: A lot of messages travel the
information network in order to establish a contract. Many of
those are redundant and are caused by the “forward” rule that,
in its current, simple form, resembles a routing by flooding
algorithm [32].

In fact, in our testcases no actual routing in the sense of
selecting a single path is performed at all. For large-scale
deployment, this behavior must change into a better version
that reduces the number of messages transmitted. Ideally, a
node would transmit the message only on sensible connections
instead of all but the receiving ones. The intial broadcasting
of requests is necessary in order to reach all potential contract
partners as there is no central registry of potential suppliers and
consumers. However, when those have made their offers, the
multicast character of messages can transform into an unicast
nature, thus using the existing communication facilities in a
more efficient way.

We believe that we can use the already existing Duplicate
Message Cache in order to identify a minimal set of outgoing
connections for answers. Using this local piece of knowledge,
the routing can be optimized for replies. This assumes that
no cache expiry timer on a node along the path the answer
takes has yet led to the removal of the necessary piece of
information.

In comparison to other protocols in the smart grid area,
the raw data volume of our proposal seems rather high. The
example Offer Notification message in Figure 5 compromises
170 Bytes if all unnecessary line breaks and whitespace
characters are removed. If transmitted via standard TCP/IPv6,
protocol headers add another 32 Bytes (TCP) and 40 Bytes
(IPv6) for a grand total of 170 + 32 + 40 = 242 Bytes.
Including the TCP three-way handshake and the connection
termination increases the number to 762 Bytes for a single
message. Adding in IPsec raises the grand total even more.

Of course, our Connection concept does not force a per-
manent setup and teardown of a TCP connection for every
message. Using SSTP instead of a solution based on IPsec
and TCP will also reduce protocol overhead. And since all
agent Connections are end-to-end connections, two nodes can
employ compression, e.g., using simple GZIP [33].

Currently, we compute the overall data volume for a con-
tracting process using the following formulae. All variables
are summarized in Table III.

First, the transmission volume of a singular message m on
an established connection c can be calculated by:

vu(m, c) = s(m)f(m, c) + Vc Bytes

The message’s size is given by calculating s(m), i.e., the
size of the message. f(m, c) denotes a dynamic cost factor of
the connection like compression. The constant V denotes the
constant costs of the connection c, such as TCP/IP headers
that get added to each transmission.

Forwarding a request generates costs on all connections of
a node n except the receiving one c0, i.e.,

vm(n,m) =

|CN |−1∑
i=1

vu(M, ci) Bytes

A request is forwarded at most TTL hops, i.e., the request’s
initial TTL limits the number of hops it can be forwarded.
Through the duplicate request cache we ensure that the mes-
sage will not pass any node twice. Therefore, the maximum
cost of transmitting a request message m from an initial node
n0 is given as

vr(m,n0) ≤
TTLM∑
i=0

vm(ni,m) Bytes

Since answers can be transmitted in an unicast fashion
thanks to the duplicate message cache, the volume of an an-
swer equals the transmission volume of any message, with c0
being a connection on which the initial request was received.
Choosing the “right” connection is the responsibility of the
node; using the first receiving one will typically suffice.

Thus, each answer produces at least

va(mr, nr,ma) =

hmr∑
i=0

vu(ma, c0) Bytes

The total volume of bytes each request generates is therefore
the sum of the volume a request produces plus the sum of all
answers that are sent by other nodes. If the Duplicate Message
Cache is not used as a means to optimize the path an answer
takes, va equals vr on all nodes. This effect is apparent in the
test cases we showed in Section IX.

Although optimization techniques such as using the Dupli-
cate Message Cache where possible are employed, our proto-
col uses a substantially higher volume in comparison with bit-
by-bit defined protocols such as OSGP. However, we approach
a different problem. OSGP or the IEC protocols access highly
integrated devices with low data rate links in order to query
sensor, usage and billing information. However, the protocol
we propose acts on the level of a whole neighborhood, a wind
farm, factory or traditional power plant in order to enable an
efficient, on-the-fly demand/supply calculation.

C. Choice of Offers

In cases where several solutions to the demand/supply
calculation emerge, we do not enforce any priorities. We do,
however, recommend to prefer messages with a lower Hop

111

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE III. Variables and functions used in the message volume
calculation

c An established connection
CN Set of all established connections on node n:

{c0, c1, . . . , cn}
ci ith established connection on a node
n A node
m A message
mr A request message
ma An answer message
hm Hop count of message m
TTLm TTL of message m
s(m) The size of a message m, in bytes
f(m, c) Dynamic factor by which the message m will be

modified when transmitted via connection c
Vc Static additional costs of a connection
vu(m, c) Total volume to transmit message m on connection

c
vm(m,n) Total volume to forward a message m using multi-

cast on node n

Count, even if this leads to a solution compromised of more
and “smaller” building blocks. In fact, the last test case we
describe in this article explicitly checks that a decision is made
on exactly this basis.

A lower Hop Count means that a node nearby has sent the
message. Our network architecture practically constitutes an
overlay network over existing IP-based ones and effectively
re-models the existing power grid. As a result, the power that
flows on grounds of a message with lower Hop Count bridges
less meters of the grid than that flowing due to a message
with higher Hop Count. This leads to a lower (transmission)
grid load and smaller overall line loesses since it automatically
prefers micro grids. Additionally, the Constraints Module can
be used to implement cost-based policies.

However, a focus on costs should be avoided. A pure “cents
per kilowatt hour” metric can be influenced to an amount
that diminishes or even destroys its value as an objective
criterion. For example, government subsidies can lead to huge
distortions. A study by the German Federal Environmental
Agency [34] shows that subsidies of coal and nuclear power
plants greatly influence the price per kilowatt hour.

It is obvious that this does not yield to the technically best
solution, or a solution that is the best from a grid-wide supply
point of view. Instead, a price-based fitness metric as acting
basis can even lead agents to hold back offers because the
price is too low. However, we see the preservation of the power
grid itself as the highest priority, whereas a profit margin is an
optimization problem that arises once more than one solution
can be considered.

But in comparison, it is clear that the Hop Count metric
is very abstract. Power may travel many kilometers with just
one hop, depending on the grid layout. Other metrics may
be better applicable. Takeru Inoue et al. use actual physical
metrics in their article [35], which will be a better application
for a decision-making algorithm in the future.

Both the Demand Notification and Offer Notification mes-
sage types include timestamps. Especially the Answer Until
field is noteworthy, because it takes part in timing the start

of a demand/supply calculation on a node. Any node can set
a meaningful time considering its own characteristics that it
knows about, like hardware constraints that require a certain
time buffer in order to employ a fall-back solution, or to have a
search room populated enough to arrive at a meaningful result
in a local demand/supply calculation.

It is tempting to include information network constraints in
the time buffer the Answer Until field provides. However, we
advise against it for two reasons:

First, a node does not have knowledge about the latency
to other nodes when it broadcasts its initial request. When
answering another node directly, e.g., using a Offer Noti-
fication, it would have to measure the latency beforehand
to include a meaningful value. In internet communication,
this latency would reside in the area of milliseconds, which
are not included in the Unix Timestamp that makes up the
answerUntil field.

Second, even when packets are routed in an extremely
inefficient way [36], a high delay means values of < 300ms ,
while even fast gas turbine power plants react in a matter
of minutes (“Boosting times of a few minutes including
synchronization to the grid are possible”, translated from [37]).

XI. CONCLUSION AND FUTURE WORK

In this article, we have defined a lightweight protocol based
on behavioral rules that enable a distributed supply/demand
calculation for smart grids. It allows nodes to act pro-actively
based on their local energy situation and to propagate a future
demand or over-supply of power. This, in turn, initiates a dis-
tributed, automatic search for a solution to this problem. This
way, renewable energy sources can be used more efficiently
since consumers can make use of an increased supply or scale
down dynamically based on the local knowledge of individual
nodes.

We have also proposed an architecture for an agent im-
plementing this protocol and the rules related to it. This
architecture serves as basis for our test cases, which are not
just unit tests tied to a specific software, but also provide a
written-down definition of a successful execution of a test case.

However, the way we define tests today is based on a textual
representation. While this is good for parsing and to create a
definite collection of implementation-independent test cases,
it is clear that all topologies that are not extremely simple
are best visualized. That is why we also created a graphical
simulation environment, which we will publish in a separate
paper.

Currently, we employ a very simple routing algorithm
for requests that resembles a classical “routing by flooding”
approach, as noted in Section X. We plan to employ all agents
to be more aware of their immediate neighbors in order to
relay requests more efficiently without using separate registry
servers.

In this article, we have not touched the problem of how
connections are initially created, but have simply assumed
that they already exist. Connections can be a tool to negotiate
individual data link parameters such as encryption for low data

112

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



rate links and can even be used to identify potentially malevo-
lent nodes by implementing a credibility-based algorithm in
the same manner as it is already done in current peer-to-
peer networks. However, the actual algorithm how nodes could
automatically connect to their immediate neighbours, negotiate
parameters and shield themselves against attacks is still future
work.

XII. ACKNOWLEDGMENTS

This article has been created as part of a cooperative
doctorate program between the TU Bergakademie Freiberg and
Wilhelm Büchner Hochschule, Pfungstadt.

REFERENCES

[1] E. M. Veith, B. Steinbach, and J. Windeln, “A lightweight messaging
protocol for Smart Grids,” in EMERGING 2013, The Fifth International
Conference on Emerging Network Intelligence. IARIA XPS Press,
2013, pp. 6–12.

[2] J. R. Roncero, “Integration is key to smart grid management,”
CIRED Seminar 2008 SmartGrids for Distribution, no. 9,
pp. 25–25, 2008, retrieved 2013-02-11. [Online]. Available:
http://link.aip.org/link/IEESEM/v2008/i12380/p25/s1&Agg=doi

[3] M. Pierrot, “Wind energy data for germany - coun-
try windfarms,” retrieved 2013-12-10. [Online]. Available:
http://www.thewindpower.net/country_windfarms_en_2_germany.php

[4] M. Z. Lu and C. L. P. Chen, “The design of multi-agent based distributed
energy system,” 2009 IEEE International Conference on Systems, Man
and Cybernetics (SMC 2009), Vols 1-9, pp. 2001–2006, 2009.

[5] B. Lasseter, “Role of distributed generation in eeinforcing the critical
electric power infrastructure,” pp. 146–149, 2001.

[6] European Parliament, Council, “Directive 2009/28/ec of the european
parliament and of the council of 23 april 2009 on the promotion of
the use of energy from renewable sources and amending and subse-
quently repealing directives 2001/77/ec and 2003/30/ec (text with eea
relevance),” Official Journal of the European Union, 04 2009, date of
effect: 25/06/2009; Entry into force Date pub. + 20 See Art 28.

[7] Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit,
“Datenreihen zur Entwicklung der erneuerbaren Energien in Deutsch-
land,” p. 41, February 2013.

[8] M. Vasirani, R. Kota, R. L. G. Cavalcante, S. Ossowski, and N. R.
Jennings, “An agent-based approach to virtual power plants of wind
power generators and electric vehicles,” IEEE Transactions on Smart
Grid, vol. 4, no. 3, pp. 1314–1322, 2013.

[9] A. Faruqui, S. Sergici, and A. Sharif, “The impact of informational feed-
back on energy consumption—a survey of the experimental evidence,”
Energy, vol. 35, no. 4, pp. 1598–1608, 2010.

[10] P. Merrion, “Pilot test of comed’s smart grid shows few consumers power
down to save money,” Crain’s Chicago Business, May 2011.

[11] B. M. Buchholz, V. Bühner, U. Berninger, B. Fenn, and Z. A. Styczynski,
“Intelligentes lastmanagement — erfahrungen aus der praxis,” in VDE-
Kongress 2012. VDE VERLAG GmbH, 2012.

[12] Y.-J. Kim, V. Kolesnikov, H. Kim, and M. Thottan, “SSTP: a scalable
and secure transport protocol for smart grid data collection,” in IEEE
International Conference on Smart Grid Communications (SmartGrid-
Comm). IEEE, 2011, pp. 161–166.

[13] P. Leach, M. Mealling, and R. Salz, “An universally unique identifier
(UUID) URN namespace,” July 2005, retrieved 2013-05-25. [Online].
Available: http://tools.ietf.org/html/rfc4122

[14] S. Kent and K. Seo, “Security architecture for the internet protocol,”
IETF RFC 4301. [Online]. Available: http://www.ietf.org/rfc/rfc4301.txt

[15] R. Stewart, “Stream control transmission protocol,” RFC 4960, Sep.
2007. [Online]. Available: http://www.ietf.org/rfc/rfc4960.txt [Retrieved
2013-05-13]

[16] European Telecommunications Standards Institute, “Open smart grid
protocol,” European Telecommunications Standards Institute, Tech.
Rep., 2012.

[17] G. Zhabelova and V. Vyatkin, “Multi-agent smart grid automation
architecture based on iec 61850/61499 intelligent logical nodes,”
IEEE Transactions on Industrial Electronics, vol. 59, no. 5,
pp. 2351–2362, 2011, retrieved 2013-04-03. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6018303

[18] M. Pipattanasomporn, H. Feroze, and S. Rahman, “Multi-agent
systems in a distributed smart grid: design and implementation,”
2009 IEEE/PES Power Systems Conference and Exposition,
pp. 1–8, March 2009, retrieved 2013-06-01. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4840087

[19] P. Oliveira, T. Pinto, H. Morais, and Z. Vale, “MASGriP — a multi-agent
smart grid simulation platform,” in IEEE Power and Energy Society
General Meeting. IEEE, 2012, pp. 1–8.

[20] M. Hommelberg, C. Warmer, I. Kamphuis, J. Kok, and G. Schaeffer,
“Distributed control concepts using multi-agent technology and auto-
matic markets: An indispensable feature of smart power grids,” in IEEE
Power Engineering Society General Meeting. IEEE, 2007, pp. 1–7.

[21] R. G. Smith, “The contract net protocol: high-level communication
and control in a distributed problem solver,” in IEEE Transactions on
Computers, vol. C, no. 12. IEEE, December 1980, pp. 1104–1113.

[22] V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and
G. P. Hancke, “Smart grid technologies: communication technologies
and standards,” IEEE Transactions on Industrial informatics, vol. 7,
no. 4, pp. 529–539, 2011.

[23] K. Thompson and D. M. Ritchie, UNIX programmer’s manual. Bell
Telephone Laboratories, 1975.

[24] S. Deering and R. Hinden, “Internet protocol,” 1998, retrieved
2013-05-14. [Online]. Available: http://tools.ietf.org/html/rfc2460

[25] “IEEE standard for floating-point arithmetic,” IEEE Std 754-2008, pp.
1–70, 2008.

[26] E. Euler, “The failures of the mars climate orbiter and mars polar
lander—a perspective from the people involved,” in Guidance and
Control, 2001, pp. 635–655.

[27] I. Maqsood, M. Khan, and A. Abraham, “An ensemble of neural
networks for weather forecasting,” Neural Computing and Applications,
vol. 13, no. 2, pp. 112–122, May 2004. [Online]. Available:
http://link.springer.com/10.1007/s00521-004-0413-4

[28] S.-T. Chen, D. C. Yu, and A. R. Moghaddamjo, “Weather sensitive short-
term load forecasting using nonfully connected artificial neural network,”
IEEE Transactions on Power Systems, vol. 7, no. 3, pp. 1098–1105,
1992.

[29] J. Rosenberg, H. Schulzrinne, and G. Camarillo, “SIP: Session initiation
protocol,” Vasa, pp. 1–269, 2002, retrieved: 2014-05-10. [Online].
Available: http://www.hjp.at/doc/rfc/rfc3261.html

[30] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, Request for
Comments.

[31] D. A. Bryan, B. B. Lowekamp, and C. Jennings, “SOSIMPLE: A
serverless, standards-based, p2p SIP communication system,”
First International Workshop on Advanced Architectures
and Algorithms for Internet Delivery and Applications
(AAA-IDEA’05), pp. 42–49, 2005. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1652335

[32] M. Abolhasan, T. Wysocki, and E. Dutkiewicz, “A review of routing
protocols for mobile ad hoc networks,” Ad hoc networks, vol. 2, no. 1,
pp. 1–22, 2004.

[33] P. Deutsch, “GZIP file format specification version 4.3,” IETF
RFC 1952, 1996, retrived 2013-12-08. [Online]. Available:
http://www.ietf.org/rfc/rfc1952.txt

[34] A. Schrode, A. Burger, F. Eckermann, H. Berg, and K. Thiele, “Environ-
mentally harmful subsidies in Germany,” Federal Environment Agency,
Germany, Dessau-Roßlau, Tech. Rep., 2011.

[35] T. Inoue, K. Takano, T. Watanabe, J. Kawahara, R. Yoshinaka,
A. Kishimoto, K. Tsuda, S.-i. Minato, and Y. Hayashi,
“Distribution loss minimization with guaranteed error bound,”
IEEE Transactions on Smart Grid, vol. 5, no. 1, pp.
102–111, January 2014, retrieved 2014-01-15. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6693788

[36] Renesys, “The new thread: targeted traffic redirection,”
November 2013, retrieved 2014-01-01. [Online]. Available:
http://www.renesys.com/2013/11/mitm-internet-hijacking/

[37] K. Heuck, K.-D. Dettmann, and D. Schulz, Elektrische Energiever-
sorgung. Wiesbaden: Vieweg + Teubner, 2010.

113

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


