
84

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Vision towards an Open Electronic Wallet on NFC Smartphones

Glenn Ergeerts∗, Dries Schellekens†, Frederik Schrooyen∗, Rud Beyers∗, Kevin De Kock∗, and Thierry Van Herck∗
∗Department of Applied Engineering
Artesis University College Antwerp

Antwerp, Belgium
Email: glenn.ergeerts@artesis.be

†Department of Electrical Engineering, ESAT/SCD-COSIC and iMinds
KU Leuven

Leuven, Belgium
Email: dries.schellekens@esat.kuleuven.be

Abstract—Many recent initiatives indicate an evolution to-
wards an electronic wallet to perform all sorts of electronic
transactions, such as for example micro payments, loyalty, and
transport ticketing. Furthermore, the smartphone is emerging
as an indispensable tool for many, containing more and
more personal information. Hence, it seems like the ideal
medium for carrying the electronic wallet as well. The fast and
intuitive touch-and-go philosophy and the integration in mobile
devices, makes Near Field Communication (NFC) the perfect
technology for contactless electronic transactions. However, the
complex ecosystem is holding back the world-wide integration
of this technology in mobile handsets, resulting in a low market
penetration of NFC smartphones. In our work, we investigated
how an NFC-enabled smartphone can be used as an electronic
wallet in an existing solution that originally relied on DESFire
tags. We implemented a Java Card applet that is compatible
with the DESFire specification and explored how this applet
can be deployed on the different possible solutions for the
Secure Element (SE), such as an active Bluetooth sticker, a
SIM card, and a secure microSD card. Finally, the user-wallet
interface was examined carefully, more specifically in terms of
accessibility of the wallet content for the different smartphone
platforms. Based on the overall experiences and results the
final conclusions upon the vision towards an open electronic
wallet of the future were drawn.

Keywords-NFC; electronic wallet; secure element; SCWS;
Java Card; DESFire; smartphone.

I. INTRODUCTION

Today a lot of multinationals including Google, Apple,
and Microsoft are involved in an electronic wallet project
one way or another. Because of the difficult ecosystem, ev-
erything is kept rather closed, which is not very stimulating
for the penetration and use of it. This paper offers a more
open solution and gives an overview of what is possible and
what is not.

Implementing an electronic wallet on smartphones offers a
lot of advantages compared to a classic wallet. For example,
it offers a solution for containing all todays electronic pay-
ment cards; so in case of a payment transaction a customer
only needs to select the appropriate payment method. It
saves a lot of time and it can be used to hold much more, for
instance loyalty cards, drink/entrance vouchers and coupons.

In the case of a festival or an event, visitors are required to
obtain drink and food vouchers before they can make an
order. This makes them lose precious time by standing in
line to exchange their money for vouchers. With the aid of
their smartphone, they are capable of carrying out over-the-
air transactions and consultations. So essentially, we could
throw away our wallet and replace it with our personal
smartphone, which we carry already with us all the time
now [1].

Mobile and contactless payment systems are finally get-
ting the push in the back they deserve through the upcom-
ing of NFC [2] in handsets, a contactless communication
technology designed for electronic payments. Several big
companies and research institutes stated that in 2011 up
to 50 million NFC handsets were shipped and about 20%
of the Points of Sale that were sold had NFC support [3].
These numbers are expected to emerge to 800-1000 million
NFC-enabled handsets and up to 80% for Points of Sale
with contactless support. Most mobile phones will be NFC-
enabled through the use of an integrated NFC controller
while others will use a more intermediate solution like a
NFC-enabled microSD or active NFC sticker; this paper will
discuss all these solutions in more detail. The total market
size for mobile payments with NFC is targeted at 680 billion
dollar in 2016 [3].

The electronic wallet, that is being developed and tested
in the EVENT project funded by the Flemish government,
covers a broad range of solutions for the user, from NFC tags
to NFC-enabled smartphones. The implemented solution is
meant to be open, generic and hybrid. The openness refers
to the fact that the wallet will be able to hold several types
of payment solutions: existing initiatives such as PingPing
(Belgacom) and PayWave (VISA) can be plugged into the
wallet, at least from a technical point of view. The design of
the wallet will be generic, allowing for usage in a number of
different settings. Examples include payments (large as well
as small amounts), ticketing, coupons, etc. The hybrid aspect
is referring to the fact that value can be stored on the card
(offline) as well as on a server (online). Both approaches



85

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

have their advantages, but this paper will mainly focus on
the offline wallet. In the online use case, the wallet is only
containing some sort of identifier for authentication and the
user interface afterwards, is more or less comparable with
the online banking solutions today. Unlike in the offline
case, there is no direct link needed between the SE and
the OS of the users phone. This will simplify the user
interface issue for consulting the wallets content to a plain
web interface, though it makes the payment infrastructure
completely reliable on a network connection. Although this
will be perfectly acceptable in fixed environment, most of
the big event organizers, either professional or leisure, will
not want to take the risk.

The security issue is also addressed briefly. The wallet
has to be deployed on a SE. Since payment is a critical
application, a secure solution must be provided and also the
consumer needs to be convinced that the system is at least as
safe as the traditional payment methods used today, meaning
there is no room for tampering with the data that represents
money or tickets that were bought. The possible choices of
will be discussed more thoroughly later in this paper.

As mentioned earlier the wallet itself can reside both
on a passive DESFire tag or an NFC-enabled device and
it relies upon terminals equipped with NFC technology to
initiate the actual transactions. The latter holds a number
of intrinsic advantages over tags such as allowing users to
view and interact with the contents of the wallet, whereas
tags rely solely on terminals instead, which can be deemed
to be a shortcoming. Since current terminals are intended to
be compatible with only passive DESFire tags, one of the
goals is that the mobile phone counterpart adopts the current
protocols used between terminals and tags. A DESFire
applet will be implemented and deployed on a Java Card
runtime environment to ensure backwards compatibility with
the currently used system.

Finally, there is a lot of differentiation between the various
handsets currently available on the market. This, in combi-
nation with the difficult accessibility of the Secure element,
means that the graphical representation of the content of the
wallet is quite a challenge. This paper can be divided in two
large sections: Section II will highlight the interface between
the wallet and the terminal, whereas Section III focusses on
the graphical user interface. Finally, in Section IV we will
draw some conclusions.

II. TERMINAL INTERFACE

In this section, we will describe the interface between the
terminal and the wallet. In Section II-A we will describe
how to achieve backwards compatibility with existing tags.
Next in Section II-B, we will discuss the development of
a DESFire applet. Finally, we will give an overview of the
different deployment options in Section II-C.

A. Terminal interface compatibility with passive tags

In earlier work [4], we implemented an electronic ticket-
ing solution based on MIFARE Classic tags. Even though
most secure elements of NFC-enabled smartphones emulate
a MIFARE tag, we decided not use this technology in the
EVENT project, primarily because the security of MIFARE
Classic has been seriously compromised [5], [6], [7].

We selected the MIFARE DESFire EV1 product family
from NXP Semiconductors instead, because it offers a
flexible file system and strong cryptographic mutual authen-
tication. DESFire tags are popular for public transportation,
staff or student identification, building access control and
canteen payments, and they are available with a non-volatile
memory size of 2 to 8 KB. We believe that this technology
is well suited for the realization of an open hybrid electronic
wallet.

DESFire tags support up to 28 applications and every
application can store up to 32 files. Consequently the same
physical tag can be used for multiple applications, such
as professional or leisure events, public transport, loyalty
programs for supermarkets, etc. Files will typically be used
to store an identifier (e.g., to identify a customer in a loyalty
program or to link to an online banking account), an offline
stored counter that represents an amount of vouchers, or a
transaction log.

Another attractive feature of the DESFire standard is its
fine-grained access control mechanism: up to 14 different
keys can be associated with an application and access rights
to the files within the application can be enforced based
on these keys. Within the EVENT project we implemented
drink/food vouchers as DESFire value files and use separate
keys to authorize the credit and debit operation on these files.
Terminals at the booths where vouchers can be purchased,
will authenticate to the tag using the key that authorizes
the credit operation, whereas terminals at a bar or a food
stand, will use the key that grants the debit right to redeem
a voucher. In the project we decided to make the credit
key unique for every tag, by using the tags UID (unique
identifier) in a key diversification function, but to keep
the debit key fixed for the event and the same for all
tags. This design choice was made because of a trade-off
between transaction speed, scalability and security. On the
one hand debit transactions are fast and scalable as terminals
will always use the same key. On the other hand credit
transactions are a bit slower as terminals must derive the
diversified, tag specific key at the start of the transaction,
but they offer a high level of security. As for the consult
key we decided to leave the security open, which implicates
that anybody holding an NFC mobile device can perform a
consultation operation. In our opinion this might stimulate
the demand for an NFC-enabled smartphone, since the early
adopters will demonstrate the possibilities to their peers. If
desired, or in case harm is caused, you can easily protect



86

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

this operation as well of course.
As motivated in the introduction, it is crucial that our

smartphone implementation of the electronic wallet provides
an interface to the terminals that is fully compatible with the
regular tags. The DESFire standard supports the wrapping of
native commands in ISO7816 APDUs (Application Protocol
Data Units), which makes it possible to implement the DES-
Fire protocol on any contactless smart card. The terminal
software that we developed in the EVENT project uses
these wrapped ISO7816 APDUs, instead of native DESFire
APDUs, to ensure that the communication interface to tags
and smartphones is identical.

B. Development of DESFire applet

In 2010, Gemalto announced the world’s first implemen-
tation of a transport application compliant with the DESFire
specification in a SIM (Subscriber Identity Module) or UICC
(Universal Integrated Circuit Card) card [8]. This suggests
that Gemalto has already developed a Java Card applet to
emulate a DESFire tag.

We decided to make our own implementation of the
DESFire specification in Java Card, because we wanted
to explore different options to visualize the content of the
emulated DESFire tag to the user (see Section III). In some
approaches for the user interface, we required access to the
source code of the DESFire emulator, e.g., when a second
applet is used to read the content of the electronic wallet
using inter-applet object sharing.

Within the EVENT project Jorge Prado made an initial
proof-of-concept implementation of the DESFire specifica-
tion in Java Card1 and his results were published in [9].
Afterwards Dries Schellekens independently implemented a
DESFire applet, with a clearer structure, a more mature code
base and a proper documentation. This second implementa-
tion was used in the remainder of the EVENT project and
it will be described in this work.

The main design criterium during the design of the applet
was compatibility with the DESFire specification. We also
tried to write secure and reliable code, that is protected
against card tear (by using the transaction functionality of
the Java Card runtime enivronment), and we did some basic
performance optimizations (e.g., keeping certain session data
in RAM memory). Since the DESFire EV1 specification is
pretty extensive and rather complex, the decision was made
to only implement the subset of the specification that is
useful within our project.

We implemented all the card level commands, which are
used for basic configuration of the tag and to create or
delete applications on the tag, and all the application level
commands, which include the listing of all files within a
selected application and the creation and deletion of files.

1This implementation is available as open source software on http://code.
google.com/p/java-card-desfire-emulation

At the file level we fully support value files, as these are
used to store vouchers in the electronic wallet and partially
support standard files,2 but we do not support record files.
As explained earlier, DESFire support up to 28 applications
per card and 32 files per application. In theory we could
have supported more applications with our emulator, but we
respected this limitation.

On Java Card it is recommended [10] to construct all
necessary object instances once during applet installation
and to avoid constructing objects dynamically at runtime.
Since not all Java Card runtime environments support a
garbage collector, one can avoid out-of-memory situations
by ensuring no additional objects are constructed at runtime.
However, we opted not to initialize the maximum of 28
DESFire applications, 32 files per application and 14 keys
per application since in practice only a fraction of these will
be used. For this reason we instantiate the application, file
and key objects dynamically at runtime. If the specific Java
Card runtime environment supports it we ask the runtime
environment to garbage collect the objects when they should
be removed. If garbage collection is not supported we
logically delete the object; in this case they remain in
memory but they are no longer accessible.

For compatiblity reasons we install the applet using the
same Java Card AID as registered by NXP. While selecting
an AID on a target before doing a transaction is not strictly
necessary on a native DESFire tag, it may be necessary on
a secure element where multiple applets are installed or on
a secure element where we cannot install an applet as being
the default selected applet (e.g., on a UICC the SIM applet is
already installed as default selected applet). For this reason
our terminals are programmed to always select the DESFire
AID before doing a transaction.

DESFire supports two different authentication schemes.
The legacy authentication scheme is a challenge-response
protocol based on 3DES in a non-standard cipher block
chaining (CBC) mode and the standard authentication
scheme supports both 3DES and AES in a standard CBC
mode. Standard CBC decryption uses the block cipher in
decryption mode, but the legacy DESFire CBC decryption
uses the block cipher in encryption mode. This signifies
that the CBC decryption library from the Java Card runtime
environment cannot be used. In our work, we use legacy
authentication because this allows for a simpler implementa-
tion, but we plan to migrate to standard authentication in the
future. Note that a lot of the secure elements that we tested,
lack AES support. This is not a problem for our project
however, since we are using 3DES, which is supported by
most secure elements.

The DESFire specification supports three communication
settings, namely plain, MACed and fully encrypted. In the
MACed setting, a message authentication code (MAC) value

2In our implementation the size of the standard file is limited.



87

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

is appended to every response from the tag. This MAC
value is calculated using the CBC-MAC algorithm in the
case of a legacy authentication session and the CMAC
algorithm for standard authentication sessions. We made an
implementation of the CMAC scheme, as this is not sup-
ported natively by Java Card. In the fully encrypted setting,
a CRC16 or CRC32 checksum is added to the plaintext
message for data integrity, and subsequently the message
is encrypted. The Java Card architecture supports both these
algorithms natively. However, because of endianess issues
the CRC16 checksum from Java Card is not compatible
with the version from DESFire. Furthermore, most Java Card
runtime environments that we tested, do no support CRC32.
Therefore we had to make our own table based software
implementation for both these checksum algorithms.

While not fully covering the DESFire specification yet
we managed to implement the DESFire applet for all the
functionalities we need, in about 3600 lines of Java Card
code.

C. Deployment possibilities on SE

According to Mobey Forum,3 “The SE is a dynamic
environment, where applications are downloaded, person-
alised, managed and removed independent of each other
with varying life cycles.” The requirements are portability
(if handset is changed, applications need to be available on
new phone again), security (certified by payment industry
or trusted third party), multi-application (each application
provider has access to its own security domain in the SE),
and remote management (download of tickets or top-up over-
the-air (OTA) should be possible). The SE can both be
accessed by the baseband controller (internal) or by the NFC
controller (external).

The biggest issue, and main reason for the relative slow
breakthrough of NFC, is who is going to control or manage
the SE. There are in fact four possibilities, again all with
their advantages and disadvantages:

• Handset manufacturer centric approach: In this
approach the SE is integrated internally in the phone
and the SE is managed by the handset manufacturer. In
our opinion this is the least feasible option to deploy
our applet, since it is seriously lacking the portability
requirement.

• MNO centric approach: The Mobile Network Oper-
ators (MNOs) are already service providers and can
therefore easily add a payment service to their list. In
this approach, the SE will reside on the UICC (SIM),
which fulfills the portability requirement.

• Service provider centric approach: External service
providers e.g., Visa and Mastercard are very powerful
players in the payment industry and always want their
brand to be visible. In this approach, the SE is located

3http://www.mobeyforum.org/

on an external memory chip such as a microSD card
or as an active sticker.

• Neutral third party: Because of the complexity of the
NFC eco-system, a fourth option imposes itself, where
an independent third party manages the SEs.

Figure 1 visualizes the three possible locations for a SE
in an NFC-enabled smartphone. Additionally there are two
more options to add NFC functionality to legacy phones. In
the remainder of this section we will discuss these five types
of SEs and our experience with deploying the developed
DESFire applet on them.

Figure 1. Possible SE locations

1) Embedded Secure Element: Smartphones that have a
non-removable, integrated secure element, which is con-
nected to the NFC controller, fall into this category. The
NXP PN65 chip, which for example is used in the Google
Nexus S, the Samsung Galaxy Nexus and the Samsung
Galaxy S III devices, even embeds the NFC controller chip
(PN544) together with a SmartMX secure element onto one
chip. Other smartphones have a separate NFC controller and
secure element.

Most NFC phones with an embedded secure element
available today cannot be used to deploy the DESFire applet,
because the embedded secure element is locked and can
only be controlled by the manufacturer. For example on the
Google Nexus S and the Galaxy Nexus the secure element
is owned by Google and used for its Google Wallet service.
The secure element embedded on the Samsung Galaxy SIII
on the other hand is owned by Samsung itself. The relatively
old Nokia 6212 feature-phone contains an embedded secure
element on which we successfully deployed the DESFire
applet onto.

2) Universal Integrated Circuit Card: Most smartphones
already include a secure element in the form of a UICC,



88

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

which is normally issued by an MNO and contains the
SIM applet that enables secure authentication on the mobile
network. To be able to use this secure element for NFC
applications the SWP (Single Wire Protocol) standard was
defined. This standard specifies how the communication
between the NFC controller and the UICC works. To able
to use this setup one has to use a SWP compatible UICC
card together with an NFC smartphone, which uses SWP to
communicate with the secure element.

Most UICC cards issued today by MNOs are not SWP
enabled, probably caused by a lack of applications and
the increased price compared to regular UICC cards. From
Gemalto we received a UICC card, which supports SWP for
research purposes. To test this setup we used the Android-
based Nexus S smartphone, which supports SWP. When
operating in card emulation mode the NFC controller uses
the embedded secure element by default.

It is possible however to patch the libnfc-nxp library,
which Android uses to communicate with the NFC con-
troller, in such a way that the NFC controller is instructed
to use the SWP link to access the secure element, which
then is the UICC. After patching the code we can rebuild
the Android OS and flash the device with the new ROM.

Initial testing shows that we can access the DESFire applet
on the UICC over the NFC interface. There is still a slight
problem with the patch that causes the reader to sometimes
detect a Felica target instead of the expected ISO14443A
target.

We can conclude that while this is certainly not a feasible
method for regular user to apply, this shows that it should
be possible for a MNO to decide to distribute SWP enabled
UICC cards and a selection of patched smartphones to its
subscribers.

3) Secure microSD card: Secure elements in the form
factor of a microSD card are commercially available. Unlike
the NFC UICC solution where there is the standardized SWP
communication link between the NFC controller and the
UICC, there is no such standard communication link to the
SD card. There is an effort in Taiwan where a customized
HTC device is used that has an SWP-SD link, however
this device is not internationally available. In absence of
such a direct communication channel between the NFC
controller and the secure element a workaround could be
developed in the form of a regular application running on
the phones operating system, which can access both the NFC
controller and the secure element, effectively acting as a
proxy relaying APDU messages between both components.
Besides the performance being sub-optimal this setup also
requires the relaying application to be running constantly,
which can on the other hand be more secure for the end
user. Since the application can easily by modified extra care
must be taken that the system is not subject to man-in-
the-middle attacks by ensuring that all data passing through
the application is fully enciphered. A secure system should

Figure 2. DeviceFidelity In2Pay

always be insensitive against man-in-the-middle attacks to
prevent an attack on the radio interface, however such an
attack is harder to achieve in practice than executing the
attack against the software component.

4) NFC-enabled microSD card: An alternative to this is
the use of microSD cards, which have an embedded NFC
controller chip that will grant NFC functionality to the host
device. The antenna itself can be either external or integrated
in the package. Additionally, microSD cards use similar
read/write functions as integrated NFC handsets.

Both have their advantages and disadvantages. An NFC
microSD card is basically plug and play, thus eliminating
difficult setups, but requires the handset to have a microSD
slot.

The DeviceFidelity In2Pay product (see Figure 2) pro-
vides a microSD based secure element with integrated NFC
antenna and external range extender (which is to be glued
on the inside of the back cover), which could turn many
smartphones with microSD slot into NFC smartphones [11].
The related iCaisse product is a case designed for iPhone.
The case contains an NFC antenna, and a slot for the In2Pay
microSD card, which together make an iPhone NFC capable.

For Android devices we also have rather bad experiences
with the NFC SD card range extender. This should make it
possible for an Android smartphone with a microSD slot,
to work in the different NFC modes by amplifying the low
power RF field generated by the SD card, using two tuned
antennas. Even with the supported smartphone types, and
matching back covers, the amplifier did not seemed to be
reliable enough for our use case.

5) Active NFC bluetooth sticker [12]: Active NFC stick-
ers provide a way to gain NFC functionality for any
Bluetooth enabled smartphone. NFC stickers are contact-
less cards/tags designed to be glued on the back of a
mobile phone and are designed to offer a solution to the



89

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

current complex NFC ecosystem that prevents a world-
wide integration of NFC technology in mobile handsets. A
ferrite backing layer prevents distortion to occur between the
components of the phone and its radio signal. The sticker
also has an internal antenna installed for communication
purposes. The NFC sticker on the other hand only needs
a Bluetooth radio, which is a very common feature in most
of the mobile phones currently produced. The drawback is
however that these are less user friendly to setup compared
to NFC MicroSD cards. The sticker has been designed to be
as small as possible. A small low voltage battery is used to
power the internal Bluetooth chip. This chip is responsible
for setting up a connection with the handset and has the
capability of making between 300 and 500 connections
before the battery is drained. The battery itself can be
wirelessly recharged using a specialized USB-charger.

Figure 3. MyMax NFC sticker architecture

The MyMax sticker can act either passively or actively
(see Figure 3). An active sticker will rely on its own internal
power source, while a passive sticker will use an emitted
magnetic field from an external reader to draw power from.
Furthermore, the sticker can go into 3 different operation
modes; the first mode is a passive mode where the sticker
will act as a passive NFC tag. An external reader can be used
to read and/or alter the contents of the NFC chip/internal SE
on the sticker. It is important to note that a sticker operating
in this mode will work completely independent from the
handset that it is attached to (i.e., the handset is not required
to be powered). The second mode requires that both the
MyMax sticker and its corresponding mobile phone draw
power actively from an internal power source. This mode
allows a connection to be established between the sticker and
the mobile phone. Consequently, the content of the internal
SE/NFC chip can be read or changed by the handset through
this link. The third mode takes advantage of the internal
reader chip of the sticker, which makes it possible to create
a connection to an external tag and allow the mobile phone
to read or change the contents of this tag.

III. USER INTERFACE

Mobile handsets offer a very large advantage in terms
of user interactivity when compared to passive tags. The
former comes equipped with a functional keyboard and
screen and grants the possibility of an interactive interface
for the mobile electronic wallet.

A user interface (UI) provides the user a quick overview of
the items (both online and offline) available on his electronic
wallet. The user should be able to browse through the
coupons, loyalty cards etc, and consult the remaining value
of the vouchers. Additionaly, it should be possible to buy
new items or top up existing vouchers OTA using the 3G
connection. Ideally this UI should be available across the
different major smartphone platforms.

Section III-A provides an overview of the different pos-
sibilities for developing a UI that interacts with the wallet
on the SE. In Section III-B and III-C we will describe the
implementation of two possibilities.

A. Options for the user interface

We identified the following possible interface types: a
native application, a SIM Application Toolkit (SAT) applet
and a Smart Card Web Server (SCWS) servlet.

A native application for a specific platform like Android
has the disadvantage of not being cross-platform, but is the
most flexible in terms of interacting with the hardware like
the NFC controller. The cross-platform issue can be partly
diminished by making use of framework like PhoneGap4,
which allows the generic UI logic to be written in HTML
and JavaScript to allow reuse over different platforms. The
platform specific parts like interfacing with the hardware are
provided by plugins per platform.

The SAT on the other hand offers more interoperability
since everything is stored on a SIM card, which is useable
by most handsets and is furthermore deemed to be very
secure. While this may sound tempting to use, the downside
is that it lacks seriously in terms of visual interface options.
Recently more and more smartphones are not including
support for SAT interfaces anymore, probably because of the
poor usability and the fact that SAT application never were
really successfull. For these reasons we did not implement
a SAT-based solution.

A rather new and promising option is the use of a SCWS
installed on a Java Card. A SCWS is a HTTP 1.1 web server
embedded on a Java Card and is available on some secure
elements since the Java Card 2.2 version, offering a device
independent way of the management of personal user data
in a secure fashion. This option still puts the application
on the SE for security and interoperability purposes. The
difference is however that a relatively good HTML interface
can be offered by providing static and dynamic content to the
browser of a mobile phone through the http://127.0.0.1:3516/

4http://phonegap.com/



90

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

address, which is OS independent. If SCWS applications
become popular it is to be expected that a closer integration
in the smartphone’s OS will be provided. For Android a
patch [13], which enables the browser to contact the SCWS
using the Bearer Independent Protocol instead of the normal
TCP/IP stack, is currently required. The application and data
can be additionally managed externally through an over-the-
air link using web protocols. A secure tunnel will be opened
between the SCWS on the Java Card and the OTA platform,
which is used for the administration of the SCWS.

The last interface type seems to be the most beneficial
in terms of the electronic wallet project, because of its
advantages in both maintaining a good visual interface as
well as the interoperability, security and user friendliness
aspects. However, the disadvantage of the SCWS is that most
UICC deployed today do not include support for SCWS. The
price of an UICC with support for SCWS is still substantially
bigger than a normal UICC. Combined with the fact that
there are no compelling SCWS applications yet there is no
reason for MNOs to issues the more expensive UICC to its
subscriber at the moment. In the next section we will go
into more details about a SCWS implementation.

B. User interface based on Smart Card Web Server

The content of the event wallet is displayed in the
interface on the mobile phone of the user. This HTML
based interface can be divided into a number of interface
components that are individually requested from a SCWS
residing on the Java Card through various HTTP requests.

The servlet that is responsible for providing the interface
with the necessary data is running on the SCWS and will
communicate using the Shareable Interface Objects (SIO)
mechanism [14], [15] to the DESFire emulator on the Java
Card. This emulator is another applet residing on the Java
Card and will (after authentication) provide the servlet with
the desired data. The servlet will then, based upon the
collected data, give an answer to the previously made request
by the interface.5

Updates to the wallet content on the emulated DESFire
card are done mainly through external point of sale terminal,
which are available on either the event itself or through an
OTA purchase. The design of a mobile interface requires
some special attention, more so than its workstation coun-
terpart.

1) Application interface: First, there is a large differentia-
tion between different cell platforms, each whom presents its
own interface. Secondly, physical obstacles such as different
screen sizes, aspect ratios and physical buttons need to be
taken into account as well. Lastly, there is the user aspect,
which demands that an interface needs to be intuitive and
easy to learn.

5For a SAT-based UI, the method to access the DESFire applet is the
same, since both are Java Card applets running on the same SE as the
DESFire applet itself.

We made the decision to use a SCWS to provide a
consistent interface by taking full advantage of the mobile
phone browser capabilities, which is tasked to render an
HTML based interface for the wallet application. This in-
terface is theoretically universally applicable to any mobile
phone that supports Java Card. Recent developments like
jQuery Mobile6 and PhoneGap make it possible to build
native looking and responsive HTML and JavaScript-based
applications.

The design of the interface of the application itself is
based upon known design principles [16], which dictate how
information on a page is to be presented to its user. This
includes but is not limited to bringing information to the
top of the interface by limiting the amount of links a user
has to go through thus, minimizing navigation or bringing
a collection of relevant information together, based on the
desired intent of the user.

2) Interface structure: The wallet interface consists of
three main tabs that allow a user to browse through a
number of subtabs. The main interface tabs are the ”Events”,
”Wallet” and ”Settings” tab.

(a) The event tab (b) The wallet tab

Figure 4. The user interface

The ”My event list” subtab (Figure 4(a)) is used to list all
the possible events that a user currently has access to. This
list is kept up to date through a connection with a backend
server. A number of possible items are linked to each specific
event and are shown in the ”My wallet” subtab (Figure 4(b)).
Items can be bought and/or spend using the local terminals
or through OTA functionality.

The settings tab allows for various options, including
setting the number of listed items and/or events on the events
and wallet tab pages. The interface is resolution independent
and can thus be used on a number of different handsets. The
layout can additionally be changed altogether depending on
the preferred style of the user.

Finally, the wallet tab includes the option of purchasing
items OTA. The purchased items will be listed on the ”My

6http://jquerymobile.com/



91

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

wallet” subtab as ”reserved items”, meaning that they still
need to be synchronized by specialized terminals called
”sync points”. The main advantage of this is that the wait
time for the user at a terminal will be cut down significantly
since a user only has to touch the terminal to transfer the
previously purchased items over the NFC link.

3) Data flow: The next part of the application consists
of two elements, namely the GUI Servlet and the DESFire
emulator, which are both tasked with the provision of the
actual data to the interface mentioned earlier.

A GUI Servlet is a Java Card application that runs on the
SCWS and will act both as a server and a client when data
is requested by the interface, since it will serve information
to the interface after it has requested the necessary data from
the DESFire applet.

4) Retrieval of data: A backend server forms the back-
bone of the system, because all the event dates, event names
and item names are requested from this server. Providing
a page in the interface with values requires the servlet to
request a list of AIDs and FIDs first from the DESFire
emulator.

These IDs represent the various events and items tied to an
event respectively and are required to be translated by the
back-end server to their actual corresponding names. The
item values shown on the wallet page are collected by using
an AID to select a specific event on the DESFire emulator
and then request the value of a specific item of that event
using its FID.

Figure 5. Retrieval of an item value

Every request done by the interface will thus trigger
a series of steps in the background of the application

(Figure 5). The GUI servlet will perform a SIO method call
to select the AID that is linked to the desired event. The
emulator will respond with a confirmation message and the
actual file value will then be requested next by using the
FID of a specific item. The File value is passed back to the
servlet, which will pass it to the interface for visualization.

The backend server and its data have been temporary
replaced in our project by a number of vectors that store the
different names and dates mentioned before in a hardcoded
manner. The reason for this is identical to the stub in that
it is caused by the fact that the EVENT project is still in a
relatively early stage. We implemented and tested the SCWS
using an emulator, since a SCWS enabled SE was not in our
possession at the time of writing.

C. User interface based on a native application

The mobile application needs to communicate with the
DESFire applet on the secure element using the same
APDUs that are used by the terminals. The problem here
is that there is not yet a standard API available in the An-
droid SDK to communicate with a secure element from an
application. In 2011 Giesecke & Devrient (G&D) proposed
patches to the Android Open Source Project that enable a
simple interface for a developer list all the supported and
available secure elements, and to send APDUs to a secure
element [17]. This SmartCard API is an implementation
of the SIMalliance Open Mobile API [18] that enables an
Android application to communicate with a secure element.
This SmartCard API can be extended with plugins (named
terminals), which implement support for accessing a specific
secure element type. By default terminal types are included
for ASSD (Advanced Security SD Card) secure elements,
UICC and embedded SmartMX based secure elements. The
plugin architecture allows us more secure element types
like the MyMax sticker or the DeviceFidelity microSD card
to be accessible from applications using the same standard
SmartCard API, thus providing an abstraction layer around
the specific secure element.

Figure 6 shows the different possibilities of communicat-
ing with an SE from an application.

1) G&D Mobile Security Card: This SD card based
secure element was used to establish a working link with a
secure element through the SmartCard API. Once this link
was established communication with the DESFire emulator
could be done directly, because it was installed as default
selected. This setup was tested with a Samsung Galaxy Y, a
smartphone without NFC, to get started on the graphical user
interface for the application and secure element communi-
cation. The terminal interface could not be tested with this
secure element, because of the absence of an NFC controller
and antenna.

2) DeviceFidelity In2Pay and iCaisse: Accessing the
In2Pay secure element happens with the In2Pay API that
is available for all major smartphone operating systems. We



92

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Native
App

DESFire
APDUs

Terminal

DESFire
APDUs

DESFire 
applet

User
(a) Native application

GUI 
ServletBrowser

HTTP
requests

Terminal

DESFire
APDUs

DESFire 
applet

SIO
requests

User
(b) SIM Toolkit Application

GUI 
ServletBrowser

HTTP
requests

Terminal

DESFire
APDUs

DESFire 
applet

SIO
requests

User
(c) SCWS servlet

Figure 6. Interface types

tested this on the Android OS, and on iOS (making use of the
iCaisse). Communication with the DESFire applet through
this API gave us timeout errors on some APDU commands,
while accessing the applet over the NFC interface worked
as expected.

Looking to resolve this issue we established that com-
munication time with the DESFire emulator on the Device-
Fidelity card took longer than when deployed on MyMax
NFC sticker, using Jload. The command to retrieve a list
of all applications that the DESFire emulator contains, took
about 312 ms while deployed on the sticker it took only 140
ms. Similar differences were found for other commands.
Remarkable was that a select command on an application
on the DESFire emulator took 203 ms and gave no time
out error, whereas the command to get all value files from a
application, when only one was available, took only 16 ms
more. When looking closer we established that the command
time to get the file value, was only 94 ms while it took 125
ms to select the corresponding application.

3) Active NFC sticker: The Twinlinx MyMax sticker
comes with an Android API, which provides applications
any easy interface towards the sticker. The API allows the
application developer to set up the Bluetooth connection,
to connect to the internal SE and transmit APDUs. There

are some usability aspects that cause this solution to be
more complex and cumbersome for a user than an integrated
solution however. Before the first usage one has to set up the
Bluetooth pairing manually. Before executing a transaction
the user has to remember to turn the sticker on. The
sticker will shutdown automatically after a short period, to
conserve battery. We perceived accessing the sticker from
the application as rather slow and not user friendly. The next
version of the sticker and API will have a feature that allows
the phone to vibrate using a certain pattern, which will be
detected by the sticker so it can turn itself on. We have
not yet received this new version, but this could enhance
usability.

4) UICC: To build a UI to interact with the wallet stored
in the DESFire applet on our UICC, we need to be able
to communicate with the UICC using APDUs. Currently
there are several obstacles preventing us to do this on An-
droid. The Android operating system runs on the application
processor, where the UICC is usually connected to the
modem or baseband processor. The OS can communicate
with the UICC by using a small set of AT commands
that are supported by the baseband processor. The 3GPP
27.007 specification [19] defines the following additional AT
commands that enable generic SIM access using APDUs:



93

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Android UICC access overview

• AT+CSIM: Generic SIM Access
• AT+CCHO: Open Logical Channel
• AT+CCHC: Close Logical Channel
• AT+CGLA: Generic UICC Logical Channel Access
We do not know of an Android device that has a baseband

processor supporting the mentioned AT commands at the
moment. These changes also need to be made in the Android
Radio Interface layer (RIL), this is an abstraction layer
between the Android telephony manager services and the
baseband modem. RIL exists out of two parts (see Figure 7):
the RIL daemon, which is a wrapper to have a standardized
interface to the second part, and a vendor specific library. At
the moment, only a subset of the SIM ToolKit (STK) [10]
is available and transparent APDU communication with
the UICC is not allowed. The AT Commands that are
needed [20] are specified by the RIL extension specification
from G&D [21].

The vendor specific RIL is a closed sourced component
that cannot be patched to allow generic APDU access.
However, the SmartCard API project contains a patch for
the Android emulator that allows applications running in the
emulator to access a UICC that is attached over a Personal
Computer/Smart Card (PC/SC) interface to the host com-
puter. The SmartCard API also proposes a patch to Androids
Telephony API, extending this API with methods for SIM
access. Since accessing the UICC using the official RIL way
seems not feasible today without extensive manufacturer
support we wanted to try to communicate with the UICC
via the NFC controller. This would be theoretically possible,
by adapting the libnfc-nxp driver, if the NFC controller chip
(e.g., PN65) would allow this. We did not succeed in getting
access to the PN65 datasheet from NXP however.

IV. CONCLUSIONS

In this paper, we demonstrated that backwards compat-
ibility with a tag-based solution can be accomplished on
NFC-enabled smartphones. We have developed a JavaCard

applet that implements the DESFire specification, and we
have tested the applet on many different physical SEs. For
our use case, which starts from an existing payment infras-
tructure, no changes were needed to the terminal software,
proving the backwards compatibility. Consequently, if NFC
technology becomes widely available in the nearby future,
the payment infrastructure that is already in place, can
be reused. Although no extensive studies were performed,
the smartphone solution gives satisfactory results regarding
transaction performance.

In contrast, accessing the wallet content with a UI re-
mains a challenge. We have identified three approaches to
interact with the DESFire applet. We had limited success
with developing a native Android application to access the
DESFire applet on an external SE (such as a microSD card
or the bluetooth sticker). However, we were unable to test a
solution using an embedded SE, because the DESFire applet
cannot be deployed on the SE without support of the handset
manufacturer. Furthermore, in the case of a UICC-based SE
the vendor specific radio interface layer prevents access to a
custom applet on the UICC. Again for this solution to work
support from a handset manufacturer is required.

The SAT UI approach appears technically feasible on
selected devices. However, this text-based solution does not
provide a modern UI experience and therefore we did not
investigate this option in our work.

A SCWS-based UI seems a promising approach and we
showed the feasibilty in emulation. However, the commonly
available SEs do not yet support SCWS. Additionally, sup-
port for SCWS is lacking in today’s smartphone OSes.

From a users perspective, the NFC UICC appears the most
suitable solution because it allows to transfer the electronic
wallet from one phone to another. The same applies to a
microSD based solution, but not all devices are equipped
with a microSD slot. Embedded SEs lack this transferribility
feature, which is beneficial as in our use case vouchers are
stored offline on the SE; for an online scheme this is not a
strict requirement.

Finally, we would like to point out that, while the devel-
opment of an contactless electronic wallet in a smartphone
is technically feasible, the main hurdle preventing market
deployment of such a system is the difficult NFC ecosystem.
There are too many SE options and it is unclear which
stakeholder is in control of the SE.

ACKNOWLEDGEMENTS

This work was supported in part by the Research Council
KU Leuven: GOA TENSE (GOA/11/007), by the Flem-
ish iMinds projects, and by the European Commission
through the ICT programme under contract ICT-2007-
216676 ECRYPT-II. In addition, this work was supported
by the Flemish Government, IWT SBO MobCom and IWT
Tetra EVENT.



94

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The Technology Transfer (Tetra) program of the IWT, the
government agency for Innovation by Science and Tech-
nology7, is meant to help Flemish companies and research
centres in realizing their research and development projects.
Together with the support and feedback from Antenor,
Buzy.be, easyFairs, Events Catering Bevers, Event Drive,
First of Kind Solutions, Mobile For, and TwinLinx both
research groups managed to finish the EVENT project
successfully by giving the partners a well-founded vision on
the electronic wallet of the future through live test events in
the field.

REFERENCES

[1] K. De Kock, T. Van Herck, G. Ergeerts, R. Beyers,
F. Schrooyen, M. Ceulemans, and L. Wante, “Building the
bridge towards an open electronic wallet on NFC Smart-
phones,” in MOBILITY 2011 - Barcelona, Spain, 2011.

[2] N. Forum, “Whitepaper: Essentials for suc-
cessful NFC Mobile Ecosystems,” p. 24,
2008, [accessed 10-July-2011]. [Online]. Avail-
able: http://www.nfc-forum.org/resources/white papers/
NFC Forum Mobile NFC Ecosystem White Paper.pdf

[3] NFCInsight, “NFC Payments Fact Pack,” in 2nd Annual NFC
Payments Europe 2012 Conference & Exhibition, 2012, pp.
2–15.

[4] J. Neefs, F. Schrooyen, J. Doggen, and K. Renckens, “Paper
Ticketing vs. Electronic Ticketing Based on Off-Line Sys-
tem ’Tapango’,” in Near Field Communication (NFC), 2010
Second International Workshop on, april 2010, pp. 3–8.

[5] G. de Koning Gans, J.-H. Hoepman, and F. D. Garcia,
“A Practical Attack on the MIFARE Classic,” in Smart
Card Research and Advanced Applications, 8th IFIP WG
8.8/11.2 International Conference, CARDIS 2008, London,
UK, September 8-11, 2008. Proceedings, ser. Lecture Notes
in Computer Science, G. Grimaud and F.-X. Standaert, Eds.,
vol. 5189. Springer, 2008, pp. 267–282.

[6] F. D. Garcia, G. de Koning Gans, R. Muijrers, P. van Rossum,
R. Verdult, R. Wichers Schreur, and B. Jacobs, “Dismantling
MIFARE Classic,” in Computer Security - ESORICS 2008,
13th European Symposium on Research in Computer Security,
Málaga, Spain, October 6-8, 2008. Proceedings, ser. Lecture
Notes in Computer Science, S. Jajodia and J. López, Eds.,
vol. 5283. Springer, 2008, pp. 97–114.

[7] F. D. Garcia, P. van Rossum, R. Verdult, and R. W. Schreur,
“Wirelessly Pickpocketing a Mifare Classic Card,” in 30th
IEEE Symposium on Security and Privacy (S&P 2009), 7-
20 May 2009, Oakland, California, USA. IEEE Computer
Society, 2009, pp. 3–15.

[8] Gemalto, “Worlds First: Gemalto Integrates DESFire
Transport Card into NFC Mobile Phone,” Feb.
2010, [accessed 12-December-2012]. [Online]. Available:
http://www.gemalto.com/php/pr view.php?id=704

7http://www.iwt.be/english/welcome

[9] J. Prado Casanovas and G. Van Damme, “DESfire Emulation
Using Java Card,” in Trustworthy Embedded Devices. Leu-
ven, Belgium: Conference Publishing Services IEEE, 2011,
p. 5.

[10] Gemalto, “Java Card & STK Applet Development Guide-
lines,” 2009, [accessed 10-July-2011]. [Online]. Available:
http://developer.gemalto.com/fileadmin/contrib/downloads/
pdf/Java Card STK Applet Development Guidelines.pdf

[11] DeviceFidelity, “Mobile Contactless Technology Back-
grounder,” Jun. 2011, [accessed 12-December-2012]. [On-
line]. Available: http://www.devifi.com/assets/whitepaper.pdf

[12] TwinLinx, “MyMax2 NFC sticker presentation – Convenience
in your hands,” Nov. 2011, [accessed 12-December-
2012]. [Online]. Available: http://www.twinlinx.com/upload/
file/mymax2presentation.pdf

[13] G&D SmartCard API, “Bearer Independent Protocol,”
2011, [accessed 10-July-2012]. [Online]. Available: http:
//code.google.com/p/seek-for-android/wiki/BIP Extensions

[14] M. Montgomery and K. Krishna, “Secure Object Sharing in
Java Card,” pp. 14–14, 1999.

[15] D. Perovich, L. Rodriguez, and M. Varela, “A Simple
Methodology for Secure Object Sharing,” p. 7, 2000.

[16] K. Holtzblatt, “Customer-centered design for mobile applica-
tions,” in Personal and Ubiquitous Computing archive,Volume
9 Issue 4, July 2005, 2005, pp. 227–237.

[17] G&D, “Secure Element Evaluation Kit for the Android
platform,” 2012, [accessed 10-July-2012]. [Online].
Available: http://code.google.com/p/seek-for-android/

[18] SIMAlliance, “Open Mobile API Specification,” 2011,
[accessed 10-July-2011]. [Online]. Available: http://www.
simalliance.org/en/resources/specifications/

[19] 3GPP, “3GPP Specification Detail,” 2012, [accessed 10-July-
2012]. [Online]. Available: http://www.3gpp.org/ftp/Specs/
html-info/27007.htm

[20] Telit Wireless Solutions, “AT Commands Reference Guide,”
2012, [accessed 10-July-2012]. [Online]. Available: http:
//www.telit.com/module/infopool/download.php?id=542

[21] G&D, “RIL extension specification,” 2012, [accessed 10-
July-2012]. [Online]. Available: http://code.google.com/p/
seek-for-android/wiki/UICCSupport


