
156

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Easy Development of Web Applications using WebODRA2 and a Dedicated IDE

Mariusz Trzaska

Chair of Software Engineering

Polish-Japanese Institute of Information Technology

Warsaw, Poland

mtrzaska@pjwstk.edu.pl

Abstract - The modern Web requires new ways for creating

applications. We present our approach combining a web

framework with a modern object-oriented database and a

dedicated Integrated Development Environment (IDE). It

makes it easier to develop web applications by rising the level of

abstraction. In contrast to many existing solutions, where the

business logic is developed in an object-oriented programming

language and data is stored and processed in a relational system,

our proposal employs a single programming and query

language. Such a solution, together with flexible routing rules,

creates a coherent ecosystem and, as an additional benefit,

reduces the impedance mismatch. Our research is supported by

a working prototype of the IDE and a web framework for our

own object-oriented database management system.

Furthermore, the created IDE utilizes scaffolding, which can

automatically generate web GUIs supporting some useful

operations.

Keywords-Web frameworks; Web tools; Web applications;

Object-Oriented Databases; Integration Development

Environment; IDE; DSL editors; Scaffolding

I. INTRODUCTION

Web frameworks are commonly utilized in software
development. Moreover, it seems that for each popular
programming language exists at least a few different
proposals. The situation is different in case of prototype
technologies. In [1], we have presented our proposal of a web
framework dedicated to the object-oriented database ODRA
(Object Database for Rapid Application development).

It seems that the most successful frameworks (e.g., Rails,
ASP.NET MVC) follow the three-tier architecture: a
presentation layer, business logic (a middle tier) and a data
tier. Each of them can be developed through a different
technology and can utilize incompatible data models.

Typically, the middle tier is developed using an object-
oriented programming language such as Java, MS C#, Ruby,
etc. However, the object-orientedness is a bit blurry concept.
There is no single, well-accepted, specific definition or set of
properties, which determine features of an object-oriented
programming language. Java and C# are pretty close to each
other in that area, but for instance Ruby is based on quite
different concepts.

Contrary to implementation of the business logic, the data
is usually stored using a relational database system. This
causes a negative phenomenon known as impedance
mismatch. Our framework has been created not only as an aid
for making websites but also as an attempt to remove the fault.
Of course, during the years, numerous approaches have been

proposed to solve or reduce the problem. In particular,
following Trzaska [2], the solution could use a single model
both for the business logic and data.

Aside of frameworks, one of the most popular software,
widely utilized by programmers, is an Integrated
Development Environment (IDE). Various IDEs are on the
scene for many years. They provide many different services
and are invaluable help during software development. At the
basic level they just support a programming language.
However, their real power can be experienced when they have
dedicated functionalities for particular frameworks. Similarly
to the situations with the frameworks, prototype solutions are
rarely equipped with an IDE.

In this paper, we would like to employ the idea for a tool
aiming at creating web applications. We propose a paradigm,
which uses the same high level language for working with data
and implementing a business logic. In fact, those two
utilizations are indistinguishable.

On the software level, our solution consists of two parts:

 An Integrated development Environment (called
ODRA eIDE2) optimized for the ODRA DBMS,
SBQL (Stack-Based Query Language) language and
WebODRA2;

 A new version of the web framework (presented in
[1]) called WebODRA2, which integrates two
independent components:

o The object-oriented DBMS ODRA with
SBQL, a powerful programming and query
language;

o A web server.
This approach increases significantly the level of

abstraction, which reduces the implementation time,
decreases the number of errors and of course, completely
eliminates the impedance mismatch. The programmers are
able to focus on website’s creation using a single, coherent
technology.

The main contribution of the paper are the following:

 A new coherent paradigm of creating web application
using the same high level programming and query
language;

 A working prototype implementation of the approach
containing a dedicated IDE, object-oriented database,
web server and all the necessary components.

The rest of the paper is organized as follows. To fully
understand our motivation and approach, some related
solutions are presented in Section II. Section III briefly
discusses key concepts of the utilized database and
programming/query language. Section IV presents the

157

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

prototype implementation of the proposed IDE and the web
framework. Section V is devoted to the scaffolding
mechanism. Section VI concludes.

II. RELATED SOLUTIONS

The related solutions appropriate for this paper could be
analyzed from two points of view: web frameworks and IDEs.
The next two sections contain their discussion.

A. Existing Web Frameworks

There are a lot of different web frameworks that use
various approaches; just to name the most popular ones (by
platform):

 Java: Apache Struts, Java Server Faces, JBoss Seam,
Spring, Grails (Groovy), Play (Scala and Java);

 MS C#: ASP.Net, ASP.NET MVC, Kentico;

 PHP: CakePHP, Symfony, Zend;

 Smalltalk: Seaside [3];

 Ruby: Ruby on Rails, Sinatra.
They differ in details but unfortunately share the same

problems related to inconsistent data models for programming
languages and data. Even when an object-relational mapper is

utilized the impedance mismatch problem is decreased, but
not removed. For instance, the Ruby’s Active Record requires
additional information from a programmer to specify some
non-mappable objects like arrays [4].

However, it is also possible to find solutions, where a
website is developed using a single model. The next
paragraphs contain description of such frameworks.

CouchApp [5] is a technology, which allows for creating
applications delivered to the browser from CouchDB [6].
Applications are implemented using JavaScript and HTML5.
The general idea is quite similar to our approach because
CouchDB is a database management system. However, on
contrary to our framework, the DBMS follows the NoSQL
philosophy and allows one to store documents in the JSON [7]
format. There is also no query language similar to SQL or our
SBQL (see Section III). All database queries are performed
using dedicated API and JavaScript. The result is also returned
as a JSON data.

Every web application needs a GUI. In case of CouchApp
a GUI is created as a transformation of returned JSON data
into some other format. For instance there are functions,
which together with dedicated views, are able to convert the
data into HTML, XML, CVS, etc.

Figure 1. An overview of the UWA-based MDD process. Source: [8].

158

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Oracle Application Express. Source: [9]

Another approach to create a web application might
employ the Model Driven Architecture (MDA) paradigm. The
idea is to define a model (or models) and, through some
transformations, receive a working application. There is a lot
of such systems, see for instance [10], [11], [8]. However, they
are not widely utilized. One of the reason could be the amount
and type of work, which has to be done to get a working
website. For instance, the proposal presented in [8], which is
quite common to all MDA solutions, needs the following
models and information to be precisely defined (Figure 1):

 UWA requirements,

 Information model,

 Navigation model,

 Transaction & operation model,

 Publishing model,

 Customization model,

 Logical models (UML diagrams): class, sequence.
Of course, the above information is not only required by

MDA tools. Furthermore, they have to be provided by all
websites’ developers. It seems that the way of defining them
makes the difference in popularity.

The last described solution is not exactly a framework for
programmers. Oracle Application Express (Figure 2) [12] is

more like a tool for a rapid web application development for
the Oracle database. It is available, under different names,
since 2000. The application requires a dedicated server and
provides easy-to-use programming environment accessible
via a web browser.

Most of its functionalities are available through dedicated
graphical user interfaces, various wizards and helpers. But,
still there are possibilities for using a programming language,
namely PL/SQL. SQL, despite of thirty-year existence and big
popularity, is the subject of heavy criticism. The SQL’s flaws
like: inconsistencies, incompatibilities between vendors and
shortcomings of the relational model, decrease the value of
solutions. Furthermore, application generators have some
inherent shortcomings, which make their products less
flexible (in terms of usability, functionality, GUI) than
applications developed by programmers. We believe that
using a more powerful programming and query language,
together with an object-oriented model, presents a much better
approach.

B. The Most Popular IDEs

Below we present the most popular IDEs for particular
programming languages/platforms:

159

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Java: Eclipse [13], NetBeans [14], IntelliJIDEA [15];

 MS C#: MS Visual Studio [16], MonoDevelop [17],
SharpDevelop [18];

 PHP: Aptana Studio [19], Eclipse PDT [20],
PhpStorm [21], KDevelop [22];

 Smalltalk: Pharo [23], VisualWorks [24];

 Ruby: RubyMine [25], NetBeans [26], Aptana
RadRails [27].

The IDEs differ in many ways. They can be distributed
completely for free (e.g., Eclipse, NetBeans) or have various
(usually limited) editions, e.g., Visual Studio: Professional
Edition costs a few hundreds of USD whereas Express Edition
is free.

Some of them are strictly dedicated to particular
language/technology e.g., RubyMine. Others support various
programming languages – sometimes using special plugins
(e.g., Eclipse: Java, C++, and PHP).

 Concerning functionality, it seems that the basic
possibilities are quite similar in all IDEs and include:

 Syntax coloring (see Figure 3). Text of a program
(source code) is presented using different colors,
accents (e.g., bold) and decorators (e.g., an
underline);

 Autocomplete. This is one of the most important
features of a decent IDE and shows a list of
possibilities for a particular context (e.g., after the dot
the programmer sees attributes of a class);

 Error reporting. Errors and warnings are presented in
a special window and sometimes inside the editor as
well;

 Quick fix. When an error or a warning is shown to a
user, he/she can choose one of proposed fixes to the
problem (e.g., adding an import statement in case of
an unknown class);

 Semantic navigation among artefacts. This
functionality allows jumping from an occurrence of
an element to its definition, e.g., from an object to its
class;

 References. This makes possible finding all
utilizations of particular artefacts (e.g., all method
calls);

 Project Management. Takes care of all project’s files
including sources, assets, folders, etc. Usually it is
possible to connect it to a versioning management
system (e.g., Subversion, Git, etc.);

 Plugins. They provide a way for adding new
functionalities (e.g., support for a new framework
and/or programming language) to existing core.
Sometimes (e.g., Eclipse) an entire IDE is based on
plugins.

 Refactoring. This technology is responsible for
making changes to a source code without modifying
its behavior. There are dozens of different refactoring,
e.g., renaming, extracting an interface or a method,
adding getters/setters, etc.;

Figure 3. The Eclipse IDE. Source: own elaboration.

160

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Analyzing the code. In some cases, IDE is able to
make suggestions regarding a source code, e.g.,
renaming an artefact according to a particular
convention.

 Scaffolding. This is a mechanism, which helps
programmers and/or designers in creating a starting
point for further development. It could generate
various artefacts, but in most cases is utilized for a
GUI creation. It is especially popular in web
frameworks where the mechanism is able to generate
necessary files (HTML, CSS, etc.) required for
CRUD (Create, Retrieve, Update, Delete) operations.
Sometimes it is hard to distinguish if this tool is
integrated with a framework or it is a separate
component embedded in IDE.

In many cases, modern IDEs are equipped with GUI
editors (embedded or installed through additional plugins).
Their functionalities vary starting from simple generators to
sophisticated bi-directional masterpieces.

Modern software projects are usually implemented using
a wide range of technologies, platforms and frameworks. Thus
support for them is essential. This is an area where
commercial products show their strengths (e.g.,
IntelliJIDEA).

The choice of a particular IDE is not always based solely
on its functionalities. In some projects also non-functional
requirements could be important, e.g., cross-platform support.
This is satisfied by most of the IDEs because many of them is
developed using cross-platform technologies like Java
(Eclipse, NetBeans, Aptana Studio).

It is also worth noting “smart” editors (Notepad++, Vim,
Sublime Text, and TextMate), which could be very close to
fully-fledged IDEs, especially after a correct configuration.
They usually offer less sophisticated functionalities like
syntax coloring or project’s files management.

III. THE ODRA DATABASE

As previously mentioned, our proposal for creating
websites is based on utilization of an object-oriented database
together with a powerful query and programming language.
DBMS could be used as a data storage and could be utilized
to implement business logic. For the purpose of the first
requirement we need a database query language. However,
because of the second necessity, we might need something
more flexible and powerful: a fully-fledged programming
language with imperative constructs. Both criteria are met by
our prototype DBMS called ODRA.

ODRA is a prototype object-oriented database
management system [28], [29], [30], [31] based on SBA
(Stack-Based Architecture) [16]. The ODRA project started to
develop new paradigms of database application development.
This goal is going to be reached mainly by increasing the level
of abstraction, at which the programmer works. ODRA
introduces a new universal declarative query and
programming language SBQL [28], together with distributed,
database-oriented and object-oriented execution environment.
Such an approach provides functionality common to the
variety of popular technologies (such as relational/object
databases, several types of middleware, general purpose

programming languages and their execution environments) in
a single universal, easy to learn, interoperable and effective to
use application programming environment.

ODRA consists of three closely integrated components:

 Object Database Management System (ODMS),

 Compiler and interpreter for object-oriented query
programming language SBQL,

 Middleware with distributed communication facilities
based on the distributed databases technologies.

The system is additionally equipped with a set of tools for
integrating heterogeneous legacy data sources. The
continuously extended toolset includes importers (filters)
and/or wrappers to XML, RDF, relational data, web services,
etc.

ODRA has all chances to achieve high availability and
high scalability because it is a main memory database system
with memory mapping files and makes no limitations
concerning the number of servers working in parallel. In
ODRA many advanced optimization methods that improve
the overall performance without compromising universality
and genericity of programming interfaces have been
implemented.

The next subsections contain a short discussion of the
ODRA main features including its query and programming
language SBQL.

A. ODRA Object-Oriented Data Model

The ODRA data model is similar to the UML object
model. Because in general UML is designed for modeling
rather than for programming several changes have been made
to the UML object model that do not undermine seamless
transition from a UML class diagram to an ODRA database
schema. The ODRA object model covers also the relational
model as a particular case; this feature is essential for making
wrappers to external sources stored in relational databases.
Below, we present a short description of the main data model
elements:

 Objects. The basic concept of the ODRA database
model is object. It is an encapsulated data structure
storing some consistent bulk of information that can
be manipulated as a whole. A database designer and
programmers can create database and programming
objects according to their own needs and concepts.
Objects can be organized as hierarchical data
structures, with attributes, sub-attributes, etc.; the
number of object hierarchy levels is unlimited. Any
component of an object is considered an object too.

 Collections. Objects within a collection have the same
name; the name is the only indicator that they belong
to the same collection. Usually, objects from a
collection have the same type, but this requirement is
relaxed for some kinds of heterogeneous collections.
Collections can be nested within objects with no
limits (e.g., in this way it is possible to represent
repeating attributes).

 Links. Objects can be connected by pointer links.
Pointer links represent the notion that is known from
UML as association. Pointer links support only binary
associations; associations with higher arity and/or

161

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

with association classes are to be represented as
objects and some set of binary associations. This is a
minor limitation in comparison to UML class
diagrams, introduced to simplify the programming
interface. Pointer links can be organized into
bidirectional pointers enabling navigation in both
directions.

 Modules. In ODRA, the basic unit of database
organization is a module. As in popular object-
oriented languages, a module is a separate system
component. An ODRA module groups a set of
database objects and compiled programs and can be a
base for reuse and separation of programmers’
workspaces. From the technical point of view and of
the assumed object relativism principle, modules can
be perceived as special purpose complex objects that
store data and metadata.

 Types, classes and schemata. A class is a
programming abstraction that stores invariant
properties of objects, in particular, its type, some
behavior (methods, operations) and (optionally) an
object name. A class has some number of member
objects. During processing of a member object the
programmer can use all properties stored within its
class. The model introduces atomic types (integer,
real, string, date, boolean) that are known from other
programming languages. Further atomic types are
considered. The programmer can also define his/her
own complex types. Collection types are specified by
cardinality numbers, for instance, [0..*], [1..*], [0..1],
etc.

 Inheritance and polymorphism. As in the UML object
model, classes inherit properties of their superclasses.
Multiple inheritance is allowed, but name conflicts
are not automatically resolved. The methods from a
class hierarchy can be overridden. An abstract method
can be instantiated differently in different specialized
classes (due to late binding); this feature is known as
polymorphism.

 Persistence and object-oriented principles. The model
follows the orthogonal persistence principle, i.e., a
member of any class can be persistent or volatile.
Shared server objects are considered persistent,
however, non-shared objects of a particular
applications can be persistent too. The model follows
the classical compositionality, substitutability and
open-close principles assumed by majority of object-
oriented programming languages.

Distinction between proper data and metadata (ontology)
is not the property of the ODRA database model. The
distinction can be important on the business model level, but
from the point of view of ODRA both kinds of resources are
treated uniformly.

B. Query and Programming Language SBQL

SBQL (Stack-Based Query Language) is a powerful query
and programming language addressing the object model
described above. SBQL is precise with respect to the
specification of semantics. SBQL has also been carefully

designed from the pragmatic (practical) point of view. The
pragmatic quality of SBQL is achieved by orthogonality of
introduced data/object constructors, orthogonality of all the
language constructs, object relativism, orthogonal persistence,
typing safety, introducing all the classical and some new
programming abstractions (procedures, functions, modules,
types, classes, methods, views, etc.) and following commonly
accepted programming languages’ and software engineering
principles.

SBQL queries can be embedded within statements that can
change the database or program state. We follow the state-of-
the-art known from majority of programming languages.
Typical imperative constructs are creating a new object,
deleting an object, assigning new value to an object (updating)
and inserting an object into another object. We also introduce
typical control and loop statements such as if…then…else…,
while loops, for and for each iterators, and others. Some
peculiarities are implied by queries that may return
collections; thus, there are possibilities to generalize
imperative constructs according to this new feature.

SBQL in ODRA project introduces also procedures,
functions and methods. All procedural abstractions of SBQL
can be invoked from any procedural abstractions with no
limitations and can be recursive. SBQL programming
abstractions deal with parameters being any queries; thus,
corresponding parameter passing methods are generalized to
take collections into account.

SBQL is a strongly typed language. Each database and
program entity has to be associated with a type. However,
types do not constraint semi-structured nature of the data. In
particular, types allow for optional elements (similar to null
values known from relational systems, but with different
semantics – e.g., see Listing 1) and collections with arbitrary
cardinality constraints. Strong typing of SBQL is a
prerequisite for developing powerful query optimization
methods based on query rewriting and on indices.

Listing 1. Sample SBQL query (Get employees who have salary and earn the

same as Brown). Source: [30]

(Emp with salary) where salary =

 ((Emp with salary where name =

 ”Brown”).salary);

C. Virtual Updatable Views

Another interesting and quite unique ODRA property are
updatable views. Classical SQL views do the mapping from
stored data into virtual data. However, some applications may
require updating of virtual data; hence, there is a need for a
reverse mapping: updates of virtual data are to be mapped into
updates of stored data. This leads to the well-known view
updating problem: updates of virtual data can be
accomplished by updating of stored data on many ways, but
the system cannot decide, which of them is to be chosen. In
typical solutions these updates are made by side effects of
view invocations. Due to the view updating problem, many
kinds of view updates are limited or forbidden.

In the ODRA project (basing on previous research)
another point of view has been introduced. In general, the
method is based on overloading generic updating operations

162

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(create, delete, update, insert, etc.) acting on virtual objects by
invocation of procedures that are written by the view definer
(Listing 2). The procedures are an inherent part of the view
definition. They have full algorithmic power, thus there are no
limitations concerning the mapping of view updates into
updates of stored data. SBQL updatable views allow one to
achieve full transparency of virtual objects: they cannot be
distinguished from stored objects by any programming option.
This feature is very important for distributed and
heterogeneous databases.

Listing 2. An SBQL updatable view definition. Source: [30]

view RichEmpDef {

 virtual RichEmp : record

 {name:string;

 salary:integer;

 worksIn: ref Dept;}[0..*];

 seed: record {e: ref Emp;}[0..*] {

return (Emp where salary > threshold) as e;

 }

 on_retrieve { return e.(name as name,

salary as salary,

ref (Dept where name =

 deptName) as worksIn);

 }

 on_update {

e.name := value.name;

 e.deptName := value.worksIn.name;

if(e.salary < value.salary) {

 e.salary := value.salary;

 }

 }

 on_new newEmp {

 if(newEmp.salary > threshold)

create permanent Emp(

newEmp.name as name,

newEmp.salary as salary,

newEmp.worksIn.name as deptName);

 }

 threshold: integer;

}

IV. OUR PROPOSAL

We believe that every developer should focus on the main
task, e.g., creating a new application, a component or just a
single function. In order to do this, his/her production
environment should be as helpful as possible. This goal is
fulfilled by modern IDEs. Of course, sometimes there are
programmers who like to write their source code in a simple
editor, but they are a minority. Most efficient IT professional
use dedicated tools for their jobs. Thus, we have also decided
to support programmers working with our WebODRA2
framework (and the ODRA DBMS in general) by introducing
the ODRA eIDE2. The software together with tutorials is
freely available; see [32].

A. ODRA eIDE2

There are different approaches to developing an IDE. In
particular, there are the following possibilities:

 Start from scratch and manually create all necessary
components;

Figure 4. A window of ODRA eIDE2. Source: own elaboration.

163

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Extend an existing text editor. This approach was
chosen by us a few years ago when we created the first
ODRA IDE [33] based on the jEdit [34]. jEdit is a
decent programmer’s editor but does not provide the
most advanced features of modern IDEs (see Section
II.B). Thus, the IDE had syntax coloring, project
management, error information, but lacked auto
completion, refactoring, semantic navigation, etc.;

 Tailor an existing IDE to our needs. Depending on the
IDE’s architecture the process may require
modification of the core code (which is not always
publicly available) or create custom plugins.

Basically, modern IDEs are very complicated and
sophisticated software. For instance, according to [35] the
entire Juno edition of Eclipse (4.2.x) consists of 72 projects
and contains 55 million lines of code. Obviously this is huge
project and creating something similar requires a lot of
resources.

After analyzing our expectations, which involved all
previously described functionalities, we came to the
conclusions that only the third approach is feasible for us.
Therefore, we conducted some research to select the right IDE
to extend.

Our choice was Eclipse together with Xtext framework
[36]. The framework simplifies the process of creating our
own DSL language together with a dedicated editor. From our
point of view the latter feature was especially interesting.

1) The SBQL Grammar
In order to implement the functionalities like autocomplete

or refactoring, the editor has to “understand” the source code.
All particular artefacts of the supported language (e.g., class
definitions or method parameters) have to be precisely defined
and recognized in the source code (in the text). Usually, it
could be achieved using a dedicated grammar describing the
language. This is also the case of the framework, but there
were some problems. The Xtext uses ANTLR parser, which
utilizes LL(*) algorithm. Despite many advantages, the
algorithm does not permit left recursion in grammars. On
contrary, our existing ODRA compiler was based on Cup
Parser Generator, which employs LALR(1) algorithm. Thus,
we had to rewrite it taking into account the fundamental
differences. The current version, implemented in the eIDE2,
covers about 95% of the SBQL. Due to its size (about 400
lines of code and 80 production rules) we are not able to
include it in the paper.

The grammar is just a starting point for more advanced
functionalities. They have to be implemented by adding
dedicated classes and/or methods. The more detailed
description could be found in the next sections.

2) Basic Editor Functionalities
After defining the grammar, many features are available

without any additional modifications (Figure 4). That includes
things like: syntax coloring, text editing, basic navigation,
tooltips (javadoc-like).

3) Content Assist
The content assist (autocomplete) is one of the most useful

features provided by IDE (Figure 5). The Xtext framework
contains a default implementation for this functionality. It

could be modified by overriding some methods and/or adding
new classes. We had to apply such modifications in some
cases:

 The import statement. In the current version of the
SBQL, the import statement adds entire module rather
than a class (like in Java);

 Variable’s declaration;

 The where expression should link to the content of
the “inner” expression;

 The dot expression should be distinguished from the
above mentioned where;

Figure 5. Autocomplete feature in eIDE2. Source: own elaboration.

4) Quick fixes
When IDE detects a problem related to edited code, it is

marked as a warning. Some of the warnings could be
automatically fixed. Currently, we have implemented a few
quick fixes, e.g., for missing fields (Figure 6).

Figure 6. A quick fix in eIDE2. Source: own elaboration.

5) Outline Window
The outline window (Figure 7) shows a content’s

summary of the entire file. We modified the default
implementation by adding custom graphical artefacts and
altered some behaviors, e.g., presenting fields in the Record
type.

6) Refactoring
The refactoring is probably the second most widely used

feature (after the content assist). Currently, we have only the
default implementation, which allows for renaming (Figure 8;

164

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

please note the active borders around the renamed element:
MyRoutes).

Figure 7. The outline window showing a semantic summary of the edited

source file. Source: own elaboration.

Figure 8. Refactoring in eIDE2. Source: own elaboration.

7) ODRA DBMS Integration
The ultimate goal of creating eIDE2 was facilitation of the

ODRA development process both for its web framework and
pure DBMS. Thus, we had to take care of easy integration. To
do this, we introduced the following functionalities:

 Connection dialog (Figure 9). Every project managed
by IDE could have its own, connected ODRA
instance. It is possible to use just default values or
provide custom ones.

 A programmer can also send text commands using a
dedicated dialog window via CLI (Figure 10). This
way of working with the DBMS allows for perform
many advanced actions, currently not available
directly from GUI.

Figure 9. ODRA DBMS connection dialog (managed by eIDE2). Source:

own elaboration.

Figure 10. An access to ODRA DBMS CLI (Command Line Interface).

Source: own elaboration.

 Executing a SBQL method. When the IDE detects a
parameterless method a small icon is placed near the
code. A user is able to execute the method directly
from IDE on the connected ODRA DBMS (Figure
11).

8) The Scaffolding
In case of eIDE2, the scaffolding supports a programmer

in creating a web GUI for WebODRA2. The generated GUI
together with SBQL controllers add CRUD operations
(Create, Retrieve, Update, Delete) using a client-side library
called Knockout.js [37]. The functionality is easy-to-use yet
powerful. For more information see Section V.

9) Other goodies
It is also worth noting that thanks to the Eclipse ecosystem

it is possible to utilize many other 3-rd party plugins. They can
provide additional possibilities including web editors,
versioning systems (Subversion, Git), spellcheckers, UML
tools, GUI editors.

165

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. Executing an SBQL method in eIDE2. Source: own elaboration.

B. WebODRA2

Basically, every web application, no matter how it is
developed, requires the following set of logical components:

 A graphical user interface,

 A routing system,

 A business logic,

 Data to work with.
The above components could be implemented using

various approaches. In some cases, a programmer has to
manually define them whereas other solutions use generators
to create some of them automatically. Additionally, real world
websites also require some static files: html templates, css,
jpeg, etc.

We have decided to use pure programmatic approach,
which means that all necessary definitions are provided by a
programmer. It may look like a lot of work, but thanks to the
high level of abstraction, the amount of information is
significantly reduced.

Another feature, which simplifies development is the
MVC (Model – View - Controller) architecture utilized in
many previously mentioned frameworks. Comparing to the
other frameworks, our approach uses the same object-oriented
model both for a business logic (Controller) and data (Model).
This method not only removes the impedance mismatch but
also allows for using a powerful query and programming
language for developing a business logic (behavior of the
application). Furthermore, it is known that query languages
operate on higher level of abstraction, effectively reducing the
amount of code that needs to be written to achieve the same
goals. For instance, a few tenths lines of Java code could be
equivalent to a literally few lines of SBQL (or SQL). Not to
mention performance and various optimizations, which are
much more advanced in query languages.

Another very important area of a web framework is a
graphical user interface. There are different methods to deal
with the topic, some of them follow the MVC pattern. One of
the most popular is using a server-side templating engine. A
template contains an HTML code mixed with special tags,
usually provided by the framework. In most cases, the tags
allow to embed parts of a programming language (e.g., Java),
mainly to insert some data (e.g., a list of products or
customers). However, some programmers use them to
implement additional functionality, which duplicates the
controller’s responsibility. Of course, it is an incorrect
application of the tags affecting maintainability of the code.
At the end, tags are processed by an engine, a final HTML
page is generated and sent to a web browser.

Comparing to the first release (see [1]), the second edition
(WebODRA2) contains some bug fixes and modifications
related to configuration and a project’s structure. They were
mainly caused by the support in the eIDE2.

Figure 12 contains a simplified logical architecture of our
prototype framework for developing web application called
WebODRA2. The framework consist of two principal parts:

 A web server. It is responsible for responding to
incoming requests from a web browser. The
implementation of the server is based on open source
tool called Jetty [38];

 ODRA Database Management System. This is a
standard instance of the ODRA server introduced in
Section 3.

The following subsections describe each of the
components (from Figure 12) in details.

1) Routing Module
The center of WebODRA2 consists of a routing module,

which is responsible for a correct processing of incoming web
requests. The module is driven by rules defined by a
programmer. Each definition, written in SBQL (as an object
with specific properties), contains the following information:

 Url. A regular expression, which will be applied to the
incoming request’s url. If there is a match, then the
rule will be executed;

 Weight. It affects an order of the processing;

 Name. Human-readable name of the rule. It is
especially useful during logging;

 Additional Data. The utilization of the additional data
depends on a rule kind;

 Rule Kind. It affects the following processing:
o Passthrough. The web framework ignores

those rules and they are processed by the
Jetty server. They serve static files like:
pictures, css, Java script, etc.;

o Data route. They contain an SBQL
method’s name to execute. The method will
get all HTML form parameters entered by a
user, which makes it possible to process
them by an SBQL code. The result of the
method is transformed (see further) and
returned to the browser;

166

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 12. Logical architecture of WebODRA2. Source: own elaboration.

o Page route. An HTML page post-processed
by our simple templating engine (see
further).

2) The Client GUI
As previously mentioned, typical server-side web

templating engines may lead to overuse tags by implementing
some business functionality. To prevent this we have decided
to use a client-side GUI framework. The idea is based on
embedding in a web page some (meta) information, which
will be used to present business data. We have chosen a
framework called Knockout [37] utilizing new HTML5 data-
attributes. They allow to create custom attributes and store any
information. The process of showing a web page contains two
steps. First, an HTML page is downloaded from a server,
containing the markers. Then, the library sends an AJAX
request to asynchronously retrieve necessary data, which are
“injected” into the page.

The user data submission is performed on a similar rules.
An asynchronous request is send to the server, triggering a
Data Rule processing the provided data.

Standard website navigation is performed using regular
hyperlinks (“outside” the framework).

We do not provide any dedicated GUI controls as a part of
the framework. However, some of them are generated during
the scaffolding process (see Section V). A programmer is also
free to use any available solutions as long as they could be

tuned to work with JSON format (e.g., some JavaScript
libraries/frameworks).

3) Templating Module
The templating module is responsible for a coherent look

and fill of the entire website. It operates on a single master
page, which has a dynamic area fulfilled with some functional
pages, i.e., a document repository, a forum, news, etc. For
instance, the master page can contain a header, a navigation
panel and a footer.

The process is triggered by the Page Route rule. When a
particular page is requested by a browser, the master page is
applied, or to be more precise, the requested page is embedded
in the master page and then returned to the browser.

4) Data Transformation Module
When a Data Route rule executes a given SBQL method,

the result could be any SBQL data type, e.g., a collection, a
single object or a text. It needs to be processed to the format
recognized by the Client GUI. The Data Transformation
Module recursively converts the result into JSON [7] string,
sends it back to the web browser where it is further processed.

5) Routing Rules, Business Logic and Data Storage
The above components are described in other Sections:

 The Routing Rules in Section IV.B.1;

 The Business Logic stores appropriate SBQL code
(see Section III.B) referenced from Data routes;

Templating Module

Data Storage

Business Logic

Routing Rules

webODRA

Web browser

ODRA DBMS

The Client GUI

Static files (html, jpg, ...)

Routing Module

Data Transformation

Module

Web Server

Static Files

AJAX Data

167

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 The Data Storage uses ODRA DBMS (see Section
III).

V. SCAFFOLDING FOR THE WEBODRA2

As previously mentioned, scaffolding is a major
programmer’s facilitation in creating real-world web
applications. It generates (one-way) necessary artefacts (e.g.,
source code, media and HTML files) being a starting point for
further development.

In case of eIDE2, for each SBQL class a dedicated button
is placed near its source definition. Then, it is possible to start
the process and all necessary files and folders will be
generated (Figure 13):

Figure 13. Files scaffolded by eIDE2. Source: own elaboration.

 GlobalMod.sbql. This file stores some global data,
common for the entire project:

o Two definitions: RouteClass (each
instance stores a single routing rule) and
WebParamType (utilized for passing
parameters from the web);

o Routes acting as an extent for all the rules;

o A createRoutes() method, which puts
global routing rules into the DB;

 ProductControllerMod.sbql. This is a controller for
the business class Product. It is responsible for:

o Storing all instances of Product;
o Processing web requests (all methods:

webXXX. The methods are referenced by
Data routing rules (inside the
createRoutesForProduct() method));

o Creating routes for CRUD operations for
the Product class (the
createRoutesForProduct() method);

o Generating sample data (the
seedProduct() method);

 WebRes folder, which is a root folder for the web
server utilized by the framework. Aside of self-
explaining typical folders (css, img, js) there are some
others worth a short discussion:

o The Views folder stores subdirectories for
each business class. The subdirectories
contain dedicated html files for processing
particular CRUD operations. The files are
referenced by Page routing rules (inside the
createRoutesForProduct() method);

o index.html file is a starting point for a web
navigation;

o layout.html file is a master template file
providing a coherent look and feel for the
entire site;

Figure 14. One of the views (index) generated by the scaffolding (a) for the

sample Product class (b). Source: own elaboration.

To sum up, a programmer using just one click can create a
simple prototype of a working web application (Figure 14).
The generated text files contains the code (both SBQL and
HTML), which could be easily edited using the IDE or any
external tools.

Currently, WebODRA2 is shipped with two examples: the
forum (described in [1]) and the scaffolded one described
above.

VI. CONCLUSION AND FUTURE WORK

We have presented our approach to creating web
applications using a single, coherent model utilized both for
data and business logic. Thanks to the powerful query and
programming language SBQL, a programmer stays on the
same high level of abstraction, saving time and making less
errors.

Our approach is supported by two tools working together:
a web framework called WebODRA2 and a dedicated IDE
(eIDE2). Furthermore, we have added a scaffolding
mechanism generating a web GUI with CRUD operations for

168

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

any business class. The software is freely available online
together with some tutorials [32].

The contribution of this paper is based on quite new
method for creating websites. To our best effort, we were not
able to find a similar solution, directly employing the power
of a modern database to develop web portals.

We believe that this kind of solutions could be a valuable
alternative to existing tools for creating data intensive web
applications. Thus, we would like to continue our research in
that field, improving our framework and the eIDE2 to make
them production-ready.

REFERENCES

[1] M. Trzaska, "WebODRA - A Web Framework for the

Object-Oriented DBMS ODRA," in The First

International Conference on Building and Exploring Web

Based Environments (WEB 2013), Seville, Spain, IARIA

XPS Press, 2013, pp. 1-6.

[2] M. Trzaska, "Data Migration and Validation Using the

Smart Persistence Layer 2.0," in The 16th IASTED

International Conference on Software Engineering and
Applications (SEA 2012), Las Vegas, USA, Acta Press,

November 12 – 14, 2012, pp. 186-193.

[3] M. Perscheid, D. Tibbe, M. Beck, S. Berger, P. Osburg, J.

Eastman, M. Haupt and R. Hirschfeld, An Introduction to

Seaside, Hasso-Plattner-Institut, 2008.

[4] "ActiveRecord," [Online]. Available:

http://api.rubyonrails.org/classes/ActiveRecord/Base.html

[Accessed 05.09.2013].

[5] "CouchApp," [Online]. Available:

http://couchapp.org/page/index. [Accessed 21.08.2012].

[6] C. Anderson, J. Lehnardt and N. Slater, CouchDB: The

Definitive Guide, O'Reilly Media, 2010.

[7] "JSON: JavaScript Object Notation," [Online]. Available:

http://www.json.org/. [Accessed 01.09.2013].

[8] D. Distante, P. Pedone, G. Rossi and G. Canfora, "Model-

Driven Development of Web Ap-plications with UWA,

MVC and JavaServer Faces," in Web Engineering Lecture

Notes in Computer Science, Springer, 2007, pp. 457-472.

[9] Oracle, "Oracle Application Developer's Guide," [Online].

Available: http://docs.oracle.com/. [Accessed 05.09.2013].

[10] D. Arraes Nunes and D. Schwabe, "Rapid Prototyping of

Web Applications combining Do-main Specific Languages

and Model Driven Design," in Proceedings of the 6th

International Conference on Web Engineering (ICWE'06),

Palo Alto, California, USA, July 11-14, 2006.

[11] S. Ceri, P. Fraternali and M. Matera, "Conceptual

Modeling of Data-Intensive Web Applications," IEEE

Internet Computing vol. 6, no. 4, July/August 2002.

[12] J. Williamson, Oracle Application Express: Fast Track to

Modern Web Applications, McGraw-Hill Osborne Media,

2012.

[13] "Eclipse," [Online]. Available: http://www.eclipse.org/.

[Accessed 6.9.2013].

[14] "NetBeans IDE," [Online]. Available:

https://netbeans.org/. [Accessed 06.09.2013].

[15] "IntelliJ IDEA," [Online]. Available:

http://www.jetbrains.com/idea/. [Accessed 04.09.2013].

[16] "Visual Studio," [Online]. Available:

http://www.microsoft.com/visualstudio/plk. [Accessed

03.09.2013].

[17] "MonoDevelop," [Online]. Available:

http://monodevelop.com/. [Accessed 05.09.2013].

[18] "SharpDevelop," [Online]. Available:

http://www.icsharpcode.net/opensource/sd/. [Accessed

01.09.2013].

[19] "Aptana Studio," [Online]. Available:

http://www.aptana.com/. [Accessed 02.09.2013].

[20] "Eclipse PHP Development Tools," [Online]. Available:

http://projects.eclipse.org/projects/tools.pdt. [Accessed

04.09.2013].

[21] "PhpStorm," [Online]. Available:

http://www.jetbrains.com/phpstorm/. [Accessed

02.09.2013].

[22] "KDevelop," [Online]. Available:

http://www.kdevelop.org/. [Accessed 02.09.2013].

[23] "Pharo," [Online]. Available: http://www.pharo-

project.org/home. [Accessed 02.09.2013].

[24] "VisualWorks," [Online]. Available:

http://www.cincomsmalltalk.com/main/products/visualwo

rks/. [Accessed 04.09.2013].

[25] "RubyMine," [Online]. Available:

http://www.jetbrains.com/ruby/. [Accessed 03.09.2013].

[26] "Ruby and Rails - plugin for NB," [Online]. Available:

http://plugins.netbeans.org/plugin/38549. [Accessed

04.09.2013].

[27] "Aptana RadRails," [Online]. Available:

http://www.aptana.com/products/radrails. [Accessed

04.09.2013].

[28] K. Subieta, "Stack-based Query Language," in

Encyclopedia of Database Systems, Springer US, 2009, pp.

2771-2772.

[29] R. Adamus, P. Habela, K. Kaczmarski, M. Lentner, T.

Pieciukiewicz, K. Stencel, K. Subieta, M. Trzaska and J.

Wislicki, "Overview of the Project ODRA," in

Proceedings of First International Conference on Object
Databases (ICOODB) 2008, Berlin, Germany, 2008.

[30] K. Subieta, "Stack-Based Architecture (SBA) and Stack-

Based Query Language (SBQL)," [Online]. Available:

http://www.sbql.pl/. [Accessed 01.09.2013].

[31] "ODRA (Object Database for Rapid Application

development): Description and programmer manual,"

[Online]. Available:

http://www.sbql.pl/various/ODRA/ODRA_manual.html.

[Accessed 02.09.2013].

[32] "ODRA eIDE2 Home," [Online]. Available:

http://www.eide2.pjwstk.edu.pl/. [Accessed 07.09.2013].

[33] "ODRA IDE (jEdit)," [Online]. Available:

http://www.mtrzaska.com/odra. [Accessed 04.09.2013].

[34] "jEdit - Porgammer's Text Editor," [Online]. Available:

http://www.jedit.org/.

169

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[35] "Eclipse Juno Release Train Has Arrived," 27.06.2012.

[Online]. Available: http://www.eclipse.org/org/press-

release/20120627_junorelease.php. [Accessed

06.09.2013].

[36] "Xtext - Language Development Made Easy," [Online].

Available: http://www.eclipse.org/Xtext/. [Accessed

01.09.2013].

[37] "Knockout Framework," [Online]. Available:

http://knockoutjs.com/. [Accessed 16.08.2013].

[38] "Jetty - Web Server," [Online]. Available:

http://jetty.codehaus.org/jetty/. [Accessed 18.08.2012].

[39] "The WebODRA Framework," [Online]. Available:

http://www.mtrzaska.com/webodra. [Accessed

26.08.2013].

