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Abstract—Lempel-Ziv (LZ) techniques are the most widely
used for lossless file compression. LZ compression basicly
comprises two methods, called LZ1 and LZ2. The LZ1 method
is the one employed by the family of Zip compressors, while
the LZW compressor implements the LZ2 method, which is
slightly less effective but twice faster. When the file size is
large, both methods can be implemented on a distributed sys-
tem guaranteeing linear speed-up, scalability and robustness.
With Web computing, the MapReduce model of distributed
processing is emerging as the most widely used. In this
framework, we present and make a comparative analysis of
different implementations of LZ compression. An alternative
to standard versions of the Lempel-Ziv method is proposed as
the most efficient one for large size files compression on the
basis of a theoretical worst case analysis, which evidentiates its
robustness.

Keywords-web computing; mapreduce framework; lossless
compression; string factorization; worst case analysis

I. INTRODUCTION

Lempel-Ziv (LZ) techniques are the most widely used
for lossless file compression and preliminary results on
the distributed implementation, shown in this paper, were
presented in [1], [2], [3]. LZ compression [4], [5], [6] is
based on string factorization. Two different factorization
processes exist with no memory constraints. With the first
one (LZ1) [5], each factor is independent from the others
since it extends by one character the longest match with
a substring to its left in the input string. With the second
one (LZ2) [6], each factor is instead the extension by one
character of the longest match with one of the previous
factors. This computational difference implies that while
sliding window compression has efficient parallel algorithms
[7], [8], [9], [10], LZ2 compression is hard to parallelize
[11] and less effective in terms of compression. On the
other hand, LZ2 is more efficient computationally than
sliding window compression from a sequential point of
view. This difference is maintained when the most effective
bounded memory versions of Lempel-Ziv compression are
considered [9], [12]. While the bounded memory version
of LZ1 compression is quite straightforward, there are
several heuristics for limiting the work-space of the LZ2
compression procedure in the literature. The ”least recently
used” strategy (LRU) is the most effective one. Hardness

results inside Steve Cook’s class (SC) have been proved
for this approach [12], implying the likeliness of the non-
inclusion of the LZ2-LRU compression method in Nick
Pippenger’s class (NC). Completeness results in SC have
also been obtained for a relaxed version of the LRU strategy
(RLRU) [12]. RLRU was shown to be as effective as LRU
in [13] and, consequently, it is the most efficient one among
the Lempel-Ziv techniques.

Bounding memory is very relevant with distributed pro-
cessing and it is an important requirement of the MapReduce
model of computation for Web computing. A formalization
of this model was provided in [14], where further con-
straints are formulated for the number of processors, the
number of iterations and the running time. However, such
constraints are a necessary but not sufficient condition to
guarantee a robust linear speed-up. In fact, interprocessor
communication is allowed during the computational phase
and experiments are needed to verify an actual speed-
up. Distributed algorithms for the LZ1 and LZ2 methods
approximating in practice their compression effectiveness
have been realized in [9], [15], [16], where the stronger
requirement of no interprocessor communication during the
computational phase is satisfied. In fact, the approach to a
distributed implementation in this context consists of apply-
ing the sequential procedure to blocks of data independently.

In Sections II and III, we describe the Lempel-Ziv com-
pression techniques and their bounded memory versions
respectively. Section IV sketches past work on the study
of the parallel complexity of Lempel-Ziv methods leading
to the idea of relaxing the least recently used strategy. In
Section V, we present the MapReduce model of computation
and introduce further constraints for a robust approach to
a distributed implementation of LZ compression on the
Web. Section VI makes a comparative analysis of different
implementations of LZ compression in this framework. A
worst case analysis of standard LZ2 compression is given
in Section VII and an alternative to the standard versions
is proposed as the most efficient one for large size files
compression. Conclusions and future work are given in
Section VIII.
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II. LEMPEL-ZIV DATA COMPRESSION

Lempel-Ziv compression is a dictionary-based technique.
In fact, the factors of the string are substituted by pointers
to copies stored in a dictionary which are called targets.
LZ1 (LZ2) compression is also called the sliding (dynamic)
dictionary method.

A. LZ1 Compression

Given an alphabet A and a string S in A∗, the LZ1
factorization of S is S = f1f2 · · · fi · · · fk, where fi is the
shortest substring which does not occur previously in the
prefix f1f2 · · · fi, for 1 ≤ i ≤ k. With such factorization, the
encoding of each factor leaves one character uncompressed.
To avoid this, a different factorization was introduced (LZSS
factorization) where fi is the longest match with a substring
occurring in the prefix f1f2 · · · fi if fi ̸= λ, otherwise
fi is the alphabet character next to f1f2 · · · fi−1 [17]. fi
is encoded by the pointer qi = (di, ℓi), where di is the
displacement back to the copy of the factor and ℓi is the
length of the factor (LZSS compression). If di = 0, li is the
alphabet character. In other words the dictionary is defined
by a window sliding its right end over the input string,
that is, it comprises all the substrings of the prefix read
so far in the computation. It follows that the dictionary is
both prefix and suffix since all the prefixes and suffixes of
a dictionary element are dictionary elements. The position
of the longest match in the prefix with the current position
can be computed in real time by means of a suffix tree data
structure [18], [19].

B. LZ2 Compression

The LZ2 factorization of a string S is S =
f1f2 · · · fi · · · fk, where fi is the shortest substring which
is different from every previous factor. As for LZ1 the
encoding of each factor leaves one character uncompressed.
To avoid this a different factorization was introduced (LZW
factorization) where each factor fi is the longest match with
the concatenation of a previous factor and the next character
[20]. fi is encoded by a pointer qi to such concatenation
(LZW compression). LZ2 and LZW compression can be
implemented in real time by storing the dictionary with
a trie data structure. Differently from LZ1 and LZSS, the
dictionary is only prefix.

C. Greedy versus Optimal Factorization

The pointer encoding the factor fi has a size increasing
with the index i. This means that the lower is the number
of factors for a string of a given length the better is the
compression. The factorizations described in the previous
subsections are produced by greedy algorithms. The question
is whether the greedy approach is always optimal, that is, if
we relax the assumption that each factor is the longest match
can we do better than greedy? The answer is negative with
suffix dictionaries as for LZ1 or LZSS compression. On the

other hand, the greedy approach is not optimal for LZ2 or
LZW compression. However, the optimal approach is NP-
complete [21] and the greedy algorithm approximates with
an O(n

1
4 ) multiplicative factor the optimal solution [22].

III. BOUNDED SIZE DICTIONARY COMPRESSION

The factorization processes described in the previous
section are such that the number of different factors (that is,
the dictionary size) grows with the string length. In practical
implementations instead the dictionary size is bounded by a
constant and the pointers have equal size. While for LZSS
(or LZ1) compression this can be simply obtained by sliding
a fixed length window and by bounding the match length, for
LZW (or LZ2) compression dictionary elements are removed
by using a deletion heuristic. The deletion heuristics we
describe in this section are FREEZE, RESTART, SWAP,
LRU [23] and RLRU [12]. Then, we give more details on
sliding window compression.

A. The Deletion Heuristics

Let d + α be the cardinality of the fixed size dictionary,
where α is the cardinality of the alphabet. With the FREEZE
deletion heuristic, there is a first phase of the factorization
process where the dictionary is filled up and “frozen”.
Afterwards, the factorization continues in a “static” way
using the factors of the frozen dictionary. In other words,
the LZW factorization of a string S using the FREEZE
deletion heuristic is S = f1f2 · · · fi · · · fk where fi is the
longest match with the concatenation of a previous factor
fj , with j ≤ d, and the next character. The shortcoming
of this heuristic is that after processing the string for a
while the dictionary often becomes obsolete. A more so-
phisticated deletion heuristic is RESTART, which monitors
the compression ratio achieved on the portion of the imput
string read so far and, when it starst deteriorating, restarts
the factorization process. Let f1f2 · · · fj · · · fi · · · fk be such
factorization with j the highest index less than i where the
restart operation happens. Then, fj is an alphabet character
and fi is the longest match with the concatenation of a
previous factor fh, with h ≥ j, and the next character
(the restart operation removes all the elements from the
dictionary but the alphabet characters). This heuristic is
used by the Unix command Compress since it has a good
compression effectiveness and it is easy to implement.
Usually, the dictionary performs well in a static way on a
block long enough to learn another dictionary of the same
size. This is what is done by the SWAP heuristic. When
the other dictionary is filled, they swap their roles on the
successive block.

The best deletion heuristic is LRU (last recently used
strategy). The LRU deletion heuristic removes elements from
the dictionary in a continuous way by deleting at each step
of the factorization the least recently used factor that is not
a proper prefix of another one. In [12], a relaxed version
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(RLRU) was introduced. RLRU partitions the dictionary in
p equivalence classes, so that all the elements in each class
are considered to have the same “age” for the LRU strategy.
RLRU turns out to be as good as LRU even when p is
equal to 2 [13]. Since RLRU removes an arbitrary element
from the equivalence class with the “older” elements, the
two classes (when p is equal to 2) can be implemented with
a couple of stacks, which makes RLRU slightly easier to
implement than LRU in addition to be more space efficient.
SWAP is the best heuristic among the “discrete” ones.

B. Compression with Finite Windows

As mentioned at the beginning of this section, LZSS (or
LZ1) bounded size dictionary compression is obtained by
sliding a fixed length window and by bounding the match
length. A real time implementation of compression with
finite window is possible using a suffix tree data structure
[24]. Much simpler real time implementations are realized
by means of hashing techniques providing a specific position
in the window where a good appriximation of the longest
match is found on realistic data. In [25], the three current
characters are hashed to yield a pointer into the already
compressed text. In [26], hashing of strings of all lengths
is used to find a match. In both methods, collisions are
resolved by overwriting. In [27], the two current characters
are hashed and collisions are chained via an offset array.
Also the Unix gzip compressor chains collisions but hashes
three characters [28].

C. Greedy versus Optimal Factorization

Greedy factorization is optimal for compression with finite
windows since the dictionary is suffix. With LZW compres-
sion, after we fill up the dictionary using the FREEZE or
RESTART heuristic, the greedy factorization we compute
with such dictionary is not optimal since the dictionary is
not suffix. However, there is an optimal semi-greedy factor-
ization which is computed by the procedure of Figure 1 [29],
[30]. At each step, we select a factor such that the longest
match in the next position with a dictionary element ends to
the rightest. Since the dictionary is prefix, the factorization
is optimal. The algorithm can even be implemented in real
time with an augmented trie data structure [29].

j:=0; i:=0
repeat forever

for k = j + 1 to i + 1 compute

h(k): xk...xh(k) is the longest match in the kth position
let k′ be such that h(k′) is maximum

xj ...xk′−1 is a factor of the parsing; j := k′; i := h(k′)

Figure 1. The semi-greedy factorization procedure.

IV. LZ COMPRESSION ON A PARALLEL SYSTEM

LZSS (or LZ1) compression can be efficiently parallelized
on a PRAM EREW [7], [8], that is, a parallel machine
where processors access a shared memory without reading
and writing conflicts. On the other hand, LZW (or LZ2)
compression is P-complete [11] and, therefore, hard to
parallelize. Decompression, instead, is parallelizable for both
methods [31]. The asymmetry of the pair encoder/decoder
between LZ1 and LZ2 follows from the fact that the hardness
results of the LZ2/LZW encoder depend on the factorization
process rather than on the coding itself.

As far as bounded size dictionary compression is con-
cerned, the “parallel computation thesis” claims that sequen-
tial work space and parallel running time have the same
order of magnitude giving theoretical underpinning to the re-
alization of parallel algorithms for LZW compression using
a deletion heuristic. However, the thesis concerns unbounded
parallelism and a practical requirement for the design of
a parallel algorithm is a limited number of processors. A
stronger statement is that sequential logarithmic work space
corresponds to parallel logarithmic running time with a
polynomial number of processors. Therefore, a fixed size
dictionary implies a parallel algorithm for LZW compression
satisfying these constraints. Realistically, the satisfaction
of these requirements is a necessary but not a sufficient
condition for a practical parallel algorithm since the number
of processors should be linear. The SCk-hardness and SCk-
completeness of LZ2 compression using, respectively, the
LRU and RLRU deletion heuristics and a dictionary of
polylogarithmic size show that it is unlikely to have a paral-
lel complexity involving reasonable multiplicative constants
[12]. In conclusion, the only practical LZW compression
algorithm for a shared memory parallel system is the one
using the FREEZE, RESTART or SWAP deletion heuristics.
Unfortunately, the SWAP heuristic does not seem to have a
parallel decoder. Since the FREEZE heuristic is not very
effective in terms of compression, RESTART is a good
candidate for an efficient parallel implementation of the pair
encoder/decoder on a shared memory parallel system and
even on a system with distributed memory. However, in
the context of distributed processing of massive data with
no interprocessor communication the LZW-RLRU technique
turns out to be the most efficient one. We will see these
arguments more in detail in the next two sections.

V. THE MAPREDUCE MODEL OF COMPUTATION

The MapReduce programming paradigm is a sequence
P = µ1ρ1 · · ·µRρR, where µi is a mapper and ρi is a
reducer for 1 ≤ i ≤ R. First, we describe such paradigm and
then discuss how to implement it on a distributed system.
Distributed systems have two types of complexity, the inter-
processor communication and the input-output mechanism.
The input/output issue is inherent to any parallel algorithm
and has standard solutions. In fact, in [14] the sequence P

31

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



does not include the I/O phases and the input to µ1 is a
multiset U0 where each element is a (key, value) pair. The
input to each mapper µi is a multiset Ui−1 output by the
reducer ρi−1, for 1 < i ≤ R. Mapper µi is run on each pair
(k, v) in Ui−1, mapping (k, v) to a set of new (key, value)
pairs. The input to reducer ρi is U ′

i , the union of the sets
output by µi. For each key k, ρi reduces the subset of pairs
of U ′

i with the key component equal to k to a new set of
pairs with key component still equal to k. Ui is the union
of these new sets.

In a distributed system implementation, a key is associated
with a processor (a node in the Web). All the pairs with
a given key are processed by the same node but more
keys can be associated to it in order to lower the scale
of the system involved. Mappers are in charge of the data
distribution since they can generate new key values. On
the other hand, reducers just process the data stored in the
distributed memory since they output for a set of pairs with
a given key another set of pairs with the same given key.

To add the I/O phases to P , we extend the sequence
to µ0µ1ρ1 · · ·µRρRµR+1ρR+1, where (λ, x) is the unique
(key, value) pair input to µ0 with λ the default initial (and
final) key and x the input data. µ0 distributes such data
generating the multiset U0 (µ1 is the identity function or
can be seen as a second step of the input phase). Finally,
µR+1 maps UR to a multiset where all the pair elements
have the same key λ and ρR+1 reduces such multiset to the
pair (λ, y) with y output data.

The following complexity requirements are stated as
necessary for a practical interest in [14]:

• R is polylogarithmic in the input size n;

• the number of processors (or nodes in the Web)
involved is O(n1−ϵ) with 0 < ϵ < 1;

• the amount of memory for each node is O(n1−ϵ);

• mappers and reducers take polynomial time in n.
As mentioned in the introduction, such requirements are

necessary but not sufficient to guarantee a speed-up of the
computation. Obviously, the total running time of mappers
and reducers cannot be higher than the sequential one and
this is trivially implicit in what is stated in [14]. The
non-trivial bottleneck is the communication cost of the
computational phase after the distribution of the original
input data among the processors and before the output
of the final result. This is obviously algorithm-dependent
and needs to be checked experimentally since R can be
polylogarithmic in the input size. The only way to guarantee
with absolute robustness a speed-up with the increasing of
the number of nodes is to design distributed algorithms
implementable in MapReduce with R = 1. Moreover, if
we want the speed-up to be linear then the total running

time of mappers and reducers must be O(t(n)/n1−ϵ) where
t(n) is the sequential time. These stronger requirements are
satisfied by the distributed implementations of the several
versions of LZ compression discussed in the next section,
except for one of them, which requires R = 2.

VI. LZ COMPRESSION ON THE WEB IN MAPREDUCE

We can factorize blocks of length ℓ of an input string
in O(ℓ) time with O(n/ℓ) processors, using any of the
bounded memory compression techniques. Such distributed
algorithms are suitable for a small scale system but due to
their adaptiveness, they work on a large scale parallel system
only when the file size is large.

A. Sliding Window Compression in MapReduce

With the sliding window method, ℓ is equal to kw where
k is a positive integer and w is the window length [9],
[15], [16]. The window length is usually several thousands
kilobytes. The compression tools of the Zip family, as the
Unix command “gzip” for example, use a window size of at
least 32K bytes. From a practical point of view, we can apply
something like the gzip procedure to a small number of input
data blocks, achieving a satisfying degree of compression
effectiveness and obtaining the expected speed-up on a real
parallel machine. Making the order of magnitude of the
block length greater than the one of the window length
guarantees robustness on realistic data. It follows that the
block length in our parallel implementation should be about
300 kB and the file size should be about one third of the
number of processors in megabytes.

In the MapReduce framework, we implement the dis-
tributed procedure above with a sequence µ0µ1ρ1µ2ρ2
where µ0 and µ2ρ2 are the input and output phases, re-
spectively. Let X = X1 · · ·Xm be the input string where
Xi is a substring that has the same length ℓ ≥ 300 kB
for 1 ≤ i ≤ m. The complexity requirements of the
MapReduce model are satisfied by the fact that ℓ is allowed
to be strictly greater than 300 kB. The input to µ0 is the
pair (0, X) mapping this element to the set U0 of pairs
(1, X1) · · · (m,Xm). U0 is mapped to itself by µ1 and ρ1
reduces (i,Xi) to (i, Yi) where Yi is the LZSS coding
of Xi for 1 ≤ i ≤ m. Finally, µ2 maps each element
(i, Yi) of its input U1 = {(1, Y1) · · · (m,Ym)} to (0, Yi)
and ρ2 outputs (0, Y ), where Y = Y1 · · ·Ym. Obviously,
the stronger requirements for a linear speed-up, stated in
the previous section, are satisfied by this program.

Decompression in MapReduce is simmetrical. To decode
the compressed files on a distributed system, it is enough
to use a special mark occurring in the sequence of pointers
where the coding of a block ends. The input phase distributes
among the processors the subsequences of pointers coding
each block.
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B. LZW Compression Distributed Algorithms

As far as LZW compression is concerned, it was originally
presented with a dictionary of size 212, clearing out the
dictionary as soon as it is filled up [20]. The Unix command
”compress” employs a dictionary of size 216 and works with
the RESTART deletion heuristic. The block length needed
to fill up a dictionary of this size is approximately 300 kB.
As previously mentioned, the SWAP heuristic is the best
deletion heuristic among the discrete ones. After a dictionary
is filled up on a block of 300 kB, the SWAP heuristic shows
that we can use it efficiently on a successive block of about
the same dimension, where a second dictionary is learned.
A distributed compression algorithm employing the SWAP
heuristic learns a different dictionary on every block of 300
kB of a partitioned string (the first block is compressed
while the dictionary is learned). For the other blocks, block
i is compressed statically in a second phase using the
dictionary learned during the first phase on block i − 1.
But, unfortunately, the decoder is not parallelizable since the
dictionary to decompress block i is not available until the
previous blocks have been decompressed. On the other hand,
with RESTART we can work on a block of 600 kB where the
second half of it is compressed statically. We wish to speed
up this second phase though, since LZW compression must
be kept more efficient than sliding window compression.
In fact, it is well-known that sliding window compression
is more effective but slower. If both methods are applied
to a block of 300 kB and LZW has a second static phase
to execute on a block of about the same length, it would
no longer have the advantage of being faster. We showed
how to speed up in a scalable way this second phase on an
extended star network (a tree of height 2) in time O(km)
with O(n/km) processors, where k is a positive integer and
m is the maximum factor length [2], [15].

In [15], during the input phase the central node of the
extended star (that is, the root of the tree) broadcasts a
block of length 600 kB to each adjacent processor. Then,
for each block the corresponding processor broadcasts to
the adjacent leaves a sub-block of length m(k + 2) in the
suffix of length 300 kB, except for the first one and the last
one which are m(k+1) long. Each sub-block overlaps on m
characters with the adjacent sub-block to the left and to the
right, respectively (obviously, the first one overlaps only to
the right and the last one only to the left). Every processor
stores a dictionary initially set to comprise only the alphabet
characters. The first phase of the computation is executed by
processors adjacent to the central node. The prefix of length
300 kB of each block is compressed while learning the
dictionary. At each step of the LZW factorization process,
each of these processors sends the current factor to the
adjacent leaves. They all adds such factor to their own
dictionary. After compressing the prefix of length 300 kB
of each block, all the leaves have a dictionary stored which

has been learned by their parents during such compression
phase.

Let us call a boundary match a factor covering positions
of two adjacent sub-blocks stored by leaf processors. Then,
the leaf processors execute the following algorithm to
compress the suffix of length 300 kB of each block:

• for each block, every corresponding leaf processor but
the one associated with the last sub-block computes
the boundary match between its sub-block and the
next one ending furthest to the right, if any;

• each leaf processor computes the optimal factorization
from the beginning of its sub-block to the beginning
of the boundary match on the right boundary of its
sub-block (or the end of its sub-block if there is no
boundary match).

++(++++++)
———————/——————————–

xxxxxxxxxxx
..................

Figure 2. The making of a surplus factor.

Stopping the factorization of each sub-block at the begin-
ning of the right boundary match might cause the making of
a surplus factor, which determines the approximation factor
(k + 1)/k with respect to any factorization. Indeed, as it is
shown in Figure 2, the factor in front of the right boundary
match (sequence of x’s) might be extended to be a boundary
match itself (sequence of plus signs) and to cover the first
position of the factor after the boundary (dotted line).

In [32], it is shown experimentally that for k = 10 the
compression ratio achieved by such factorizarion is about
the same as the sequential one. Results were presented
for static prefix dictionary compression but they are valid
for dynamic compression using the LZW technique with
the RESTART deletion heuristic. Indeed, experiments were
realised compressing similar files in a collection using a
dictionary learned from one of them. This is true even if
the second step is greedy, since greedy is very close to
optimal in practice. Moreover, with the greedy approach it is
enough to use a simple trie data structure for the dictionary
rather than the augmented suffix trie data structure of [29]
needed to implement the semi-greedy factorization in real
time. Therefore, in [2] after computing the boundary matches
the second part of the parallel approximation scheme was
substituted by the following procedure:

• each leaf processor computes the static greedy factor-
ization from the end of the boundary match on the
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left boundary of its sub-block to the beginning of the
boundary match on the right boundary.

Considering that typically the average match length is 10,
one processor can compress down to 100 bytes indepen-
dently. Then, compressing 300 kB involves a number of
processors up to 3000 for each block. It follows that with
a file size of several megabytes or more, the system scale
has a greater order of magnitude than the standard large
scale parameter, making the implementation suitable for an
extreme distributed system. We wish to point out that the
computation of the boundary matches is very relevant for
the compression effectiveness when an extreme distributed
system is employed since the sub-block length becomes
much less than 1 kB.

With standard large scale systems the sub-block length is
several kilobytes with just a few megabytes to compress and
the approach using boundary matches is too conservative for
the static phase. In fact, a partition of the second half of the
block does not effect on the compression effectiveness unless
the sub-blocks are very small since the process is static. In
conclusion, we proposed in [2] a further simplification of
the algorithm for standard small, medium and large scale
distributed systems.

Let p0 · · · pn be the processors of a distributed system
with an extended star topology. p0 is the central node of
the extended star network and p1 · · · pm are its neighbors.
For 1 ≤ i ≤ m and t = (n − m)/m let the processors
pm+(i−1)t+1 · · · pm+it be the neighbors of processor i.
B1 · · ·Bm is the sequence of blocks of length 600 kB

partitioning the input file. Denote with B1
i and B2

i the two
halves of Bi for 1 ≤ i ≤ m. Divide B2

i into t sub-blocks
of equal length. The input phase of this simpler algorithm
distributes for each block the first half and the sub-blocks
of the second half in the following way:

• broadcast B1
i to processor pi for 1 ≤ i ≤ m

• broadcast the j-th sub-block of B2
i to processor

pm+(i−1)t+j for 1 ≤ i ≤ m and 1 ≤ j ≤ t

Then, the computational phase is:

in parallel for 1 ≤ i ≤ m

• processor pi applies LZW compression to its block,
sending the current factor to its neigbors at each step
of the factorization

• the neighbors of processor pi compress their blocks
statically using the dictionary received from pi with a
greedy factorization

As for the sliding window method, decoding the com-
pressed file on a distributed system requires the presence of
a special mark occurring in the sequence of pointers each

time the coding of a block ends. The input phase distributes
the subsequences of pointers coding each block among the
processors. If the file is encoded by an LZW compressor
implemented with one of the two procedures described in
this subsection, a second special mark indicates for each
block the end of the coding of a sub-block. The coding of
the first half of each block is stored in one of the neighbors
of the central node while the coding of the sub-blocks are
stored into the corresponding leaves. The first half of each
block is decoded by one processor to learn the corresponding
dictionary. Each decoded factor is sent to the corresponding
leaves during the process, so that the leaves can rebuild the
dictionary themselves. Then, the dictionary is used by the
leaves to decode the sub-blocks of the second half.

C. LZW Compression in MapReduce

In the MapReduce framework, the program sequence
could be µ0µ1ρ1µ2ρ2µ3ρ3 where µ0µ1 and µ3ρ3 are
the input and output phases, respectively. Let X =
X1Y1 · · ·XmYm be the input string where Xi and Yi are
substrings having the same length ℓ ≥ 300 kB for 1 ≤ i ≤ m
and Yi = Bi,1 · · ·Bi,r such that Bi,j is a substring that has
the same length ℓ′ ≥ 1000 for 1 ≤ j ≤ r. The complexity
requirements of the MapReduce model will be satisfied by
the fact that ℓ is allowed to be strictly greater than 300 kB
and ℓ′ strictly greater than 1000 bytes. Keys are pairs of
positive integers. The input to µ0 is the pair ((0, 0), X),
which is mapped to the set U0 of pairs ((0, 1), X1Y1), · · ·,
((0,m), XmYm)), as input to µ1. Then, µ1 maps U0 to the
set U ′

0 of pairs ((0, 1), X1), ((1, 1), B1,1), · · ·, ((1, r), B1,r),
· · ·, ((0,m), Xm)), ((m, 1), Bm,1), · · ·, ((m, r), Bm,r). ρ1
reduces ((0, i), Xi) to a set of two (key, value) pairs, that
is, {((0, i), Zi), ((0, i), Di)}, where Zi and Di are respec-
tively the LZW coding of Xi and the dictionary learned
during the coding process. On the other hand, ((i, j), Bi,j)
are reduced to themselves by ρ1 for 1 ≤ i ≤ m and
1 ≤ j ≤ r. The second iteration step µ2ρ2 works as the
identity function when applied to ((0, i), Zi). µ2 works as
the identity function when applied to ((i, j), Bi,j) as well.
Instead, ((0, i), Di) is mapped by µ2 to ((i, j), Di) for 1 ≤
j ≤ r. Then, ρ2 reduces the set {((i, j), Bi,j), ((i, j), Di)}
to ((i, j), Zi,j) where Zi,j) is the coding produced by the
second phase of LZW compression with the static dictionary
Di. Finally, µ3 maps (i, Zi) to ((0, 0), Zi) and ((i, j), Zi,j)
to ((0, 0), Zi,j). Then, ρ3 outputs ((0, 0), Z) where Z =
Z1Z1,1 · · ·Z1,r · · ·ZmZm,1 · · ·Zm,r.

The program described does not compute boundary
matches since we assumed the length of the sub-blocks to be
at least 1000 bytes. When the length is between a hundred
and a thousand bytes, the mapper µ1 distributes overlapping
sublocks and the reducer ρ2 computes the boundary matches
before completing the factorization process.

The communication cost during the computational phase
of the MapReduce program above is determined by µ2. The
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dictionary Di is sent from the node associated with the key
(0, i) to the node associated with the key (i, j), in parallel
for 1 ≤ i ≤ m and 1 ≤ j ≤ r. Each factor f in Di can
be represented as pc where p is the pointer to the longest
proper prefix of f (an element of Di) and c is the last
character of f . Since the standard sizes for the dictionary
and the alphabet are respectively 216 and 256, three bytes
can represent a dictionary element. Conservatively, at least
ten nanoseconds are spent to send a byte between nodes.
Therefore, the communication cost to send a dictionary is at
least 30 (216) nanoseconds, which is about two milliseconds.
Considering the fact that 300 kB are compressed usually in
about 30 milliseconds by a Zip compressor and in about
15 milliseconds by an LZW compressor, the communication
cost is acceptable. This is also true for decompression, since
the decoder is symmetrical as explained in the previous
subsection.

D. A Comparative Analysis

We have described four different implementations of
Lempel-Ziv data compression with the MapReduce frame-
work. One implementation uses the sliding window tech-
nique while the other three are variants of the LZW compres-
sor. The distributed implementations have irrelevant com-
munication cost during the computational phase and keep
the same characteristics of the sequential one on a single
block of the distributed data. Therefore, LZW compression
is less effective but faster than sliding window compression.
In order to improve the effectiveness of LZW compression,
the length of a single block of the distributed data is twice
the one of the sliding window implementation. This can
be done since the higher speed of the LZW compressor is
kept in virtue of the fact that the compression of the second
half of the block is not adaptive. Therefore, the distributed
system can be arbitrarily scaled up when the second half is
processed and there is no relevant slow-down. The first of
the three distributed implementations proposed for the LZW
compressor has a preprocessing phase and a nearly-optimal
approach to the compression of the second half of the block.
However, we observe with the second implementation that
we can relax on the quasi-optimality of the approach since
a left to right greedy algorithm performs well in practice.
Finally, we notice that the preprocessing phase is needed
only if the size of the distributed system is beyond standard
large scale and a third implementation for standard large
scale systems is presented, which is almost as simple as the
one for the sliding window technique.

VII. LZW COMPRESSION AND WORST CASE ANALYSIS

The approaches to LZW compression described above
are not robust when the data are highly disseminated [3].
However, when compressing large size files even on a large
scale system the size of the blocks distributed among the
nodes is larger than 600 kB. In order to increase robustness

when the data are highly disseminated, the most appropriate
approach is to apply a procedure where no static phase
is involved. Therefore, new dictionary elements should be
learned at every step while bounding the dictionary size.
We show worst case analyses proving this fact, concluding
that LZW-RLRU compression is the most suitable in this
context since it is the most efficient one.

A. Worst Case for the Standard Distributed Implementation

In [2], the notions of bounded memory on-line decodable
optimal LZW compression for the FREEZE and RESTART
heuristics were introduced.

A feasible d-frozen LZW factorization S = f1 · · · fk is a
feasible LZW factorization, where the number of different
concatenations of a factor with the next character is ≤ d. We
define optimal d-frozen LZW factorization to be the feasible
d-frozen LZW factorization with the snallest number of
factors. Computing the optimal solution in polynomial time
is quite straightforward if the degree of the polynomial time
function is the dictionary size but it is obviously unpractical
and a better algorithm is not known.

A feasible d-restarted LZW factorization
S = f1 · · · fj · · · fi · · · fk is a feasible LZW factorization
such that if j and i are consecutive indices where the
restart operation happens, then the number of different
concatenations of a factor with the next character is ≤ d
between fj and fi. We define optimal d-restarted LZW
factorization to be the feasible d-restarted LZW factorization
with the smallest number of factors. A practical algorithm
to compute the optimal solution is obviously not known as
for the optimal d-frozen LZW factorization.

The compression models just introduced employ dictio-
naries with size bounded by the FREEZE and RESTART
heuristics, respectively. The on-line greedy factorizations are
obviously feasible. Moreover, feasible factorizations are the
ones produced by the distributed algorithms described in
the previous section. In this section, we give upper bounds
to the approximation multiplicative factor. A trivial upper
bound to the approximation multiplicative factor of every
feasible factorization with respect to the optimal one is the
maximum factor length of the optimal string factorization,
that is, the height of the trie storing the dictionary. Such
upper bound is Θ(d), where d is the dictionary size (O(d)
follows from the feasibility of the factorization and Ω(d)
from the factorization of the unary string). There are strings
for which the on-line greedy d-frozen LZW factorization is a
Θ(d) approximation of the optimal one. Indeed, if we bound
the dictionary size to d + 2 and consider the input binary
string (

∏d/2−1
i=0 abibai)(

∏d
i=1 a

d/2) then the on-line greedy
d-frozen LZW factorization is a, b, ab, ba, abb, baa, · · · abi,
bai, · · · abd/2−1, bad/2−1, a, a, · · ·, a while the optimal d-
frozen LZW factorization is a, b, ab, b, a, abb, b, aa, · · ·
abi, b, ai, · · · abd/2−1, b, ad/2−1, ad/2, ad/2, · · · ad/2. It
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follows that the cost of the greedy factorization is d+ d2/2
while the cost of the optimal one is 5d/2− 1.

The feasible d-restarted LZW factorizations output by the
distributed algorithms of the previous section can be as bad
as the greedy solution using the frozen dictionary in the
worst case. Indeed, if we apply any of such distributed
algorithms to the input block of length d2

bd
2/4−d/2(

d/2−1∏
i=0

abibai)(
d∏

i=1

ad/2)

the dictionary is filled up by the greedy factorization
process applied to the first half of the block, that is,
bd

2/4−d/2(
∏d/2−1

i=0 abibai). Such factorization is: b, bb, · · ·,
bℓ, bℓ

′
, a, b, ab, ba, abb, baa, · · · abi, bai, · · · abd/2−1,

bad/2−1 where ℓ′ ≤ ℓ+1 and the dictionary size is d+ℓ+3.
The static factorization of the second half is a, a, · · · a, a
and the total cost of the factorization of the block is
ℓ+1+d+d2/2 which is Θ(d2). On the other hand, the cost
of the optimal solution on the block is ℓ + 5d/2, which is
Θ(d). Observe that the O(d) approximation multiplicative
factor depends on the static phase and this happens when
the dictionary learned on the first half of the block performs
badly on the second half, that is in practice, when the data
are highly disseminated. We will show in the next subsec-
tion that the on-line greedy d-restarted LZW factorization
performs much better in the worst case, suggesting a more
robust approach to distributed computing.

B. Worst Case Analysis of the Sequential Implementation

During the learning process before freezing and eventually
restarting the dictionary, the on-line greedy factorization
is the only feasible factorization producing factors which
are all different from each other, that is, the number of
factors equals the number of dictionary elements. This is
the property we use to prove our result.

Theorem. The on-line greedy d-restarted LZW factorization
is an O(

√
d) approximation of the optimal one, where d is

the dictionary size.

Proof. Without loss of generality, we can assume the
restart operation happens as soon as the dictionary is filled
up during the greedy factorization process, since the static
phase monitors the performance of the procedure. Let S be
a string of length n and T be the trie storing the dictionary
of factors of the optimal d-restarted LZW factorization
Φ of S between two consecutive positions, where the
restart operation happens. Each dictionary element (but
the alphabet characters) corresponds to the concatenation
of a factor f of the optimal factorization with the first
character of the next factor, that we call an occurrence
of the dictionary element (node of the trie) in Φ. We call
an element of the dictionary, built by the greedy process,

internal if its occurrence is contained in the occurrence of
a node of T and denote with MT the number of internal
occurences. The number of non-internal occurences is less
than the number of factors of Φ. Therefore, we can consider
only the internal ones. An occurrence f ′ of the greedy
factorization internal to a factor f of Φ is represented by
a subpath of the path representing f in T . Let u be the
endpoint at the lower level in T of this subpath (which,
obviously, represents a prefix of f ). Let d(u) be the number
of subpaths representing internal phrases with endpoint
u and let c(u) be the total sum of their lengths. All the
occurences of the greedy factorization are different from
each other between two consecutive positions, where the
restart operation of the greedy procedure happens. Since
two subpaths with the same endpoint and equal length
represent the same factor, we have c(u) ≥ d(u)(d(u)+1)/2.
Therefore

1/2
∑
u∈T

d(u)(d(u) + 1) ≤
∑
u∈T

c(u) ≤ 2|Φ|HT

where HT is the height of T , |Φ| is the number of phrases
of Φ and the multiplicative factor 2 is due to the fact that
occurrences of dictionary elements may overlap. We denote
with |T | the number of nodes in T ; since MT =

∑
u∈T d(u),

we have

M2
T ≤ |T |

∑
u∈T

d(u)2 ≤ |T |
∑
u∈T

d(u)(d(u)+1) ≤ 4|T ||Φ|HT

where the first inequality follows from the fact that the
arithmetic mean is less than the quadratic mean. Then

MT ≤
√
4|T ||Φ|HT = |Φ|

√
4|T |HT

|Φ|
≤ 2|Φ|

√
HT

The statement of the theorem follows from the fact that the
height of the trie is Θ(d) in the worst case. q. e. d.

The theorem suggests an approach restarting the dicionary
as soon as it is filled up, which is more robust but in some
cases (when the data are quite homegeneous) a little less
effective in terms of compression effectiveness. Therefore,
on a distributed system each processor stores a block of data
and applies the on-line greedy LZW factorization adding
a new element to the dictionary at each step. Obviously,
blocks are short enough to observe the dictionary size bound
d. From the the statement of the theorem in the previous
section, such approach outputs an O(

√
d) approximation of

the optimal solution since it computes the on-line greedy
d-restarted factorization. If the file size is very large and the
bound to the dictionary size is reached by one processor
before the end of its block, a ”least recently used” strategy
can be applied to remove dictionary elements to preserve
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robustness. The relaxed version of LZW-LRU compression
using only two eqivalence classes is the one we propose as
the most suitable and efficient for large size files lossless
compression.

C. LZW-RLRU2 Compression: A Robust Approach

The relaxed version of the LRU heuristic using p equiv-
alence classes is:

RLRUp: When the dictionary is not full, label the
ith element added to the dictionary with the
integer ⌈i · p/k⌉, where k is the dictionary
size minus the alphabet size and p < k is the
number of labels. When the dictionary is full,
label the i− th element with p if ⌈i · p/k⌉ =
⌈(i − 1)p/k⌉. If ⌈i · p/k⌉ > ⌈(i − 1)p/k⌉,
decrease by 1 all the labels greater or equal to
2. Then, label the i−th element with p. Finally,
remove one of the elements represented by a
leaf with the smallest label.

In other words, RLRU works with a partition of the dictio-
nary in p classes, sorted somehow in a fashion according to
the order of insertion of the elements in the dictionary, and
an arbitrary element from the oldest class with removable el-
ements is deleted when a new element is added. Each class is
implemented with a stack. Therefore, the newest element in
the class of least recently used elements is removed. Observe
that if RLRU worked with only one class, after the dictionary
is filled up the next element added would be immediately
deleted. Therefore, RLRU would work like FREEZE. But
for p = 2, RLRU is already more sophisticated than SWAP
since it removes elements in a continuous way and its
compression effectiveness compares to the original LRU.
Therefore, LZW-RLRU2 is the most efficient approach to
compress on the Web or any other distributed system when
the size of the input file is very large. In the MapReduce
framework, a program sequence µ0µ1ρ1µ2ρ2 implements it
as the one for the LZSS compressor explained in Section
VI. A sequence of the same length works symmetrically for
decompression.

VIII. CONCLUSION

We showed how to implement Lempel-Ziv data com-
pression in the MapReduce framework for Web comput-
ing. An alternative to standard versions of the Lempel-
Ziv method is proposed as the most efficient one for large
size files compression. The robustness of the approach is
evidentiated by a theoretical worst case analysis of the
standard techniques. Moreover, scalability is preserved since
no interprocessor communication is required. It follows that
a linear speed-up is guaranteed during the computational
phase. With arbitrary size files, scaling up the system is
necessary to preserve the efficiency of LZW compression but
with very low communication cost if the data are not highly
disseminated. The MapReduce framework allows in theory

a higher degree of communication than the one employed
in the procedures presented in this paper. In [14], it has
been shown how the PRAM model of computation can
be simulated in MapReduce under specific constraints with
the theoretical framework. These constraints are satisfied by
several PRAM Lempel-Ziv compression and decompression
algorithms designed in the past [8], which are suitable for
arbitrary size highly disseminated files. As future work, it
is worth investigating experimentally if any of these PRAM
algorithms (which are completely different from the ones
presented in this paper) can be realized with MapReduce in
practice on specific files.
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