
114

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Composing Semantic Web Services Online and an Evaluation Framework

George Markou

Dept. of Applied Informatics

University of Macedonia

Thessaloniki, Greece

e-mail: gmarkou@uom.gr

Ioannis Refanidis

Dept. of Applied Informatics

University of Macedonia

Thessaloniki, Greece

e-mail: yrefanid@uom.gr

Abstract — This article presents an approach for semantic web

service composition using Artificial Intelligence planning

techniques. Our research prototype, MADSWAN, is able to

support various stages of web service composition, both

manually and automatically. It comprises a semantic web

service registry, an editor of semantic description files, as well

as manual and automatic web service composition modules.

The system adheres to the reusable nature of web services, by

utilizing existing open source projects as sub-elements.

Furthermore, it tackles the problem’s inherent non-

determinism through the use of planning techniques,

particularly contingency planning. Finally, we designed a set of

evaluation benchmarks for web service composition systems,

based on an existing collection of semantically annotated web

services, and applied it in part to MADSWAN with very

encouraging results.

Keywords - Web service composition, non-determinism,

OWL-S.

I. INTRODUCTION

In [1], we presented our ideas in regard to a system
aiming to automate web service composition procedures
through the combination of semantic web technologies and
Artificial Intelligence (AI) planning techniques. Here, we
extend this work, presenting our research prototype,
MADSWAN (an anagram of “Manual AND Automatic
Semantic WSC”), a general evaluation benchmark set for
web service composition systems, as well as some
experimental results concerning the efficiency and
effectiveness of MADSWAN.

The main goal of the semantic web [2] is to offer
unambiguous and computer interpretable markup of the
web’s content, as well as of its properties and relations, using
a language that has explicit, well-defined semantics [3]. This
makes it possible to automate tasks that could previously
only be performed by humans.

Web services, a major ingredient of the Semantic Web,
aim to solve interoperability problems between
heterogeneous systems, with transparency over the
underlying technologies used to implement them and the
platforms they are based on. This aim is facilitated by the
semantic markup of web services in a language such as
OWL-S [4]. OWL-S presents what a service does, how it is
used and the effects it has, thus enabling the automation of
tasks such as web service discovery, selection and
composition.

Since an atomic web service does not often provide the
desired functionalities on its own, it is necessary to perform
the task of Web Service Composition (WSC) in order to
achieve them. However, web services exist and operate in an
ever-changing and expanding environment. For that reason,
searching for the appropriate web services to achieve each
goal is not an easy task; what makes WSC difficult and time-
consuming is the additional burden of manually monitoring
whether a web service taking part in an existing solution is
still active and has the same usage and interface.

The problem of automatic WSC has been shown to be
computationally hard, most recently in [5, 6]; in [5], it is
stated that if the WSC problem is formulated as a
composition of finite state machines, each one representing a
web service, then in its simplest setting, when the
composition is fully asynchronous, there is an EXP-hard
lower bound on the complexity of the task. In [6], it is shown
that solving the composition problem of non-deterministic
web services with complete information is EXP-hard.

In a deterministic setting, we are forced to assume that
we can predict the results of the executed actions precisely.
However, such a setting is often restrictive and not realistic,
and the adoption of a non-deterministic assumption, i.e., that
the outcome of a web service is not known a priori, allows us
to compute more flexible plans. In our work, we assume that
non-determinism is inherent in the WSC domain and that it
is always possible for a web service’s execution to be
unsuccessful or have undesired effects.

The automatic WSC process includes the following
phases: presentation (or advertisement) of a single service in
a registry; translation between external and internal service
specification languages for the domain; generation of a
composition process model; and, finally, evaluation and
execution of the output composite service [7]. MADSWAN
currently supports the first four phases of the WSC process.

MADSWAN is based on open source software
components that utilize the current web service standards,
with the main goal of creating a platform that allows its
quantitative evaluation and comparison to other WSC
systems. A typical user can advertise a new web service in
the online registry, as well as retrieve and edit the web
services stored in it through the system’s online interface.
Moreover, it is possible to semi-automatically create
workflows based on OWL-S control constructs and bind
them to web service descriptions and concepts that are
present in the online registry.

115

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Most importantly, however, users are currently able to
generate composition process models automatically, based
on deterministic AI planning [8, 9]. AI planning is the task of
coming up with a set of actions that will achieve a goal; our
future goal is to support contingency planning [10].
Contingency planning anticipates the different outcomes of
nondeterministic actions, plans for a subset or all the possible
contingencies that could arise, and allows for the
construction of a conditional plan that can be executed
correctly despite those contingencies.

Following a translation of the original semantic WSC
domain, described in OWL-S, to an AI planning one, defined
in PPDDL [11], the translated problem is solved by an AI
planner. The solution is then converted back to an OWL-S
process model. The whole process can be evaluated against
pre-defined use case scenarios and simple quantitative
criteria, such as the number of atomic or composite web
services included in the output composite one, as well as the
total planning time required to reach a solution.

This article extends our previous work [1, 12] by
providing a rigorous analysis of MADSWAN, presenting a
working prototype, as well as focusing on its evaluation
process. We provide details about the modules of the system,
that is, the registry, the XML editor, and the manual and
automatic WSC modules; we also provide benchmarks to
evaluate MADSWAN, giving details with regard to the
specific ontological concepts used by them. Finally, we
evaluate the composite web service descriptions that are
generated by MADSWAN for the deterministic setting against
two different planners, using four problems from two
different domains.

MADSWAN is, to the best of our knowledge, the first
system of its kind with a publicly available prototype able to
support various stages of the WSC process. In combination
with the presentation of an algorithm aimed to tackle the
non-determinism in the WSC domain and the provision of
quantitative evaluation benchmarks, these constitute a unique
set of features for such a system.

The rest of the article is organized as follows: Section II
reviews related work; Section III presents technical details
concerning the implementation of MADSWAN, the
translation process between the WSC domain description
language and the planning domain description language.
Section IV focuses on evaluation by describing the
benchmarks that are introduced to be used as test cases for
WSC systems and presents an experimental evaluation of
MADSWAN. It also showcases the manual WSC module that
is used for the generation of workflows for the predefined
scenarios. Section V concludes the article and poses
directions for future work.

II. RELATED WORK

This section reviews the related work concerning, firstly
the relevant WSC approaches, including those making use of
AI planning and those that utilize different techniques and,
secondly, the evaluation of such systems.

A. Web Service Composition

AI planning is the most widespread approach used to
tackle the WSC problem. However, a significant number of
approaches using different methodologies exist; although
these approaches cannot be directly compared to the one
presented in this article, we will briefly refer to them and
then focus on the ones making use of AI planning.

An example of a non-AI planning approach is presented
in [13]; its authors present a semi-automatic approach to
WSC, with the output composite web services specified as
process schemas, and the atomic web services that comprise
the composite ones being selected at runtime, based on non-
functional constraints specified by the users. The presented
system, CCAP, is based on three core services: coordination,
context and event services that schedule and implement user-
configured adaptations of web services at runtime. The
approach is considerably different than ours, since it is not
fully automated and is only based on the syntactic content of
web services. CCAP only makes use of technologies such as
XML [14] and UDDI [15], without taking into account the
semantic matching capabilities that can be achieved by using
ontologies and semantic specifications, such as OWL-S.

The authors of [16] developed ITACA (Integrated
Toolbox for the Automatic Composition and Adaptation of
web services), a toolbox that supports the composition of
BPEL [17] services in order to generate adaptation contract
specifications. The process is based on the automatic
extraction of behavioral models from interface descriptions
that can be defined in WSDL [18], Abstract BPEL (ABPEL)
or Windows Workflow Foundation (WF) [19]. However, as
the authors note, although the adaptation process is
automated, the final contract specifications may require
human intervention to successfully complete the WSC
process. Additionally, as in [13], the web services used do
not carry any semantic content.

A framework for composing pre-existing services and
components that is based on ITACA is presented in [20].
DAMASCo (Discovery, Adaptation and Monitoring of
Context-Aware Services and Components) has been
implemented as a set of tools that constitute a framework
integrated in ITACA. The authors acknowledge the need for
semantic representation instead of only a syntactic one and
use model transformation, context-awareness, semantic
matchmaking, dependency analysis and fault tolerance in
order to achieve the goals of discovering, adapting and
monitoring the composition of web services.

One of the first, and most well-known, approaches that
convert the original WSC problem to a planning one is
presented in [21]. The proposed system, SHOP2, converts
the web services’ OWL-S process models to a SHOP2
domain, and the WSC problem to a compatible Hierarchical
Task Network (HTN). SHOP2 plans for tasks in the same
order in which they will be executed, allowing it to be aware
of the current state of the world at each step. Despite this
advantage, the approach is planner dependent and does not
deal with the domain’s non-determinism Thus, it is limited in
comparison to more general approaches that translate the
WSC problem to one compliant with PDDL [22].

116

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Another approach that utilizes AI planning to solve the
WSC problem at hand is followed in [23], treating the
application of a web service as a belief update operation. The
authors identify two special cases of WSC that are tractable;
these cases allow for a compilation into planning under
uncertainty and the subsequent use of a conformant planner,
that is, Conformant-FF [24]. This approach does not make
use of a standardized web service description language, and
the planner is only given as input a PDDL-like description of
the domain, modified to describe uncertainty about the initial
state.

PDDL and OWL-S are the de facto planning language
and the most widely used semantic description language,
respectively. For that reason, several attempts exist that
tackle the WSC problem by utilizing the two languages in
conjunction. OWLS-Xplan [25] is among the most well-
known approaches utilizing a translation between PDDL and
OWL-S. It incorporates a tool that translates OWL-S
descriptions to corresponding PDDL-like ones, and then a
hybrid planner is called to solve the generated planning
problem, combining guided local search with graph planning
and a simple form of HTN decomposition.

A similar approach is adopted in [26], in which standard
PDDL files are produced during the translation phase, and
consequently any PDDL-compliant planner can be employed
to obtain a solution to the WSC problem. In practice, the
authors incorporate two alternative planners, JPlan [27] and
LPG-td [28]. A module that allows for the replacement of a
single service if a user manually selects it for substitution is
presented, with non-determinism in the WSC domain not
being taken into account.

The authors of [29] also present a conversion schema
from OWL-S to PDDL, based on [25, 30]. The presented
methodology does not ignore the non-determinism in the
domain, and makes use of a modification of an existing
PDDL planner (Simplanner, [31]) to tackle it, through
interleaving planning and execution. The proposed system
does not support a full-featured registry that allows, e.g., the
addition of new web services or the removal of existing ones
by its users.

To the best of our knowledge, there are currently no web-
based systems supporting multiples phases of the WSC
process available. YaWSA [32] provides a web-based
interface that supports a WSC process; however, it is no
longer available for public use and, most importantly, it
provided no other capabilities related to different phases of
WSC, such as a registry.

The authors of [33] present a system supporting multiple
phases of WSC, including web service browsing, the
creation of composite services, service flow execution, and
the generation of OWL-S descriptions used to describe their
common process pattern instances. These instances are used
to bridge the gap between the users’ requirements and the
technical service descriptions, as the authors view OWL-S as
insufficient and not abstract enough to achieve such a result
on its own.

The system that is most closely related to MADSWAN in
terms of functionalities is the one implemented in the
SUPER (Semantics Utilized for Process management within

and between EnteRprises) project [34]. The major objective
of SUPER was to bridge the gap between the business needs
expressed by business people and the actual Information
Technology (IT) infrastructures intended to support them,
while also supporting in a more efficient way the reuse and
automation of business processes. For this reason, it
implements a semantic-based and context-aware framework
platform that supports the management of business processes
in a scalable manner, through the use of semantic web
services’ technologies.

The final platform includes modules for the automated
discovery, substitution, composition and execution of
business process implementations. Furthermore, three use
case scenarios were developed for the needs of the project,
all based on the telecoms domain, covering the fields of
fixed telephony, traffic routing and the management of
mobile environments.

Despite the different objective of SUPER project in
comparison to MADSWAN, it shares a lot of similarities with
it. The system’s interface was alike the one in the manual
composition module presented here, using the BPMN [35]
standard as one of its basic elements. More importantly, the
two systems share a similar architecture, e.g., the inclusion
of modules for the discovery, translation and composition of
semantic web services, even though the underlying standard
for the description of semantic web services is WSMO [36]
in SUPER and OWL-S in our case.

The evaluation process of SUPER was conducted solely
based on interviews with a sample set of the system’s users
expressing their view on criteria such as the completeness
and support, e.g., in terms of tools, of the system, or on its
reuse of open source software and standards and its overall
correctness. In our case, the evaluation process is based on
quantitative criteria. The most important difference,
however, lies in the WSC approach; WSC is used in SUPER
to refine relevant parts of a business process model by
searching for partial replacements in a process model. That
is, the produced composite output is not presented as a new
semantic web service, as in the approach presented here, nor
does it take into account any non-determinism in the domain.

B. Evaluation of Web Service Composition Systems

It is noteworthy that the literature on WSC systems
suggests a gap in their evaluation process; although recently
there have been a few exceptions, a plethora of approaches
simply rely on qualitative criteria and/or a single case study
to evaluate their methodology. More importantly, the
relevant literature does not suggest a standard test bed for
WSC systems [23], or even a standard collection of web
services to be used.

In [37], a comparison of planning techniques for WSC is
conducted, with the evaluation criteria being based only on
qualitative criteria. Some of the criteria that the authors take
into consideration are: whether the technique is domain
independent as well as whether it supports partial
observability and non-determinism or not; the standards to
which it can be applied to, i.e., its applicability, and its
support of concurrency in the execution of web services. The
scalability of the approach is also evaluated, but without any

117

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

mention to quantitative results; the authors simply evaluate it
based on a critique of the algorithm used.

In [38], current WSC approaches are criticized for
making use of easy to measure criteria, without incorporating
more important requirements in their evaluation. Several
testing challenges in relation to the effective evaluation of
service-centric systems are reported in [39]. Among these
challenges are the dynamicity and adaptiveness that is
inherent in the output workflows that contain abstract
services, due to the fact that they can be automatically bound
to various concrete services during the execution of the
workflow instances. Other reported challenges are the lack of
control that is attributed to a web service being modified
during its lifecycle, and the cost of testing that is related to
invoking the actual web services.

In [40], it is concluded that web service testing is more
challenging than testing traditional systems; these findings
are consistent with [38], that is, it is the authors’ opinion that
the difficulty in testing web services is partly due to the
dynamic nature of web services and the limited control over
them, as well as not having access to their source code.

Several approaches for WSC are evaluated in [41].
Among those not referenced previously, three out of eleven
do not provide any evaluation at all. The rest, e.g., [42],
present quantitative experimental results, such as the time
needed to achieve a solution; however, none refers to actual
scenarios with specific goals that exhibit the system's
functionalities. For example, in [43], another one of the
approaches evaluated in [41], randomly generated problems
are used, with the authors only providing information
regarding the number of services and ontology concepts
present in them. The authors of [44] present quantitative
experimental results, along with details in relation to the
machine that was used to run the experiments and the
number of web services taking part in the tests. A non-
standardized language is used to implement the composition
model, namely VCL (Vienna Composition Language),
without any mention to the structure or the goals of the test
problems, so as to allow their replication and comparison to
other systems, or to testify that they are non-trivial.

Of the approaches evaluated in [41], only [45] denotes
the test set that was used for evaluation purposes, the 2009
Web Service Challenge dataset [46]. The actual benchmark
domains used in [47] are specified, consisting of two of the
problem files used in [21].

Although a large part of the recent approaches related to
planning, such as [29, 48], either evaluate their methodology
on case studies without referring to quantitative criteria, or
not at all [49], the same is partially true for non-AI planning
approaches as well. This is the case for [16], where it is
mentioned that the system has been validated and evaluated
in synthetic problems and real-world examples, such as a
travel agency, or library management systems, without,
however, any results being reported.

 Only recently a few AI planning approaches, such as
[23, 26, 50], provided quantitative criteria for evaluation.
The most extensive evaluation is presented in [23]; two
artificial benchmarks are provided, each tested with different

encoding methods and planners, and various elements of the
planning process, such as the planner’s total runtime or the
number of search states and actions in the output plans, are
measured.

In [24], a single case study is presented, with a different
number of web services participating in the WSC
experiments, and measuring the preprocessing,
transformation (from OWL-S to PDDL), and planning time
required. One of the two available planners in the system is
used and evaluated, and the atomic web services that
comprise the final composite one are (mostly) hand-tailored
by the authors, although entire domains of the OWL-S
Service Retrieval Test Collection (OWL-S TC) [51] are used
for the composition in general.

Kona et al. [50] also incorporates rigorous evaluation
experiments. Specifically, a single use case scenario is
presented, with three variations depending on whether the
produced workflows are sequential, non-sequential, or
conditional non-sequential, along with the Inputs/
Outputs/Preconditions/Effects (IOPEs) of the services that
take part in the WSC process. The criteria used in the
evaluation of the system are quantitative, i.e., the number of
web services participating in the problem, the number of I/O
parameters each web service had, and the preprocessing and
query execution time needed to obtain a solution. The web
services that take part in the composition comprise a
customized version of the 2006 Web Service Challenge [52]
test collection.

An extensive evaluation is available in [20] based on two
case studies; an online booking system and a road
information one. Three variations for each are used, with
increasing size and complexity with respect to the number of
interface descriptions. The total numbers of states, as well as
the required time and percent of CPU used are measured to
evaluate the discovery and adaptation of both case studies.

Finally, the approach in [13] not only evaluates the
system's performance based on scalability and adaptability
criteria, but also provides a usability study based on 41 users
of different educational backgrounds who were asked to use
the system and report their experience by answering a
questionnaire. However, the approaches in [13, 20] cannot be
directly compared to MADSWAN mainly due to the systems’
compatibility with dissimilar to ours underlying standards
and technologies, such as the use of a UDDI registry in [13]
with the services being described in WSDL, or the interface
descriptions in [20] being defined either in WSDL, BPEL or
WF. Secondly, due to their significantly different goals and
motivation; for example, in [13] it is assumed that any non-
determinism in the execution of web services has already
been described in user configured exceptions.

III. THE MADSWAN SYSTEM

This section presents MADSWAN, particularly the
modules that comprise it, their functionalities, as well as the
steps of a typical use case, that is, creating a WSC problem,
converting it to a planning one, solving it and, finally,
translating the output plan to an OWL-S description file.

118

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Architecture of MADSWAN.

A. Available Functionalities

In our view, a WSC system should follow the same
principles as web services themselves. Since web services
rely on the idea of maximizing the reuse of loosely coupled
components [53], our goal was to implement MADSWAN by
making use of freely available components as much as
possible. This led to a reduced required effort in comparison
to creating entirely new components, and allowed us to use
well established standards instead of proprietary ones.
Moreover, such an approach facilitates the comparison of
different WSC systems to each other.

MADSWAN supports various functionalities related to
different stages of WSC, all of them being available through
an online interface. An overview of the various components
that comprise MADSWAN is shown in Fig. 1. The core of the
system communicates with an RDF repository and an SQL
database, in order to store the users’ data and the inputted
semantic web services and ontologies. These are currently in
OWL-S / OWL format respectively, with the prospect to
support other formats, such as SAWSDL, in the future. The
three different modules that correspond to the manual WSC,
the automatic WSC and the online web service editor are
depicted on the right of Fig. 1, with the transparent
components depicting functionalities that have not yet been
integrated to the system.

The first functionality related to WSC is storing the
service descriptions. In order to support semantic web
service discovery in a more meaningful way, we decided
against the use of UDDI, although it is one of the most well-

known approaches for web service publication. UDDI’s
search mechanism is based on the description of the web
services’ capabilities using a classification schema that does
not provide for a semantic description of their content. For
this reason, instead of using UDDI, or approaches such as
[54, 55] that bridge the gap between semantic web services
and UDDI (in most cases between OWL-S and UDDI), we
opted to use iServe [56] as the core of our application.

iServe is a service registry that supports importing
service annotations in various formalisms, such as SAWSDL
[57], WSMO-Lite [58], and OWL-S. This process is
achieved through first transforming the original annotations
to linked data, based on a common vocabulary for services,
called “Minimal Service Model”. Since iServe is open
source, we created a modified version of its web-based
application, making several improvements to the original
registry’s interface and functionality, and populating it with
version 4.0 of the OWL-S TC. Fig. 2 illustrates the basic
functionalities of the implemented registry through
screenshots of the actual application. It shows the sub-
components that are available for a registered user of the
system, with unregistered ones being allowed to access only
a subset of them, namely the ones that do not alter the
registry’s contents.

Fig. 2 illustrates that the registered users can upload new
web service descriptions, which in our case are semantically
expressed in OWL-S, and search among the existing web
service descriptions based on criteria such as their operation
name, input or outputs parameters, or IDs. Moreover, they
can view information regarding them, among which are their

119

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Registered users’ functionalities for the registry – System screenshots.

Uniform Resource Identifiers (URIs), or their inputs and
outputs based on the ontologies already in the registry. They
can also remove or update the descriptions of existing web
services stored in the registry, or download their descriptions
either in their original format, i.e., OWL-S, or in a variety of
other formats, such as RDF/XML [59] or Turtle [60].

Finally, the users have access to an online XML editor,
which uses syntax coloring to facilitate its use, as well as
predefined templates with OWL-S syntax, so as to allow its
use by non-expert users. Fig. 3 overviews the interface of the
application along with the XML editor module. Specifically,
the four basic sub-modules of the application appear on the
left side of Fig 3. On the top, there is the service list
containing the available web service descriptions of the
registry, along with their uploader’s username and the date
when they were last updated. This part of the interface also
contains the system’s search functionality. Directly below is
the online XML editor, where a web service description from
the registry is loaded, and the user is ready to insert one of
the available template OWL-S syntax expressions. More
information and tutorials on the basic use of the system are
available at [61].

For the purposes of the non-deterministic automatic
WSC, we plan to use PPDDL, the planning language used in
the non-deterministic tracks of the recent International
Planning Competitions for the purposes of the non-
deterministic automatic WSC. PPDDL is essentially a
syntactic extension of PDDL 2.1, and supports modeling
non-deterministic actions through probabilistic effects, which
can be arbitrarily interleaved with conditional effects and
universal quantification.

Since the web services in the registry are described
semantically through OWL-S, a translation between the two
languages must take place. There are various works that have
proposed conversion schemas from OWL-S to PDDL that do
not differ significantly from each other. As such, we also
adopt an approach similar to [25, 26, 30, 62].

Our translation module is based on the source code of
[26], with the necessary extensions to accommodate the
creation of planning files that can handle non-deterministic
actions, that is, generating PPDDL files instead of PDDL
ones, in cases where the domain is non-deterministic.

Moreover, the planning problem file is created based on
the users’ choices; a user can choose between the ontology
concepts that are present in the web services that take part in

120

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Application’s interface presenting its XML editor.

the composition (either a subset of the web services in the
registry that he selected, or all of them). Then he should state
which concepts formulate the initial problem state and the
final composite web service’s inputs, and which formulate
the goal state and the final composite web service’s outputs.

The goal state concepts are split in two lists, one
containing hard and one soft goals, essentially “must-
achieve” and “should-achieve” ontological concepts. In the
case that a user has stated a concept to belong in both lists,
then the system considers that concept to be a hard goal. Fig.
4 presents the system’s interface for such a case; the four
different plans, with increasing lengths, that were generated
are depicted, along with the total time that was required to
produce them, the length of the plan with the minimum cost,
and the total number of states that were expanded during the
plan search.

Examples of the currently generated planning files are
available at [63]; these files consist of the planning domain
and problem files for a random problem, the solution file that
the planner outputs, and the OWL-S profile and process files
that are the results of the translation process of the solution
plan. A set of semantic web service descriptions that can be
used to interact with the registry (taken from OWL-S TC and
modified accordingly) are available at [64]. Although the
development of MADSWAN is still in progress, an alpha
version of its online prototype is available at [65].

B. Contingent Planning

After the conversion of the OWL-S descriptions to
planning domain and problem files, AI planning techniques
can be used to generate the output plan/composite web
service. In our view, the WSC problem is an inherently non-
deterministic one. Indeed, it is always possible for a web
service to be unavailable, or its execution to be unsuccessful
or have undesired effects. For this reason, we adopt a non-
deterministic formulation of the problem that allows us to
compute more flexible plans. We opt for the incorporation of
a contingent planner [66], in order to generate plans that can
cope with the most influential and likely contingencies.
Our approach, which has not yet been integrated in the
current version of the online prototype, is based on a
complete search algorithm. This is used to generate all the
possible plans for the most probable contingencies, starting
from an optimal one, with an increasing cost, given a limited
period of planning time. A - suboptimal - contingency plan
can then be constructed by merging these plans. Merging is
achieved through searching for natural join points, i.e., when
search nodes share a predecessor through different sets of
outcomes, and by removing any plans that contain redundant
actions, that is, repetitive actions or ones that do not produce
useful results.

121

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Application’s interface regarding the automatic WSC module and its solutions.

A somewhat similar approach using GraphPlan [67] is
presented in [68]. Here, we opt for the use of A

*
 [69], an

optimal complete algorithm, with the use of the max
heuristic (hmax, [70]) as an admissible heuristic function;
however, this is not a restrictive choice. In practice, any
complete algorithm can be used instead, in combination with
a variety of admissible heuristic functions so as to produce
optimal plans. The algorithm either outputs a contingent plan
that covers all of the users’ hard goals and any of the soft
goals that have been set, or returns with a message that no
plan was found in the allowed time period.

It is important to note that our approach does not try to
develop a plan for every possible contingency, as the WSC
domain may have too many sources of uncertainty for such a
methodology to succeed. Since we cannot cope with every
possible point of failure, a re-planning module will also be
incorporated. As such, the approach is essentially offline,
with a pre-computed contingent plan being used while the
composite web service is executed. However, real time
execution monitoring is essential, as the branches of the plan
being used are determined by the actual outcomes of the
atomic web services.

Re-planning occurs each time the contingent plan does
not cover the current contingency, that is, an unexpected
event occurs that is not already covered in the pre-computed
plan. Such events may refer to a web service being
unavailable at the time, or producing a result which is
different than the one expected in the plan, e.g., a web
service not being able to purchase a book due to it being out
of stock.

Fig. 5 presents the aforementioned planning approach
with an example. For reasons of brevity, we assume that the
planning problem has three solutions. These solutions are of
increasing length, the first being optimal with regard to the
number of web services required to achieve the goal,
requiring the execution of three actions (denoted by a
rectangle), and the other two requiring an additional one.

The actions of the plans are color-coded, that is, the
rectangles that share the same color are meant to depict the
same action across different plans. We will refer to the
actions by their respective color, e.g., the “green action”.
Each step in the creation of the plan is marked with its
respective number on the right of the figure. Duplicate
actions that are dropped from each plan and are not included
in the final one are marked with a red “X”.

In step 1, the contingent plan that we generate consists
only of the base, optimal plan. In step 2, the second plan is
added to the existing plan. Since the first two actions (white-
purple ones) are common between the two plans, an
alternative branch is created, consisting only of the two last
actions (red-yellow). The new contingent plan is generated in
step 3, and the next available deterministic plan is added to it
in step 4. Since its first (white) and last (blue) actions are
already present in the contingent plan, a new branch is added
to it, consisting of the green and orange actions. The final
contingent plan is shown in step 5, having three available
paths to the goal, and for that reason, being able to withstand
the occurrence of the same number of contingencies.

122

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. A graphic example of the planning algorithm.

Figure 6. System overview timeline.

C. From AI Plan to Composite Web Service

Finally, we convert the plan back to an OWL-S
(composite) web service, that is, we create an OWL-S profile
and its process description, in a fashion similar to that
described in [71]. In short, the resulting profile description
file mainly refers to the new composite web service’s IOPEs,
as well as it defines some of its basic elements, such as its
name or textual description. The output process model
describes the plan that a client must execute in order to
interact with the composite web service, and is based on
OWL-S control constructs. The OWL-S API [72] that will be
used to implement the conversion supports composite
processes that use OWL-S control constructs, such as

〈Split+Join〉, and conditional constructs like 〈If-Then-Else〉,
which is necessary to produce correct solutions to the use
cases presented in Section IV.

Fig. 6 summarily illustrates our approach; it should be
read as a timeline, starting from the left side of it. That is,
OWL-S TC is used throughout all the stages of our
application, whereas the OWL-S API is only used in the final
stage, in the translation of the problem’s solution to an
OWL-S description file and the creation of the OWL-S
profile and process files. Items in the same column imply
that they are related to each other and occur in the same time
frame.

D. Manual Web Service Composition Module

Since the relevant literature does not suggest a standard
test bed for WSC systems, we decided to implement a
manual WSC module so as to evaluate our automatic WSC
approach against it. In order to create a manual OWL-S
composer, we modified an existing open source application;
Petals BPM [73] is a BPMN 2.0 modeler, which we adapted
to accept the OWL-S constructs that are necessary for WSC.
Moreover, we added a few “helper” constructs to provide a
more intuitive interface.

The OWL-S constructs currently supported by the

module are the 〈Sequence〉 (implicitly), 〈If-Then-Else〉,

〈Split+Join〉, and 〈Repeat-While〉 control constructs, along
with the necessary inputs, outputs and web services’
elements. The “helper” constructs comprise of an

〈End Split+Join〉 and an 〈End Repeat-While〉 construct, used

123

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. OWL-S RULES REGARDING THE MANUAL WSC MODULE.

Description:

1
A workflow with a 〈Split+Join〉 control construct must also

contain an 〈End Split+Join〉 one and vice versa

2
A workflow with a 〈Repeat-While〉 control construct must also

contain an 〈End Repeat-While〉 one and vice versa

3 Any Data construct that is inserted must have its binding set

4
Any Web Service Task construct that is inserted must have its
binding set

5 A Data Input cannot have any input connectors

6 A Data Input must have an outgoing connector

7
A Data Output can only be present following a Task or an 〈If-

Then-Else〉 gateway if the gateway has a Task as its source

8 A Data Output must have an incoming connector

9
An 〈If〉 or 〈Else〉 Sequence Flow can only have an 〈If-Then-Else〉

gateway as its source

10
A Start Event cannot have incoming connectors except if they

originate from a Data Input

11

Only Web Services’Tasks and their Data Outputs can be contained

between a 〈Split+Join〉 control construct and an 〈End Split+Join〉

one

12
An 〈If-Then-Else〉 gateway must have exactly one outgoing 〈If〉

Sequence Flow and an optional 〈Else〉 Sequence Flow

in conjunction with the regular 〈Split+Join〉 and

〈Repeat-While〉 constructs to enclose other elements in them,

and dedicated 〈If〉 and 〈Else〉 sequence flows that are only

used along with an 〈If-Then-Else〉 gateway. Moreover, there

are 〈Start〉 and 〈End〉 constructs to signify the beginning and
end of a workflow. Finally, users can bind the web service
and data input/output constructs that they added to the
workflows to specific web services and relevant ontologies’
concepts already present in the registry, respectively.

It should be noted, however, that having bound such
specific concepts from the registry to the available data
input/output constructs, users are currently free to attach any
ontology concept to any web service. That is, the system
does not provide any semantic verification regarding the
inputs/outputs of the web services, thus ensuring that a web
service requiring a specific type of input is actually bound to
one.

Since the purpose of the automatic WSC module is to
help the non-expert, but familiar with WSC concepts, user to
create composite web services, our aim was to implement the
manual WSC module with the same principal in mind. For
this reason, users can opt to be informed about the intended
use of each construct available for the manual workflow
creation, and the created graphical workflows are validated
against pre-defined rules whenever the users save them.

Some of the pre-defined rules were maintained from the

original application. An example of this is that the 〈End〉
construct, necessarily being the last one in a workflow, must
have at least one incoming sequence flow from another
construct. Other rules were added in order to help the user to

export a valid composite web service, e.g., that an 〈If-Then-

Else〉 construct is required to have an outgoing 〈If〉 sequence

flow and can optionally have an 〈Else〉 sequence flow. The
full list of added rules is presented in Table I.

IV. EVALUATION FRAMEWORK

This section provides details regarding three use case
scenarios that can be used to evaluate WSC systems. It
presents the graphical workflows that correspond to these
scenarios through the use of manual WSC module. Finally,
MADSWAN is compared to two existing planning
approaches, in order to evaluate its efficiency and
effectiveness.

A. Use Case Scenarios

As mentioned in Section II.B, no standard web service
test bed or test collection exists. For this reason, it is
currently very hard to evaluate a WSC approach objectively
against another one, which is a detriment to the ongoing
research regarding efficient WSC composition approaches.

One of our goals was to create an evaluation framework
that could be used and reproduced by other systems, that is,
clearly define detailed use case scenarios that are based on an
existing, open test collection. We decided for the use of
OWL-S TC, since in the past few years it has been used
extensively, as a test set in the recent S3 contests [74], or in
several approaches in the recent literature [25, 39, 75].

We have designed three use cases, each based on the
service descriptions contained in a single domain of OWL-S
TC, although several minor modifications were made to the
descriptions of some services, and a few descriptions were
added to some domains in order to design more useful
scenarios. All the modifications to the original test
collection, as well as a full description of the use cases, can
be found in [76]. Next, we describe the use case scenarios in
detail, with the ontologies’ concepts used in each one shown
in parentheses (following the format “ontology#concept”).

Each use case scenario has an increasing amount of non-
determinism and complexity compared to the previous one.

1) Movie Database Use Case Scenario: The first use

case (MADSWAN-UseCase1 - MS-UC1) is fully

deterministic, allowing for the output of a fully serialized

composite web service; it refers to a user who knows the

title of a film (my_ontology.owl#Film) and wants to retrieve

all the comedy films (my_ontology.owl#ComedyFilm) that

exist with a similar title, along with their respective prices.

That is, he desires to know all the relevant pricing

information in regard to a comedy film, i.e., its regular price

(concept.owl#Price), its maximum price (concept.owl#

MaxPrice), and its price with (concept.owl#TaxedPrice) and

without taxes (concept.owl#TaxFreePrice).

Finally, the returned comedy films along with their

pricing information results should be stored in a database

(ontosem.owl#database), so that he can remember to buy

them in the future. MS-UC1 uses the web services in the

“Communication” domain of the test collection, with the

124

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

relevant ones in regard to the use case amounting to a total

of 58 semantic web services.
The rest of the scenarios incorporate non-deterministic

elements, such as alternative outcomes in the output
composite web service based on the availability of items, or
user preferences between different types of products.

2) Online Bookstore Use Case Scenario: The second

use case (MS-UC2) refers to a client of a specific online

bookstore who wants to purchase a book; the client can use

three different methods to buy the book, with alternative

outcomes being outputted by the composite web service

based on whether the book is in stock at the online

bookstore or not.
In detail, the scenario describes a situation in which an

online bookstore’s client initially provides as input to the
composite WS a book title (books.owl#Title) or its ISBN
(portal.owl#ISBN), his address (order.owl#Address) and a
preferred method of payment for the purchased item. The
available choices for the customer to pay for the selected
book are using his credit (finance_th_web.owl#credit_card),
cheque (finance_th_web.owl#cheque_card), or debit (finance
_th_web.owl#debit_card) cards. In order to suit the purposes
of this test case, we slightly altered the finance_th_web
ontology and added the debit and cheque cards as subclasses
of cash, and the credit card concept as a subclass of credit.

As a result, if the book is in stock at the specific e-
bookstore, the final composite WS should use the specified
method of payment to purchase the item and record the
address for the item in the user’s shopping cart to be shipped
to. The result should be a purchased item (order.owl#
PurchasedItems), and the output of information regarding
the purchased book; specifically, the book's author
(books.owl#Author), along with its type (hard-cover or
paperback) (books.owl#Book-Type), and size (small, medium
or large) (books.owl#Size). However, if the book is not in
stock, the client should not be charged with a fee and no
information regarding the item should be displayed to him.
MS-UC2 uses the web services in the “Education” domain of
OWL-S TC, with the relevant ones being 285 in total.

3) Camera Search Use Case Scenario: The final

scenario (MS-UC3) also concerns the purchase of an item;

the main difference with MS-UC2 is that multiple sellers can

be considered for this scenario and, as such, the composite

web service may need to check with all of them to

determine the availability of the item. Moreover, MS-UC2

and MS-UC3 differ in that the latter also incorporates the

user’s preferences in the scenario. The user is assumed to

have a preference, that is, soft goal, towards an analog SLR

camera model; however, he may settle for other cameras if

the preferred one is not available from any seller.
In specific, MS-UC3 refers to a user who initially

provides as input to the composite web service the type of
the camera he desires to buy, which is an analog, non-APS,
standard SLR camera (extendedCamera.owl#SLR).
However, if this camera is not available, the scenario
presumes that the user would also be satisfied with buying
another type of analog camera that has less features,

specifically an analog, non-APS, standard compact camera
(extendedCamera.owl#Compact). In either case, the user also
provides the desired camera’s product code (extended
Camera.owl#ProductCode). Finally, though, if no store is
found having any of the two desired cameras in stock, then
he will settle for any kind of camera at all, whether analog or
digital (extendedCamera. owl#Camera).

The user is also expected to state in advance which stores
should be considered as alternatives for him to buy the
camera from; in detail, he can choose to provide as input a
shopping mall (Mid-level-ontology.owl#ShoppingMall), a
retail store (Mid-level-ontology.owl#RetailStore) or a
specific chain of retail stores, with the available ones being
Walmart (Mid-level-ontology.owl#WalmartStore) and Media
Markt (Mid-level-ontology.owl#MediaMarktStore). Finally,
he can also state that all mercantile organizations can be
considered as alternatives (SUMO.owl#Mercantile
Organization). Again, the user can provide one or more
inputs, but in this case all the available choices are
considered equally preferable alternatives. We assume that
the user does not differentiate between the alternative stores
he has provided as input, as long as he finds the camera he
desires in stock.

Having entered the desired product type along with its
product code and the alternative stores that can be used to
buy it from, the composite WS should find a store that sells
this product and check whether it has it in stock or not. If it is
in stock, it should add it to the user’s shopping cart
(ShoppingCart.owl#ShoppingCartRequestItems); if not, it
should continue to search for another store that sells it. If it
cannot find any store that has the SLR camera in stock, it
will repeat the aforementioned process, this time searching
for a compact camera. If no compact camera is in stock
either, then the composite WS will search for any camera
available in stock. The output of the service can only be an
addition to the user’s shopping cart or no action at all. MS-
UC3 makes use of the test collection’s “Economy” domain
and of a total of 359 semantic web services.

We validate the correctness of the automatic WSC
solution plan for a problem by checking that all of the
ontological concepts that were present in the hard goals of its
goal state have been generated by the web services in the
plan. That is, the initial state concepts, along with the outputs
of the web services that take part in the plan should be a
superset of the hard goals set by the user.

This set of scenarios provides use cases that can
efficiently evaluate the capabilities of WSC methodologies
in a way that is both reproducible and extensible. They allow
for a system to showcase that it can indeed cope with non-
determinism in the WSC domain, and output both sequential
and conditional plans, with and without taking into account
the user’s preferences.

B. Experimental Results

In order to test the correctness and efficiency of the
current version of the automatic WSC module, we
empirically compared a preliminary version of the algorithm
presented in Section III.B against two existing planning

125

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. COMPARISON OF PLANNING TIMES FOR POND, LPG-TD AND MADSWAN.

 Opt

POND-EHC POND-A* POND-AO* LPG-td MADSWAN

Plan

Length
Time

Plan

Length
Time

Plan

Length
Time

Average

Plan

Length

Average

Time

Plan

Length
Time

MS-UC1 6 6 0.0024 6 0.0068 6 0.0032 6.04 0.0040 6 0.0169

P-10 6 6 0.0016 6 0.0020 6 0.0016 6 0.0066 6 0.0172

P-100 6 6 0.0036 6 0.0028 6 0.0026 6 0.0124 6 0.0117

P-1000 5 5 0.2640 5 2.5404 5 0.2742 5.76 0.1256 5 0.0996

a. The time measurements are in seconds; for the stochastic planner, LPG-td, they represent the median values of 100 runs. “Opt” represents the optimal length of each problem.

approaches; the first is a WSC system, PORSCE II [26], and
the second a state-of-the-art contingent planner, POND [77].

We used two domains, one taken from the evaluation of
[26], in order to provide direct comparison with PORSCE II,
and one corresponding to MS-UC1. The experiments were
run on a PC using a Dual-Core Intel i5 processor running at
1.6GHz and allowing at most 4GB memory.

The domain taken from the PORSCE II system is
deterministic in nature and, similarly to MS-UC2, it models a
user of a bookstore who wants to purchase a book. It is
however a simplified version of MS-UC2, as it does not
feature non-determinism or any choices on behalf of the user.
He is presumed to have a credit card that he can use to
purchase a book, and the book is always considered to be in
stock.

As in [26], we test three different versions of this
domain, named P-x, “P” symbolizing the PORSCE system
and x representing the number of web services participating
in the problem. Since the web services are translated to
PDDL actions, each version is increasingly more complex
than the previous ones, the first consisting of 10 web services
(P-10), the second of 100 (P-100) and the last of 1000 ones
(P-1000). In the first two versions, the optimal plan length,
i.e., the least amount of web services needed to achieve the
desired goal, is 6, whereas the last version has an optimal
plan length of 5. All of the aforementioned planning domains
and problems are available at [78].

The second domain in the test set is from our own
framework; since the proposed contingent algorithm has not
yet been integrated in the online prototype, the use case
scenario tested is the deterministic one, MS-UC1.
Specifically it is a relatively simpler version of it, with 21
web services taking part in the. The optimal plan length is
also 6.

POND is a planner able to solve partially observable
and/or non-deterministic problems by searching forward in
the space of belief states, guided by a relaxed plan heuristic.
It generates conformant and conditional plans using various
search algorithms, specifically A

*
, AO

*
 [79], LAO

*
 [80], and

Enforced Hill-Climbing (EHC) [81]. In our experimental

setup we executed three versions of POND version 2.2, using
the A

*
, AO

*
 and EHC search algorithms.

As aforementioned in Section II, PORSCE II relies on
two alternative planning systems, JPlan and LPG-td. For our
experiments, we compare MADSWAN against LPG-td, as the
authors of [26] concluded that its performance was by far
superior to that of JPlan. LPG (Local search for Planning
Graphs) is a sub-optimal anytime planner based on stochastic
local search and planning graphs; its search space comprises
action graphs, that is, particular subgraphs of the planning
graph representing partial plans.

The experimental results are presented in Table II. In all
cases, the time reported is in seconds and represents the total
planner time needed to reach a solution. The planner with the
best performance in each problem is highlighted in bold, and
the optimal plan length (Opt) is shown next to each problem.

The experiments indicate that the number of web services
available for WSC is a crucial factor in regard to the
planner’s efficiency, even if not all services are necessarily
useful for the achievement of the goal. The results in Table II
indicate that, generally, as the number of web services
participating in each problem increases, so does the time
required to solve it, although not linearly. This assumption is
corroborated by the results of the comparison between MS-
UC1 and P-10, the two problems that comprise of just a few
web services. MS-UC1 requires more time than P-10 for all
versions of POND, and almost the same time for
MADSWAN, but a little less time for LPG-td. This is not
surprising, as the two problems share a common optimal
plan length and MS-UC1 comprises almost double the web
services than P-10.

 Moreover, although all the other problems in the
experiments have a larger optimal length, P-1000 appears to
be by far the most difficult problem in the test set. The
increase in the required time to solve P-1000 for POND- A

*

is almost a thousand times more than for the second most
difficult problem, P-100, a hundred times more for POND-
EHC and POND-AO

*
, and tenfold for LPG-td and

MADSWAN.

126

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III. COMPARISON OF TRANSLATION TIMES PER WEB SERVICE

FOR PORSCE II AND MADSWAN.

WSs

PORSCE II MADSWAN

Time

10 0.4590 0.3974

21 - 0.2836

100 0.7000 0.1774

1000 0.7920 0.1110

a. All time measurements are in seconds and represent the median values of 100 runs. All the data

for PORSCE II have been taken from [25].

Although the number of web services comprising a
particular problem is important, though, its difficulty is not
dependent solely on this factor; e.g., MADSWAN manages to
solve P-100 faster than it does P-10. This fact can be mainly
attributed to the complexity of the problem itself. The
preprocessing phases of both LPG-td and all the versions of
POND search for useless actions in the domain and allow the
planners to ignore them during search (or simply prune them
at parsing time). For this reason, both planners report that P-
10 consists of 10 (relevant) actions, whereas P-100 of just 6.

Preprocessing leads to simpler domains, that is, for
POND (that includes such facts in its output), P-10
comprises 15 state variables while P-100 comprises only 6.
As such, both planners spend less time actually searching for
a valid plan; on the other hand, though, this means that for
relatively easy domains such as P-100, the vast majority of
the total planner time is spent in the preprocessing phase.
MADSWAN is more straightforward, devoting less time to
preprocessing techniques; most of its total time is spent on
search, allowing it to solve the – easier – P-100 problem
quicker than P-10, despite the fact that it searches among
more web services/actions.

In general, the problems seem to be almost trivial for all
planners, with the exception of P-1000 for POND- A

*
, which

has a significantly worse performance for this problem, both
compared to the other planners and to its performance in the
rest of the problems. All versions of POND, as well as
MADSWAN, find solutions of optimal length for all problems.
LPG-td, however, being a stochastic anytime non-optimal
planner, returns plans of slightly worse median length for
MS-UC1 and (mainly) P-1000. MADSWAN needs more time
than all versions of POND for the smaller problems (MS-
UC1, P-10, and P-100), as well as than LPG-td for the two
smallest ones. On the other hand, it is faster than all planners
for the most complex problem, P-1000.

 It is important to note that since POND is not a WSC
approach, but a standard PDDL planner, we experimentally
tested only the efficiency of the planners on translated WSC
domains to planning ones, and not on the whole process that
MADSWAN typically follows. However, a major bottleneck
of the solution of WSC problems seems to be the translation
process from WSC domains to planning ones and vice versa.

Table III presents the results of our experiments
regarding the average transformation time per web service
description. In [26], it is reported that the average
transformation time per web service converged to
approximately 0.8 seconds. In our experiments, though, the
necessary time was considerably less, converging to
approximately 0.1 seconds per web service when translating
a web service registry analogous to the size of the entire
OWL-S TC.

Moreover, our experiments show a decrease in the
average time required per web service translation as the total
number of web services in the set increases, in contrast to the
results reported in [26]. Since our translation process is based
on the one in [26], we can assume that this fact, along with
the significant improvement in the average transformation
time per web service, can mainly be attributed to our
different hardware setup, as well as minor optimizations in

the original source code, mainly concerning the used data
structures.

The results of Table III indicate that most of the required
computational effort for the automatic WSC process is
attributed to the translation process of the original domain to
the planning one, and not to the problem’s solution itself.
This is apparent by the fact that even when the average
transformation time per web service converges to its lowest
value (0.1110 seconds), the transformation time of a single
web service is larger than the solution of a problem
containing the same number of web services/actions (0.0996
seconds); that is, the time required by the planner to find a
solution is less than one hundredth of the total time needed
for the entire WSC process.

C. Use Case Scenarios in the Manual Web Service

Composition Module

The existing implementation of the manual composition
module is capable of producing graphical workflows that
correspond to the three use case scenarios that were
presented in Section IV-A. Fig. 7, 8 and 9 present the
manually created workflows representing MS-UC1, MS-UC2
and MS-UC3, respectively. In all figures, the labels of the
connecting sequence flows have been removed so as to ease
their legibility. The files used by the system’s internal load
and save functionalities for the three use case scenarios can
be found at [82].

 Using the automatic WSC module, the solution plan for
the tests cases, e.g., MS-UC1, requires just a fraction of a
second; it is evident that even an experienced user would
require at least a few minutes in order to accomplish a
similar result visually in the manual WSC module. For that
reason, the manual WSC module is mainly useful for the
visualization of WSC workflows, and also for the creation of
a basic “sketch” of a composite web service description,
which can then be manually completed by experts.

We are currently working on the transformation of the
created graphical workflows to their respective OWL-S
descriptions and vice versa. The current functionalities of the
manual WSC module are showcased in [65].

127

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Online bookstore scenario workflow.

Figure 7. Movie database scenario workflow.

V. CONCLUSION AND FUTURE WORK

In this article, we presented our work regarding the
implementation of an online WSC system, named
MADSWAN, which makes use of AI planning techniques and
of already freely available web service-related components.
We provide a link to a demo of MADSWAN, albeit still in
alpha version, which showcases the system’s functionalities.

This publicly available prototype is, to the best of our
knowledge, the first online application of its kind able to
support various stages of the WSC process. The fact that the
presented system allows its users to store/retrieve web
services to/from a registry, edit the ones already stored in it,
and create new workflows both manually and automatically,
all through an online interface, constitute a unique set of
functionalities for such a system.

The current WSC approaches face several limitations, the
most important of which is the plethora of available
standards, both in relation to the semantic description of
services and their underlying implementation. We
acknowledge these limitations, which require substantial
standardization efforts and coordination between the various
service providers. For this reason, MADSWAN is based on
open source components, such as the manual WSC
composition module and the registry, and utilizes existing
datasets, i.e., OWL-S TC, and the current web service
standards. This approach fortifies the web service principles
the system is based on, and allows a more efficient
comparison of the system to similar ones. Thus, we hope that
our efforts constitute a step toward overcoming such
incompatibility obstacles.

128

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9. Camera search scenario workflow.

Currently, we are working on the design and
implementation of a non-deterministic planning module,
with the intention of finding plans that withstand various
contingencies that can occur in non-deterministic domains.
As demonstrated by our experiments, the current version of
the prototype is able to find in a reasonable amount of time
plans that solve deterministic WSC problems. The solutions
are translated back to web service description files to be
saved back to the registry for future use.

The article also presents in detail three use case scenarios
that can be used to evaluate WSC processes. We established
experimentally that the current, deterministic, version of the
algorithm used in MADSWAN is competitive with both
PORSCE II and POND in a variety of test cases.
Furthermore, the efficiency of the translation process of the
original WSC to a planning one was shown to be adequately
fast for even a large repository of web services, e.g., one that
contains all the web services in OWL-S TC.

Additionally, we provided implementation details in
regard to the manual WSC module. This module can be used
as an alternative counterpart to the automatic one; our goal,
however, is that it will be used as a standalone application in
order to help users create composite web service descriptions
more efficiently compared to actually writing the entire
description files by hand. Such a tool would allow users to

familiarize with the concepts of web services and OWL-S, or
simply to visualize composite OWL-S description files.

For the future, we plan to incorporate the contingent
planning algorithm in the online prototype, and acquire
experimental results for non-deterministic WS domains. We
are also working on the semantic verification of
inputs/outputs for the manual WSC module. Moreover, one
of our long-term goals is to allow the execution of semantic
web services, through the use of external tools such as
SPEX (SPecification and EXecution tool) [83]. Finally, we
aim to support automatic translation of arbitrary OWL-S
composite web service description into the graphical
workflows of the manual component.

ACKNOWLEDGMENTS

This research has been co-financed by the European
Union (European Social Fund – ESF) and Greek national
funds through the Operational Program “Education and
Lifelong Learning” of the National Strategic Reference
Framework (NSRF) - Research Funding Program:
Heracleitus II. Investing in knowledge society through the
European Social Fund.

The authors would like to thank Graham Crosmarie of
the PetalsLink Research & Development Team for his time
and advice in regard to Petals BPM, as well as the
anonymous reviewers for their valuable comments.

129

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES

[1] G. Markou and I. Refanidis, “Towards Automatic Non-
Deterministic Web Service Composition”, Proc. 7th
International Conference on Internet and Web Applications
and Services (ICIW'12), May 2012.

[2] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic
Web”, Sci. Am., May 2001, pp. 29-37.

[3] S. Narayanan and S.A. McIlraith, “Simulation, verification
and automated composition of web services”, Proc. 11th
International World Wide Web Conference (WWW'02), May
2002, pp. 77-88.

[4] D. Martin, M. Burstein, J. Hobbs, et al. 2004. OWL-S:
Semantic Markup for Web Services,
http://www.w3.org/Submission/OWL-S/ [Dec. 12, 2013]

[5] A. Muscholl and I. Walukiewicz, “A Lower Bound on Web
Services Composition”, Log. Meth. Comput. Sci., vol. 4 (2),
2008.

[6] W. Nam, H. Kil, and D. Lee, “On the Computational
Complexity of Behavioral Description-Based Web Service
Composition”, Theor. Comput. Sci., vol. 412 (48), 2011, pp.
6736-6749.

[7] J.Rao and X. Su, “A Survey of Automated Web Service
Composition Methods”, Proc. 1st international conference on
Semantic Web Services and Web Process Composition
(SWSWPC ‘04), July 2004.

[8] S. J. Russell, and P. Norvig, “Planning”, in Artificial
Intelligence: A Modern Approach, 2nd ed., Upper Saddle
River, NJ, Prentice Hall, 2003, ch. 11, pp. 375–459.

[9] M. Ghallab, D. S.Nau, and P. Traverso, Automated Planning:
Theory and Practice, 1st ed., San Francisco, CA, Morgan
Kaufmann, 2004.

[10] L. Pryor and G. Collins, “Planning for contingencies: A
decision-based approach”, J. Artif. Intell. Res, vol. 4, 1996,
pp. 287-339.

[11] H. L. S. Younes and M. L. Littman, “PPDDL1.0: An
extension to PDDL for expressing planning domains with
probabilistic effects”, Technical Report. School of Computer
Science, Carnegie Mellon University, 2004.

[12] G. Markou and Ι. Refanidis, “Towards an Automatic Non-
Deterministic Web Service Composition Platform”, Proc. 8th
International Conference on Next Generation Web Services
Practices (NWeSP ‘12), Nov. 2012.

[13] Q. Z. Sheng, B. Benatallah, Z. Maamar, and A. H. H. Ngu,
“Configurable Composition and Adaptive Provisioning of
Web Services”, IEEE Trans. Services Comput., vol. 2(1),
2009, pp. 34-49.

[14] T. Bray, J.Paoli, C. M. Sperberg-McQueen, E. Maler, and F.
Yergeau, “Extensible Markup Language (XML) 1.0”, 2008.
http://www.w3.org/TR/REC-xml/ [Dec. 12, 2013]

[15] UDDI version 3.0.2, http://uddi.org/pubs/uddi_v3.htm [Dec.
12, 2013]

[16] J. Camara, J. A. Martin, G. Salaun, et al., ITACA: An
integrated toolbox for the automatic composition and
adaptation of Web services. Proc. 31st International
Conference on Software Engineering (ICSE), May 2009, pp.
627-630.

[17] A. Alves,A. Arkin, S. Askary, et al., “Web Services Business
Process Execution Language Version 2.0”, 2007.
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-
OS.html [Dec. 08, 2013]

[18] E. Christensen, F. Curbera, G. Meredith, and S.Weerawarana,
“Web Services Description Language (WSDL) 1.1”, 2001.
http://www.w3.org/TR/wsdl [Dec. 12, 2013]

[19] Microsft Corporation, “Windows Workflow Foundation”,
2007. http://msdn.microsoft.com/en-us/library/vstudio/ms735
967(v=vs.90).aspx [Nov. 23, 2013]

[20] J. Cubo and E. Pimentel, DAMASCo: A Framework for the
Automatic Composition of Component-Based and Service-
Oriented Architectures. The 5th European Conference on
Software Architecture (ECSA), Sept. 2011, pp. 388-404.

[21] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau, “HTN
planning for web service composition using SHOP2”, J. Web
Semant., vol. 1, no. 4, Oct. 2004, pp. 377-396.

[22] M. Fox and D. Long, “PDDL2.1: An Extension to PDDL for
Expressing Temporal Planning Domains”. J. Artif. Intell. Res,
vol. 20, Dec. 2003, pp. 61–124.

[23] J. Hoffmann, P. Bertoli, M. Helmert, and M. Pistore,
“Message-based web service composition, integrity
constraints, and planning under uncertainty: a new
connection”, J. Artif. Intell. Res, vol. 35, May 2009, pp.49-
117.

[24] J. Hoffmann and R. Brafman, “Conformant Planning via
Heuristic Forward Search: A New Approach”, Artif. Intell.,
vol. 170 (6-7), 2006, pp. 507 – 541.

[25] M. Klusch, Α. Gerber, and M. Schmidt, “Semantic web
service composition planning with OWLS-Xplan”, Proc. 1st
International AAAI Fall Symposium on Agents and the
Semantic Web, Nov. 2005.

[26] O. Hatzi, D. Vrakas, M. Nikolaidou, et al., “An integrated
approach to automated semantic web service composition
through planning”, IEEE Trans. Service Computing, April
2011, pp. 301-308.

[27] JPlan: Java GraphPlan Implementation http://sourceforge.net/
projects/jplan/ [Nov. 18, 2013]

[28] A. Gerevini, A. Saetti, and I. Serina, “An approach to
temporal planning and scheduling in domains with predictable
exogenous events”, J. Artif. Intell. Res, vol. 25, Jan. 2006,
pp.187-231.

[29] M. Kuzu and N. Cicekli, “Dynamic planning approach to
automated web service composition”, J. Appl. Intell., vol. 36,
January 2012, pp.1-28.

[30] H.S. Kim and I.C. Kim, “Mapping semantic web service
descriptions to planning domain knowledge”, Proc.
International Federation for Medical and Biological
Engineering (IFMBE), Aug. 2006.

[31] E. Onaindia, O. Sapena, L. Sebastia, and E. Marzal,
“SimPlanner: An Execution-Monitoring System for
Replanning in Dynamic Worlds”, Proc. 10th Portuguese
Conference on Artificial Intelligence (EPIA 2001), Dec. 2001,
pp. 393-400.

[32] A. Macdonald, “Service composition with hyper-
programming”. Technical Report, University of St Andrews,
2007.http://www.cs.st-andrews.ac.uk/~angus/docs/yawsa/
final_report.pdf [Dec. 12, 2013]

[33] X. Du, W. Song, and M. Munro, “Using common process
patterns for semantic web services composition”, Proc. 15th
International Conference on Information Systems
Development (ISD’06), Sept. 2006.

[34] SUPER - Semantics Utilized for Process management within
and between EnteRprises, http://www.ip-super.org/
08/30/2013

[35] Business Process Model and Notation (BPMN) Version 2.0,
http://www.omg.org/spec/BPMN/2.0/ [Dec. 07, 2013]

[36] D. Roman, U. Keller, H. Lausen, et al., “Web Service
Modeling Ontology”, Applied Ontology, 2005, pp. 77-106.

[37] M. Chan, J. Bishop, and L. Baresi, “Survey and comparison of
planning techniques for web services composition”. Technical
Report. University of Pretoria, 2007. http://polelo.cs.up.ac.za/
papers/Chan-Bishop-Baresi.pdf [Dec. 12, 2013]

[38] R.W. Feenstra, M. Janssen, and R.W. Wagenaar, “Evaluating
Web Service Composition Methods: The need for including
Multi-Actor Elements”, Elect. J. of e-Gov. (EJEG), vol.5 (2),
2007, pp. 153-164.

130

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[39] G. Canfora and M. Di Penta, “Testing services and service-
centric systems: Challenges and opportunities”, IT Prof., vol.
8, 2006, pp. 10–17.

[40] M. Bozkurt, M. Harman, and Y. Hassoun, “Testing Web
Services: A Survey”, Technical Report, King’s College
London Centre for Research on Evolution, Search & Testing,
TR-10-01, 2010.

[41] P. Bartalos and M. Bielikova, “Automatic Dynamic Web
Service Composition: A Survey and Problem Formalization”,
Comput. Inform., vol. 30 (4), 2011, pp. 793-827.

[42] M. Alrifai, T. Risse, P.Dolog, and W. Nejdl, “A Scalable
Approach for QoS-Based Web Service Selection”, Proc. 1st
International Workshop on Quality-of-Service Concerns in
Service Oriented Architectures (QoSCSOA ’08), Dec. 2008,
pp. 190-199.

[43] D.H. Shin and K.H. Lee, “An Automated Composition of
Information Web Services based on Functional Semantics”,
Proc. IEEE Workshop on Web Service Composition and
Adaptation (WSCA ‘07), July 2007.

[44] F. Rosenberg, M.B. Müller, P. Leitner, et al., “Metaheuristic
Optimization of Large-Scale QoS-aware Service
Compositions”. Proc. IEEE International Conference on
Services Computing (SCC '10), June 2010, pp. 97-104.

[45] W. Jiang, C. Zhang, Z. Huang, et al., “QSynth: A Tool for
QoS-aware Automatic Service Composition”, Proc. 8th IEEE
International Conference on Web Services (ICWS 2010), July
2010, pp. 42-49.

[46] Web Service Challenge 2009. http://ws-challenge.george
town.edu/wsc09/ [Dec. 07, 2013]

[47] Y. Li, J. Huai, H. Sun, T. Deng, and H. Guo , “PASS: An
Approach to Personalized Automated Service Composition”,
Proc. IEEE International Conference on Services Computing
(SCC '08), July 2008, pp. 283-290.

[48] K. Chen, J. Xu, and S. Reiff-Marganiec, “Markov-HTN
planning approach to enhance flexibility of automatic web
service composition”, Proc. IEEE International Conference
on Web Services (ICWS'09), July 2009, pp. 9-16.

[49] Y. Bo and Q. Zheng, “A method of semantic web service
composition based PDDL”, Proc. IEEE International
Conference on Service-Oriented Computing and Applications
(SOCA '09), Dec. 2009, pp. 1-4.

[50] S. Kona, A. Bansal, M.B. Blake, and G. Gupta, “Generalized
Semantics-Based Service Composition”, Proc. IEEE
International Conference on Web Services (ICWS’08), Sept.
2008.

[51] SemWebCentral OWL-S Service Retrieval Test Collection,
http://semwebcentral.org/frs/?group_id=89 [Dec. 01, 2013]

[52] M.B. Blake, W.K.W. Cheung, and A. Wombacher, “WSC-06:
The Web Service Challenge”, Proc. 8th IEEE International
Conference on E-Commerce Technology and 3rd IEEE
International Conference on Enterprise Computing, E-
Commerce, and E-Services (CEC/EEE'06), June 2006, pp.
422-423.

[53] J. McGovern, S.Tyagi,M. Stevens, and S. Mathew. Java Web
Services Architecture. Morgan Kaufmann, 2003, pp. 35.

[54] N. Srinivasan, M. Paolucci, and K. Sycara, “Adding OWL-S
to UDDI, implementation and throughput”, Proc 1st
International Workshop on Semantic Web Services and Web
Process Composition (SWSWPC '04), July 2004.

[55] J. Luo, B.E. Montrose, A. Kim, A. Khashnobish, and M.
Kang, “Adding OWL-S support to the existing UDDI
infrastructure”. Proc. IEEE International Conference on Web
Services (ICWS '06), Sept. 2006, pp. 153-162.

[56] C. Pedrinaci, D. Liu, M. Maleshkova, et al., “iServe: a linked
services publishing platform”, Proc. Ontology Repositories
and Editors for the Semantic Web Workshop at the 7th
Extended Semantic Web Conference (ORES '10), May 2010.

[57] J. Farrell and H. Lausen, “Semantic Annotations for WSDL
and XML Schema”, 2007. http://www.w3.org/TR/sawsdl/
[Nov. 23, 2013]

[58] D. Fensel, F. Fischer, J.Kopecký, et al., “WSMO-Lite:
Lightweight Semantic Descriptions for Services on the Web”,
2010. http://www.w3.org/Submission/2010/SUBM-WSMO-
Lite-20100823/ [Dec. 09, 2013]

[59] D. Beckett, “RDF/XML Syntax Specification”, 2004.
http://www.w3.org/TR/rdf-syntax-grammar/ [Dec. 09, 2013]

[60] D. Beckett, T. Berners-Lee, E. Prud'hommeaux, and
G.Carothers, “Turtle - Terse RDF Triple Language”, 2013.
http://www.w3.org/TR/turtle/ [Nov. 20, 2013]

[61] MADSWAN YouTube channel, http://goo.gl/kK5PAV [Dec.
12, 2013]

[62] P. Birchmeier, “Semi-automated semantic web service
composition planner supporting alternative plans synthesis
and imprecise planning”. Diploma Thesis, University of
Zurich, 2007. http://www.ifi.uzh.ch/pax/uploads/pdf/publicati
on/1691/Birchmeier_Peter.pdf [Nov. 23, 2013]

[63] MADSWAN execution example files,
http://ai.uom.gr/gmarkou/Files/IJAIT/ [Dec. 12, 2013]

[64] Sample semantic web service description files,
http://ai.uom.gr/gmarkou/Files/OWL-S/ [Dec. 12, 2013]

[65] MADSWAN online prototype – alpha version,
http://madswan.uom.gr/ [Dec. 10, 2013]

[66] J.Hoffmann and R.Brafman, “Contingent planning via
heuristic forward search with implicit belief states”. Proc
15th International Conference on Automated Planning and
Scheduling (ICAPS '05), June 2005, pp. 71-80.

[67] A. Blum and M. Furst, “Fast planning through planning graph
analysis”, Artif. Intell.,vol. 90, 1997, pp. 281–300.

[68] I. Little, “Paragraph: A graphplan based probabilistic
planner”, Proc. 5th International Planning Competition (IPC-
5), 2006.

[69] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for
the Heuristic Determination of Minimum Cost Paths”, IEEE
Trans. Syst. Sci., Cybern., vol. 4 (2), 1968, pp.100–107.

[70] B. Bonet and H. Geffner, “Planning as heuristic search”, Artif.
Intell., vol. 129(1-2), 2001, pp. 5-33.

[71] E. Ziaka, D. Vrakas, and N. Bassiliades, “Translating web
services composition plans to OWL-S descriptions”, Proc. 3rd
International Conference on Agents and Artificial Intelligence
(ICAART ’11), Jan. 2011, pp. 167-176.

[72] OWL-S API introduction, http://on.cs.unibas.ch/owls-api/
index.html [Dec. 06, 2013]

[73] Petals BPM architecture overview,
https://research.petalslink.org/display/petalsbpm/Petals+BPM
+-+Open+source+BPMN+2.0+modeler [Dec. 12, 2013]

[74] S3 Contest: Retrieval performance evaluation of matchmakers
for semantic web services, http://www-ags.dfki.uni-
sb.de/~klusch/s3/html/2011.html [Dec. 4, 2013]

[75] A. Mesmoudi, M. Mrissa, and M. Hacid, “combining
configuration and query rewriting for web service
composition”, Proc. IEEE International Conference on Web
Services (ICWS '11), July 2011, pp. 113-120.

[76] G. Markou, “Heracleitus II - WSC Use Case Scenarios”.
Technical report. University of Macedonia, 2012. Available at

http://ai.uom.gr/gmarkou/Files/Mad_Swan_Use_Case_Scenar
ios.pdf [Dec. 12, 2013]

[77] D. Bryce, S. Kambhampati, and D.E. Smith, “Planning Graph
Heuristics for Belief Space Search”. J. Artif. Intell. Res, vol.
26, May 2006, pp. 35–99.

[78] Evaluation Domain and Problems, http://ai.uom.gr/gmarkou/
Files/EvaluationDomains/ 12/012/2013

131

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[79] N. Nilsson, Principles of Artificial Intelligence, San
Francisco, CA, Morgan Kaufmann, 1980.

[80] E. Hansen and S. Zilberstein, “LAO: A heuristic-search
algorithm that finds solutions with loops”, Artif. Intell., vol.
129 (1-2), 2001, pp. 35 – 62.

[81] J. Hoffmann and B. Nebel, “The FF planning system: Fast
plan generation through heuristic search”. J. Artif. Intell. Res,
vol. 14, Jan. 2001, pp. 253–302.

[82] Use case scenarios’ output files screenshots,
http://ai.uom.gr/gmarkou/Files/IJAIT/Scenarios(BPMNandSc
reenshots).rar [Dec. 12, 2013]

[83] J.T.E. Timm and G.C. Gannod, “Grounding and Execution of
OWL-S Based Semantic Web Services”, Proc. IEEE
International Conference on Services Computing (SCC ‘08),
July 2008, pp. 588-592.

