
A Policy-based Dependability Management Framework for Critical Services

Manuel Gil Pérez, Jorge Bernal Bernabé, Juan M. Marı́n Pérez, Daniel J. Martı́nez Manzano,
and Antonio F. Gómez Skarmeta

Departamento de Ingenierı́a de la Información y las Comunicaciones
University of Murcia, Spain

Email: {mgilperez,jorgebernal,juanmanuel,dmartinez,skarmeta}@um.es

Abstract—Many critical activities rely on the correct and
uninterrupted operation of networked Computer Information
Systems (CIS). Such systems are however exposed to many
different kinds of risk, and thus many researches have been
taking place for enabling them to perform self-monitoring
and self-healing, and so maintaining their operation over
time as specified by domain policies. These capabilities are
the basis of what is commonly referred to as dependability.
The DESEREC project has defined a tiered architecture as
a policy based framework to increase the dependability of
existing and new networked CIS, using technology-independent
information which is translated at runtime to suit the managed
components. This paper delves into how DESEREC builds
and manages large critical systems through an agent-based
distributed framework, and how it is able to respond to any
adversity effectively, such as intrinsic failures, misbehavior or
malicious internal use, and attacks from the outside. An illus-
trative example is used throughout this paper to demonstrate
all the concepts and definitions presented.

Keywords-Dependability; Policy Based Management; Self
Healing; Configuration Constraints; Dynamic Reconfiguration

I. INTRODUCTION

This article is an extended and revised version of the con-
ference paper entitled “Towards a Policy-driven Framework
for Managing Service Dependability” [1]. It contains a more
comprehensive and detailed explanation of the proposed
framework, and a complete running example with the aim of
demonstrating the concepts and models herein introduced.

As networked Communication and Information Systems
(CIS) become more pervasive, even more critical activities
rely on their correct and uninterrupted operation. Such
systems are however exposed to many different kinds of risk,
including hardware failures, software bugs, connection and
power outages, and even malicious use. In this context, much
research has been taking place with the aim of providing
networked CIS with a new capability, beyond the classic
concept of fault tolerance and data redundancy [2]. This new
feature will enable administrators to perform self-monitoring
and self-healing to maintain the system operation over time,
as specified by domain policies. This capability is often
referred to as dependability in literature [3][4].

Dependability covers many properties relevant to the self-
management of critical systems [5][6]. Among them, we can
emphasize:

• Availability: probability that a service is available for
use at any time; it allows for service failure, with the
presumption that service rehabilitation is immediate.

• Reliability: measure of the continuous delivery of a
service in the absence of failure.

• Safety: non-occurrence of catastrophic consequences or
abuse to the environment or its users.

• Survivability: ability of a system to provide crucial
services in front of attacks and failures, and restore
those services in the least amount of time.

• Maintainability: capability of a system to support
changes and evolutions, possibly under hostile condi-
tions.

• Security: it includes some properties to maintain truth-
fulness and confidence in the managed data. These
properties are mainly used for confidentiality, integrity
and non-repudiability purposes.

Furthermore, it is important to note that security properties
are generally limited to discrete values, e.g., a user is
authenticated or not, the information is either available
or it is not, etc., whereas, on the contrary, dependability
properties are continuous or multi-valued, expressed in terms
of probabilistic measures, e.g., a system is highly reliable
beyond 95%.

Bearing in mind the above properties, a dependable frame-
work with these goals should be pursued by following a mul-
tidisciplinary approach, in the search of a tiered architecture
with the following responsibilities:

• Build abstract models of the managed system, the
services to be provided by it, and any other needed
management information (policies).

• Set up the technical components automatically in the
system so that the intended services are provided.

• Perform intensive and extensive monitoring all over the
managed system.

• Take appropriate actions when something wrong is
detected.

• Quick containment as close as possible to the managed
system.

At the sight of the above list, one can easily work out
the value of a policy based management framework in such
an architecture. Policy based management (PBM) [7][8]

289

International Journal on Advances in Internet Technology, vol 2 no 4, year 2009, http://www.iariajournals.org/internet_technology/

is a management paradigm by which rule-like pieces of
information are used to describe the desired operation and
behavior of a system; these rules are typically stored in
a repository from which they are selectively distributed
across the concerned enforcement entities. These entities
will then make use of their local knowledge in order to
guarantee the correct operation of the areas under their
management. Since these rules are described in an abstract
fashion, enforcement entities may require to perform some
technology-dependent translation on them so that they suit
the managed components.

Having the above objectives as a goal, the DESEREC
project [9] has defined a multi-tiered architecture as a
framework to increase the dependability of existing and new
networked CIS, by means of the following functional blocks:
• Modeling and simulation. DESEREC devises and de-

velops innovative approaches and tools to design,
model, simulate, and plan critical infrastructures to
improve their resilience.

• Incident detection and quick containment. DESEREC
integrates various detection mechanisms to ensure fast
detection of severe incidents, and thereby avoiding any
impact propagation.

• Fast reconfiguration with priority to critical activities.
DESEREC provides a framework to respond in a quick
and appropriate way to a large range of incidents to
mitigate the threats to the dependability and thwarts
the problem.

Next sections will give a deeper insight on some aspects of
the overall solution, as follows: first, Section II introduces
the main related work as background information for the
reader; then, Section III explains the designed framework,
describing its tiered architecture; Section IV presents a
running example that will be used by the following sections
to demonstrate the explained concepts; Section V describes
the abstractions used by the DESEREC framework for
binding configurations to services; Section VI delves into the
implementation of the policy-based models and engine; the
complete reconfiguration framework is explained in detail in
Section VII; Section VIII summarizes our experience in the
design of a dependable system following this approach; and
lastly, some conclusions are drawn in Section IX.

II. RELATED WORK

The modeling of large systems with the aim of recon-
figuring automatically the services they offer has been the
cornerstone for the last few years, precisely due to the great
complexity that these systems convey.

There currently exist a great amount of tools that provide
high availability of critical services in case of physical
failures, whether due to hardware failures or even natural
disasters.

Among them, the most commonly used are: backup sys-
tems which facilitate an automation of the backup process

and a quick restoration of the data; and clustering of servers
(a “battery” of servers that are monitored each other to detect
temporary failures or system crashes). In both cases, these
tools are able to restructure dynamically to continue offering
the service. However, as main drawback, they are unable
to detect attacks from malicious users (whether internal or
external).

Many of the existing tools with a similar purpose are
mainly focused on a single kind of services that the sys-
tem must handle, like Web-based [10] or computer-based
approaches [11]. New efforts are being made to provide
a compact solution that includes the complete life cycle
of any large system without human intervention; from the
configuration, the monitoring until the reconfiguration. The
great challenge behind this is to achieve truly 24x7 systems,
or continuous availability.

In [12], the authors presented a framework based on the
monitoring, performance evaluations and dynamic reconfig-
uration of the SIENA network. On the other hand, in [13] the
authors extended this management to mobile environments
following a similar approach to [12], by monitoring and
estimating the redeployment architecture to maintain the
availability of this kind of systems.

As a solution to these emerging issues, two initiatives
have stood out. On one hand, the SERENITY EU-funded
R&D project [4] aims at supplying security solutions and
high availability in Ambient Intelligence (AmI) systems and
services. These systems are mainly concerned in human
and services interactions, especially in mobile distributed
environments. In this context, in [14] the authors delve into
the SERENITY approach, providing security and depend-
ability (S&D) solutions for dynamic, highly distributed and
heterogeneous systems.

On the other hand, the Willow approach [15] focuses on
the design of an architecture to provide a great resilience
to failures in large distributed information systems. This
architecture offers mechanisms based on specifications for
fault-tolerance techniques, but it sets aside many fundamen-
tal issues related to the dependability, like misconfiguration,
misbehavior or malicious use. Such an approach has proven
its value when it has been successfully applied to Grid
management [16], enabling the dynamic reconfiguration of
a grid without human intervention in response to environ-
ment changes. Additionally, this research group is currently
focusing on the applicability of the Willow approach to the
novel computing paradigm of Cloud Computing [17].

All these initiatives offer some initial results for the
critical systems management with high availability, but they
are still far from providing an integral system that allows
managing large systems in a completely autonomous way,
as standardized as possible, trying to save costs in managing
the inactivity of a service, and so on.

290

International Journal on Advances in Internet Technology, vol 2 no 4, year 2009, http://www.iariajournals.org/internet_technology/

Mission-Critical Information System

Decision
Deployment

Reconfiguration
Translation

Reconfiguration (global)

Event Monitoring
Serious Incident

Detection
Fast Reaction

Self-healing (local, fast reaction)

Modelling Simulation
Operational

Planning

Planning (central)

 DLocalAgent1 DLocalAgentm

 DCentralAgent

 DItemAgent1 DItemAgentp DItemAgent1 DItemAgentq

molecule 1 molecule m

targets targets

a) b)

...

... ...

Web Server Web Server
DNS

Firewall

Figure 1. Model-based approach: a) high level functional blocks; and b) the DESEREC framework

III. DESEREC: A FRAMEWORK TO ENHANCE
DEPENDABILITY

The DESEREC project [9] has defined a 3-tier archi-
tecture to increase dependability of any CIS by means of
three different and connected approaches: modeling and
simulation; detection; and response. Its main goal is to
react appropriately upon incidents of any nature, e.g., errors,
failures, malicious actions, to maintain critical services al-
ways available. The proposed approach supports a mid-term
strategy with planning and simulation tools for modeling in
a proactive way the performance and dependability of any
CIS. Figure 1 depicts how DESEREC manages these critical
systems using a model-based approach, which is organized
around a 3-tier reaction loop.

As can be seen in Figure 1a), the three objectives proposed
by DESEREC can be identified clearly: firstly, plan and
model the operations of the system, as well as configur-
ing it properly by the system manager at design time; as
second objective, detection and prevention of incidents and
potential faults proactively, from the events harvested on the
target system; and finally, react to the detected incidents
by either reallocating the services or executing a set of
abstract commands to fix the problems caused. Both of
them (services configuration and abstract commands) are
defined in a generic way with the aim of abstracting system
managers from technology-dependent details.

A. Three-Tier Agent-based Reaction Loop

The DESEREC runtime architecture has been developed
following a multi-layered approach in order to manage large
systems by means of splitting the underlying CIS in different
areas of autonomic management [18]. As can be seen in
Figure 1b), a molecule is the minimal sub-division of any
CIS with the aim of grouping physical components (servers
and network equipments) under the same management con-
trol at local level [19]. This division can host one or more

technical services such as authentication, IP allocation, etc.
Each molecule accommodates one local molecule agent,
called DLocalAgent, which should:

1) Monitor low level events reported by the managed
elements, or directly harvested from them.

2) React locally to serious incidents with enforcement
capabilities (usually through secure channels).

3) Apply high-level reconfiguration orders, coming from
a central agent, to enforce a new operational plan.

Each DLocalAgent in turn manages one or more item
agents, called DItemAgent, which are in charge of handling
the target infrastructure elements. Each DItemAgent is re-
sponsible for monitoring those underlying elements and to
enforce available reactions in case of a system failure. Note
that in this architecture only this last kind of agent has
knowledge about the final technical service implemented
(software and version, how should be started/stopped, etc.);
that is, they manage vendor-specific information, whereas
the rest of agents use technology-independent information.

Finally, a single central agent is placed to have a global
view of the whole infrastructure. This agent is called DCen-
tralAgent and will receive local events and alarms from
DLocalAgents to detect incidents which could have passed
as undetected by these latter; for example, by correlating
events from different molecules to detect a distributed attack.
The DCentralAgent is also able to take decisions based
on the above information and thereby launching a global
reconfiguration process, which could imply to more than
one molecule.

As seen, apart from splitting the CIS in different areas,
the main goal is to manage the underlying system as close
as possible to the lower layers (target infrastructure). Thus,
the detection, decision and reaction logic will be much faster
and it will avoid overloading the higher level entities.

291

International Journal on Advances in Internet Technology, vol 2 no 4, year 2009, http://www.iariajournals.org/internet_technology/

B. Planning Block

Initially, the administrator defines both a formal descrip-
tion of the networked system and the Business Services that
the system should offer. On the one hand, a high level lan-
guage has been defined to obtain a suitable description of the
network environment, called System Description Language
(SDL) [20][21]. SDL permits to specify the system design
in great detail about its physical and logical infrastructure:
network elements such as interfaces, gateways and links;
technical services, e.g., software and version; etc. On the
other hand, the services information is modeled using the
W3C’s Web Services Choreography Description Language
(WS-CDL) [22]. With this language, the administrator is
able to describe the services of the system and the relation-
ships between them by way of choreography. This allows
defining the sequence and conditions in the information
exchange between the participants.

The next step for the administrator is to provide the
requirements or constraints that define the behavior of the
Business Services. From these constraints, defined at high
level, our framework is able to generate automatically the
configuration model in a software-independent way. These
configurations, plus a set of rules, are what we denominate
Operational Plan (OP) [18].

An OP is an allocation strategy that defines how the
services should be mapped onto molecules or technical ser-
vices, and how this allocation should change when undesired
incidents happen.

It comprises the following items:

• One or more Operational Configurations (OC). Each
of them describes a particular allocation of the offered
services onto either molecules (global) or technical ser-
vices (local), depending on the level where the OC will
be applied, called High-level Operation Configurations
(HOC) and Low-level Operation Configurations (LOC)
respectively. For each of these allocations, an OC
includes one or more high-level configuration policies
for setting up the final service.

• Detection Scenario. It describes which foreseen inci-
dents we are interested in; for example, the free disk
space is reaching a critical point (above 95%) or a
certain command is executed by an unauthorized user.
This Detection Scenario is divided into two different
abstraction levels, called Global Detection Scenario
(GDS) and Local Detection Scenario (LDS).

• Reaction Scenario. It specifies how to react when each
one of the above incidents happens. This reaction con-
sists of either switching between Operational Configu-
rations or executing a set of abstract commands in order
to fix the problems caused by the incident detected.
As before, this Reaction Scenario is divided into two
different ones, called Global Reaction Scenario (GRS)
and Local Reaction Scenario (LRS).

Thus, an OP can be seen as a graph of Operational
Configurations in which nodes are individual OCs whereas
links are allocation and configuration changes launched by
the detection of known incidents. Due to the multi-layered
strategy employed by this architecture, there exist two kinds
of OPs, called High-level Operational Plan (HOP) and
Local-level Operational Plan (LOP), which can be better
seen as:

HOP = {{HOC1, HOC2, ..., HOCl}, GDS, GRS}

HOCi = {{LOPi1, LOPi2, ..., LOPim}} ∀i ∈ [1..l]

LOPij = {{LOCij1, ..., LOCijn}, LDSij , LRSij} ∀j ∈ [1..m]

Where m is the number of molecules in the system,
whereas l and n can vary according to the possible Opera-
tional Configurations defined for each given plan.

A HOP -there will normally be only one per managed
system- contains a list of possible HOCs (high-level alloca-
tion of the services onto molecules) and two scenarios for
detection and reaction purposes, GDS and GRS respectively,
which specify how to switch between HOCs when a problem
arises. Each of these HOCs carries a set of LOPs (one
per molecule) which represent a low-level allocation and
configuration plan. Each LOP contains in turn a list of
possible LOCs and two refined scenarios for detection and
reaction purposes at local level (LDS and LRS, respectively).
These LOCs represent services that are mapped onto the
system components, all belong to a particular molecule,
whereas the scenarios express how to switch between LOCs
after detecting a fault in the system. Note that each of these
local allocations will only affect to the molecule where the
problem arises without involving others.

C. Reconfiguration Framework

The DESEREC modeling framework is completed with
a detection and reaction model, which describes when and
how to reconfigure the system in response to an incident.
The reaction stage is carried out once the DESEREC frame-
work detects that a serious incident has occurred and, in
consequence, the system should react by either switching
from the current OC to another or executing a set of abstract
commands. The former is the imposition of a new allocation
for the system services, with (possibly) a new configuration
for them, whereas the latter is a minor change in the target
system but without changing the running operational plan;
for instance, by executing a ddns command to add a new
RR to the domain name server dynamically.

The detection engine constantly receives events from the
lower down layers which are mapped against the current
Detection Scenario. When a coincidence is detected an
alarm is fired, thereby starting the reaction process. Since
different reaction rules (defined in the Reaction Scenario)
can be associated to the same Detection Scenario rule, the
decision engine should determinate which of them is the

292

International Journal on Advances in Internet Technology, vol 2 no 4, year 2009, http://www.iariajournals.org/internet_technology/

most suitable one; that is, which is the best OC or set of
abstract commands to be enforced in the target system to fix
the detected problem.

This reaction process is driven by a Policy-Based Network
Management (PBNM) approach [23], which is responsible
for deploying, installing and enforcing policies in target
devices; in our case either an Operational Configuration
(OC) or a set of abstract commands, depending on the kind
of reaction chosen by the decision engine, and defined in
the Reaction Scenario.

An in-depth explanation of the DESEREC framework and
its modules is provided in Section VII.

IV. ILLUSTRATIVE EXAMPLE

This section introduces a complete running example,
which represents usual problematic situations with the aim
of clearly demonstrating the concepts and definitions that
will be explained in the following sections. These situations
capture typical dependability and security problems which
can be managed and solved through the DESEREC frame-
work.

A. Services

The physical testbed simulates a railway signaling and
control system, where the network and services infrastruc-
ture is depicted in Figure 2. It is composed of a private
network which is connected to the corporative Intranet
through a firewall component. This network makes services
accessible for railway administrators.

Let us suppose the following services:

• Railway Web service: it provides a Web service inter-
face for the railway signaling and control system.

• DNS service: it defines a domain name for the IP
address of the previous Web service.

• Firewall service: it keeps packet filtering rules to ser-
vices and network components.

• Timing service: it provides time synchronization for all
the components that need it.

The railway Web service is configured to listen on two
ports, depending on the requested services: on port 5486
a Web service interface is offered for interaction with the
signaling and control system; and on port 443 administrators
can gain access to a management Web page which provides
statistics and monitoring services for the system. Both inter-
faces are offered through a secure HTTPS communication
by using, for example, SSL or TLS with X.509 certificates.

The DNS service will be configured with the IP address
where the Web service will be placed and, at the beginning,
the firewall will allow connections to both service ports. In
order for the service to be accessed through its domain name
by administrators, the firewall will also allow connections on
port 53.

B. Testbed Description

The scenario used for this example is comprised by two
molecules. Figure 2 depicts the molecules and the software
distribution in the testbed.

molecule-1

molecule-2

INTRANET

DLocalAgent-2

DCentralAgent

ntpd-4.1.1

apache-2.2.4

tomcat-5.5.20

bind-9.3.4

lighttpd-1.4.18

iptables-1.3.5

192.168.0.1

192.168.1.10

192.168.1.11 192.168.1.21192.168.1.19

192.168.1.22192.168.1.29

192.168.1.99

host-1

host-2

host-3

host-4

DLocalAgent-1

Figure 2. Molecules distribution and DESEREC components in the testbed

Table I summarizes the software requirements, along
with their version numbers, needed to properly deploy this
scenario.

Table I
ELEMENTS INTO THE MOLECULE BREAKDOWN

MOLECULE COMPONENT SPECIFIC SOFTWARE

molecule-1
Web server apache-2.2.4
Firewall iptables-1.3.5
Timing server ntpd-4.1.1

molecule-2
Web server lighttpd-1.4.18
Web server tomcat-5.5.20
Name server bind-9.3.4

It is worth noting that there are three Web servers avail-
able, installed in different elements. Two of them (Apache
and Tomcat) support secure connections through SSL and
TLS, whereas the other one (LigHTTPd) is not able to
provide this feature. This last server has been included in the
testbed, although it will be discarded during the allocation
process since it does not provide the required features.

In this scenario, the corresponding DESEREC framework
entities have also been included: one DLocalAgent per
molecule, which will receive event notifications and will

293

International Journal on Advances in Internet Technology, vol 2 no 4, year 2009, http://www.iariajournals.org/internet_technology/

launch the detection and reaction processes; and a DCen-
tralAgent in charge of supervising those molecules.

Three different situations are considered to show how
the DESEREC framework works to confront dependability
and security problems. Either of these situations could
cause dependability or security problems that the DESEREC
framework should correct. They will make the framework
react in three different ways and will serve to illustrate the
following three kinds of reactions:

1) Reallocation: The Web service goes down due to a
DoS attack from a compromised host in the Intranet
and it becomes unavailable. In this case, the frame-
work reaction is to move (reallocate) that service to
another place which is able to get it running again.

2) Reconfiguration: An unauthorized user gains access to
the private Web page. The reaction of the framework
in this situation is to reconfigure the firewall by
changing its current configuration to another more
restrictive. Only connections to the critical system
through HTTPS will be permitted on port 5486, block-
ing accesses to the Web page.

3) Abstract command execution: Some important Web
service files are removed from the server due to
a temporal hard disk failure and the Web service
becomes inconsistent. The reaction of the framework
is to execute a command, specified using an abstract
syntax, that will copy the removed files from a backup
folder to the appropriate directory in the Web server.

V. HIGH-LEVEL CONFIGURATION CONSTRAINTS

The deployment of Operational Configurations, used to
enhance the system dependability, requires the definition
of the desired prerequisites that Business Services should
accomplish. These prerequisites are comprised by a set
of requirements or constraints defined during the business
process and specified by the administrator using a set of
high level configuration policies for the different Business
Services.

Each Business Service in a DESEREC-managed system
is comprised by a number of individual Business Service
Components (BSC). These BSCs carry out specific tasks of
their Business Service, which can be mapped to one or more
technical services of some kind. For example, a Business
Service that provides a Web portal could be comprised
by one BSC for delivering the Web content, another BSC
for data storage, and another for performing access control
operations.

Typically, any technical service needs to have a proper
configuration in order to implement a BSC. The system
administrator must supply some configuration policies or
constraints (ideally, vendor-independent ones) about how the
BSCs should operate. These policies will serve as the bases
for generating the configuration of the technical services

that will finally implement the BSCs. These guidelines are
referred to as service configuration constraints.

The service configuration constraints are modeled in
DESEREC via the Service Constraints Language (SCL)
[20]. This language specifies which are the service config-
uration constraints for a given DESEREC-managed system,
and how the constraints defined in it are related to the BSCs
of the system.

Figure 3 gives a basic view of the Business Services and
their BSCs defined for the illustrative example introduced in
Section IV, and how each of them has a set of one or more
configuration constraints.

railway_control

Business

Services
BSCs

network_mgment

firewall

filtering

name_resolver

dns

timing

ntp

signaling_mgment

http

ssl

access_control

authentication

authorization

firewall_policy

time_synchronization_policy

dns_policy

authorization_policy

authentication_policy

sigmgment_https_policy

sigmgment_http_policy

Constraints

Figure 3. Constraints assigned to the BSCs

The relationship between BSCs and constraints lies on
the concept of capability. A BSC is associated with a set
of capabilities which define the type of service the BSC
provides. For instance, the BSC providing access control
has two capabilities: authentication and authorization.

The set of capabilities associated to one BSC determines
the possible service configuration constraints that can be
assigned to it. Every configuration policy defined in SCL
belongs to a constraint type, being different constraint types
able to configure specific capabilities. Thus, the BSC ac-
cess control has two constraints assigned to it: an Authenti-
cationConstraint specifying the authentication policy for the
authentication capability; and an AuthorizationConstraint
specifying the authorization policy for the authorization
capability.

It is worth noting that configuration constraints may be
reused. If more than one BSC requires exactly the same
behavior for a given type of service, then they may share
the same constraint. For example, there may be a new
Business Service in the system containing another BSC
for time synchronization which should have the same be-
havior and synchronize with the same time servers, as the
one shown in Figure 3. That BSC may share the already
defined time synchronization policy constraint, that is, the
administrator can assign the same constraint to both BSCs.

294

International Journal on Advances in Internet Technology, vol 2 no 4, year 2009, http://www.iariajournals.org/internet_technology/

This however does not mean that exactly the same technical
configuration will be used on both, because they could be
implemented by different software packages. Constraints are
vendor-independent and they will have to be translated to
final configurations only when the final software to which
they will be applied is known.

Since configuration constraints are defined before the final
software implementing the services is known, SCL is able to
describe the configuration semantics in a vendor independent
way. Moreover, dependability management implies service
reallocation; e.g., a service that is running on a machine can
be reallocated to another if the previous one fails. The first
situation in the illustrative example of Section IV introduces
this kind of reaction for the railway Web service, and it will
be further described in Section VII-E (Situation 1). This
requires the description of configuration constraints with a
high level of abstraction, based on the BSC concept and
avoiding the usage of allocation-dependent data.

The definition of domain name resolution constraints
shows this problem about service reallocations. In the
example, the managed system provides a website which
should be accessed from the Intranet through a given URL,
for instance https://signaling.example.org. The
domain example.org is managed by the company and,
therefore, the DNS service should be configured to map
signaling to the company’s railway signaling website. In
this scenario, there are two different BSCs, one representing
the website and another one representing the DNS service.
The configuration constraint defining the behavior for the
BSC name resolver should specify a record with the IP
address of the website as response for the signaling
query by the DNS service. However, the IP address of the
website is unknown since the service can be reallocated to
a different machine in case of failure.

Because of this, SCL supports BSC references in policies.
This allows administrators to specify BSC identifiers instead
of IP addresses, or any other static information, which may
vary depending on where the service is finally allocated by
the dependability management system.

Other examples to illustrate these high level configurations
may be the time synchronization policy specifying Listen
to the default NTP port and synchronize with another
timing BSC named “corporative timing”. Or the filtering
policy specifying Allow traffic from the Intranet to the BSC
“signaling mgment” and Deny everything else.

A further policy refinement process will resolve these
references and will translate the high level configuration
constraints defined in SCL into a lower level language.
This language will contain all the specific and detailed data
needed to generate the precise configuration for the current
system.

To show the SCL structure and some of the aforemen-
tioned characteristics, Listing 1 presents the corresponding
constraints for the illustrative example in Section IV.

<scl id=”example policies” plan=”example plan”>
<constraintAssignments>

<bscConstraints bsc=”example.access control”>
<constraint ref=”authentication policy”

requiredCapability=”authentication”/>
<constraint ref=”authorization policy”

requiredCapability=”authorization”/>
</bscConstraints>
...

</constraintAssignments>
<constraintDefinitions>

<authenticationConstraint id=”authentication policy”>
<authenticationRules>

<authenticationRule name=”user1 id”>
<identity>user1@example.org</identity>
<credentials>

<accountCredential>
<accountId>user1</accountId>
<accountContext>example.access control</accountContext>

</accountCredential>
</credentials>

</authenticationRule>
...

</authenticationRules>
</authenticationConstraint>
<authorizationConstraint id=”authorization policy”>

<roles>
<role name=”signaling admins”>

<identity>user1@example.org</identity>
...

</role>
</roles>
<authorizationRules>

<authorizationRule name=”allow signaling mgment”>
<role>signaling admins</role>

<privileges>
<privilege granted=”true” name=”signaling mgment access”>

<activities>
<activity>Read</activity>
<activity>Write</activity>

</activities>
<qualifiers>

<qualifier type=”Packets”/>
</qualifiers>
<target>signaling.example.org</target>

</privilege>
</privileges>

</authorizationRule>
</authorizationRules>

</authorizationConstraint>
<httpConstraint id=”sigmgment http policy”> ... </httpConstraint>
<sslConstraint id=”sigmgment https policy”> ... </sslConstraint>
<dnsConstraint id=”publicdns policy”>

...
<zones>

<zone domain=”example.org” type=”Master”>
...
<records>

...
<record type=”A”>

<query>signaling</query>
<response type=”BSC”>example.signaling mgment</response>

</record>
</records>

</zone>
</zones>

</dnsConstraint>
<filteringConstraint id=”firewall policy”> ... </filteringConstraint>
<ntpConstraint id=”time synchronization policy”> ... </ntpConstraint>

</constraintDefinitions>
</scl>

Listing 1. Service Constraints Language

For clarity reasons, XML namespaces have been removed
from the listing and some fragments have also been replaced
by dots. It can be seen that this set of constraints and
policies contains an identifier (example policies) and it is

295

International Journal on Advances in Internet Technology, vol 2 no 4, year 2009, http://www.iariajournals.org/internet_technology/

defined in the scope of a concrete Operational Plan, named
example plan in this case.

An SCL description is formed by two main parts: con-
straint assignments and constraint definitions. The former
defines the policy which is associated to each capability of
each BSC defined in the operational plan. The latter contains
the actual definitions of the policies. This separation allows
reusing policies defined by different BSCs; i.e., a policy
defined in the definitions section can be assigned to two
different BSCs in the assignments section.

Listing 1 shows just one constraint assignment corre-
sponding to the BSC access control. In the full description
there is a constraint assignment for every BSC. Moreover, all
policies appear in the description section, but their content
has been replaced by dots and only the two assigned to
the BSC access control appear almost complete, just to
illustrate the aspect of policies in SCL. Moreover, some
fragments of the DNS policy of the BSC name resolver
are also shown to illustrate the previous example of BSC
references in constraints. It can be seen how the record
for signaling within the domain example.org assigns
that domain name to the BSC signaling mgment without still
knowing its actual IP.

VI. POLICY MODELING IN DESEREC

As stated in Section V, within the DESEREC frame-
work the administrator defines the behavior of the Business
Services by means of a set of configuration constraints or
policies defined in SCL. This language operates in a high
level fashion, making use of platform-independent semantics
as well as being transparent to the allocation process from
Business Services to technical services.

In this context, it is worth reaching a trade-off between
a high level formal language able to express the admin-
istrator’s abstract requirements, in a human readable way,
and a formal language able to be parseable by an automatic
translation process. This is exactly what the SCL language
deals with, defining models as clear as possible to be later
used by an intelligent software process.

However, a standard model with the proper level of detail
to allow generating configurations for the real system is
also needed in order for the enforcement phase to be done
properly in a vendor independent way. DESEREC uses the
Common Information Model (CIM) [24] as this final model
since it is a very complete information model. It covers
almost all the different aspects required in a networking
scenario, including systems, services, networks, applications,
policies, security, etc. Moreover, CIM is independent of
the language used to represent it, free, open source and
extensible. Additionally, this information model has been
used in a wide variety of research works, such as [25] or
[26] among others.

Both DMTF and DESEREC define an XML represen-
tation of this model following two different approaches.

The DMTF, in its standard CIM-XML of WBEM, uses a
metaschema mapping which defines an XML schema to
describe CIM, where both classes and instances are valid
documents to the CIM metaschema. On the other hand,
DESEREC uses an XML schema to describe CIM classes as
XML complex types. Thus, CIM instances are described in
valid XML documents for that schema. DESEREC reuses
and extends the xCIM language, originally defined in the
POSITIF EU-IST project (Policy-based Security Tools and
Framework, IST-2002-002314), to provide this last kind
of XML format representation of CIM. Furthermore, and
thanks to the usage of the xCIM language, a wide range
of possibilities become available. For example, there are re-
lated standards and technologies grouped under the WBEM
specifications [27], which allow dynamically gathering the
current state of the system by means of CIM.

Therefore, although the xCIM language is a useful im-
plementation of CIM (including extended classes), it does
not fit perfectly in the DESEREC requirements due to the
great amount of classes that compound the model, and the
lack of some DESEREC-specific requirements. To solve
this issue, DESEREC defines a sublanguage, called xCIM
Service Constraints Language (xCIM-SCL), that allows the
representation of service constraints and policies.

So far, in DESEREC, different kinds of policies have been
modeled for both SCL and xCIM. Among them, we have
security policies, such as authentication, authorization, filter-
ing or SSL, and also common constraints to specify service
configurations, such as HTTP, NTP, NAT, DNS, streaming,
DHCP or load balancing. Anyway, both languages, SCL and
xCIM, can be easily extended to hold any new kind of policy.

A. SCL Console

In order to assist the administrator with the task of defin-
ing service configuration constraints in SCL, DESEREC has
developed an intuitive console that permits to generate and
manage SCL models using a graphical interface.

Through the SCL Console [28], a system administrator
can create a service constraints model in SCL which defines
how the system is expected to operate. This is done by
working on the system model (physical/logical infrastruc-
ture) and the service model (Business Services description,
decomposition and interaction). This console generates the
aforementioned constraints model (SCL), which contains the
configuration constraints defined by the administrator, as
well as the assignments between them and the present BSCs
in the service model.

Figure 4 is a snapshot of the SCL Console showing the
Business Services, BSCs, capabilities and service constraint
policies defined for the illustrative example introduced in
Section IV. The console presents three well-defined areas in
the frame: one for browsing through the Business Services,
BSCs and capabilities (top-left area); a bigger one for
viewing and editing the SCL constraints (right area); and a

296

International Journal on Advances in Internet Technology, vol 2 no 4, year 2009, http://www.iariajournals.org/internet_technology/

last one for browsing through the constraints and assigning
them to the BSCs (bottom-left area).

Figure 4. Snapshot of the SCL Console

The SCL Console supports creation, edition and man-
agement of the whole set of configuration policy types,
defined by DESEREC and mentioned in this section. Nev-
ertheless, the constraints processing in the SCL Console is
implemented by following a plug-in based approach. That
is, each supported constraint is implemented as a separate
plug-in which is loaded on-the-fly. This means that the set
of supported constraints can be extended as desired, just
by developing additional plug-ins. Moreover, the console is
able to manage SCL models with constraint types for which
there is no plug-in to support its edition or creation. In such
a case, the SCL Console will show the constraint as an XML
text, thereby allowing the administrator to work with it.

B. Service allocation
Once the system administrator has defined the service con-

figuration constraints, the Planning block must automatically
allocate, in a first step, each BSC onto the molecules at
global level; that is, it will provide the set of the HOCs that
will compose the final global plan. To this end, the allocation
process maps the required capabilities that each BSC needs
against the available capabilities that each molecule provides
(defined previously in SDL). The next step of this process is
to calculate all possible local allocations for each HOC gen-
erated previously, thus providing each of the LOCs that will
compose each HOC. As before, this local allocation process
is carried out by means of mapping the required capabilities
that each BSC needs against the available capabilities that
each technical service provides (also defined in SDL).

Note that if one allocation does not fulfill the requirements
defined by the administrator, the service cannot be allocated
and the corresponding Operational Configuration (HOC or
LOC) is discarded.

Table II shows the output of this process for the running
example. As can be seen, two HOCs have been generated,
in which the only difference is the allocation of the Business
Service railway control (for both BSCs, signaling mgment
and access control). In the first case (HOC1), both BSCs
are allocated onto molecule-1 and, in the second one
(HOC2), they are allocated onto molecule-2. In both cases
the Business Service railway control can be allocated onto
the two defined molecules since they provide the required
capabilities needed by it.

At local level, each HOC generates one LOC: a first LOC
belonging to HOC1 (HOC1.LOP1&2.LOC1) in which the
complete Business Service railway control is allocated onto
the apache-2.2.4 software; and another first LOC belong-
ing to HOC2 (HOC2.LOP1&2.LOC1) in which the same
Business Service is now allocated onto the tomcat-5.5.20
software. Note that, for example, the BSC signaling mgment
cannot be allocated onto the lighttpd-1.4.18 software since it
does not provide one of the required capabilities (specifically
the ssl one to provide secure connections), thus being
discarded during this mapping process.

The LOCs introduced in Table II will be later split and
packaged in LOPs depending on the molecule to which they
are addressed. In this case, all the allocations to molecule-1
will be packaged as LOP1, and those addressed to molecule-
2 will be packaged as LOP2.

HOC1.LOP2

 name_resolver → signaling A 192.168.1.11

 HOC1.LOP2.LOC1

HOC1

HOC1.LOP1

 signaling_mgment → ports 5486+443 (apache)

 firewall → allow only 5486+443+53

 HOC1.LOP1.LOC1

HOC2

HOC2.LOP1

 signaling_mgment → ports 5486+443 (tomcat)

 name_resolver → signaling A 192.168.1.21

HOC2.LOP2

 HOC2.LOP2.LOC1

 firewall → allow only 5486+443+53

 HOC2.LOP1.LOC1

 firewall → allow only 5486+53

 HOC2.LOP1.LOC2

Web service goes down

unauthorized access

fi
le

s
 r

e
m

o
v
e

d

Figure 5. Complete allocation graph including detection/reaction logic

From these allocations, the Planning block generates the
complete allocation graph, as the one shown in Figure 5 for
the running example.

For clarity reasons, the BSCs timing and access control
have not been included since the former is always allocated
in the same technical service (the only one that provides
the required capability), and the latter is always allocated
together with the BSC signaling mgment. In this allocation
graph, the allocation and configuration changes have also
been included to follow how the DESEREC framework
will work in runtime after detecting the aforementioned
incidents.

297

International Journal on Advances in Internet Technology, vol 2 no 4, year 2009, http://www.iariajournals.org/internet_technology/

Table II
ALL POSSIBLE ALLOCATIONS AT BOTH GLOBAL AND LOCAL LEVEL

GLOBAL LEVEL (mapping onto molecules) LOCAL LEVEL (mapping onto technical services)
HOC1 HOC1.LOP1&2.LOC1

railway control.signaling mgment –> molecule-1 railway control.signaling mgment –> molecule-1.host-1.apache-2.2.4
railway control.access control –> molecule-1 railway control.access control –> molecule-1.host-1.apache-2.2.4
network mgment.name resolver –> molecule-2 network mgment.name resolver –> molecule-2.host-4.bind-9.3.4
network mgment.timing –> molecule-1 network mgment.timing –> molecule-1.host-1.ntpd-4.1.1
network mgment.firewall –> molecule-1 network mgment.firewall –> molecule-1.host-2.iptables-1.3.5

HOC2 HOC2.LOP1&2.LOC1
railway control.signaling mgment –> molecule-2 railway control.signaling mgment –> molecule-2.host-3.tomcat-5.5.20
railway control.access control –> molecule-2 railway control.access control –> molecule-2.host-3.tomcat-5.5.20
network mgment.name resolver –> molecule-2 network mgment.name resolver –> molecule-2.host-4.bind-9.3.4
network mgment.timing –> molecule-1 network mgment.timing –> molecule-1.host-1.ntpd-4.1.1
network mgment.firewall –> molecule-1 network mgment.firewall –> molecule-1.host-2.iptables-1.3.5

It is worth mentioning that in Figure 5 it has been
added a second LOC in HOC2.LOP1, which represents
the reaction thrown after detecting an unauthorized access
(second problematic situation introduced in Section IV-B).
This local reconfiguration is just a change in the firewall
configuration but without implying changes in the service
allocation; that is, the allocations are maintained exactly the
same as the ones defined before the reaction.

C. Policy Refinement

Definition of high-level objectives is usually the way
administrators work. To make these objectives a reality
in terms of configuration, lots of information need to be
provided to a refinement process, from high-level objectives
to final configurations [29]. Afterwards, these configurations
can then be deployed to the final devices and services, in
order to maintain the system configured properly based on
the administrator requirements. This avoids administrators to
generate a wide range of different and specific configuration
files for each device or service.

SCG

COG

Package

GSRs

Translator

ACG

System

Designer

SCL

SDL

Enforcing

SCL

Console

SCG

Figure 6. Refinement process workflow

In this context, a top-down engineering approach of this
refinement process has been designed and implemented.
Figure 6 depicts the refinement workflow followed in

DESEREC. Firstly, the administrator defines both the Busi-
ness Services and a complete system description using the
System Description Language (SDL). The requirements, i.e.,
configuration constraints defining Business Services behav-
ior, are also defined in SCL by means of the SCL Console
as explained in Section VI-A. Then, all this information is
used to generate the generic configuration model in xCIM
format, which will be finally used by the reconfiguration
framework to configure the system resources.

DESEREC relies on the Configuration Generator (COG)
to perform the translation process (see Figure 6), shich is
the central part of the Planning block in the DESEREC
framework. It is in charge of taking the requirements from
the administrator in terms of a system description, Business
Services specification and the desired behavior of services.
Then, it produces as output an Operational Plan (OP) con-
taining the configuration models in xCIM needed to enforce
it. The OP will contain a list of alternative Operational
Configurations, and the needed detection/reaction logic that
will implement the dependability features, as explained in
Section III-B.

There are two submodules in the COG, the Automatic
Configuration Generator (ACG) and the Services Config-
uration Generator (SCG). The former generates a first
version of the Operational Plan containing Operational Con-
figurations; that is, allocations of Business Services onto
infrastructure elements, supporting the molecule abstraction.
The latter analyzes the allocations present in the Operational
Configurations, adds semantics to the constraint model,
and produces configuration packages as a Generic Service
Ruleset (GSR) [20]. This is a generic model that will enable
the DESEREC runtime framework to actually set up the
software elements to operate as desired.

The SCG takes the Operational Configurations one by one
and launches the process autonomously for each one. As a
result, a versatile package is generated, which contains the
GSRs as well as the whole information about the system

298

International Journal on Advances in Internet Technology, vol 2 no 4, year 2009, http://www.iariajournals.org/internet_technology/

where the GSR is assigned to. The SCG model has been
developed as a Java application which allows loading and
processing the Operational Plans in order to produce GSR
packages in xCIM-SCL format. Indeed, the Translator is the
SCG submodule in charge of translating from policies/con-
straints (defined in SCL) to xCIM-SCL.

In order to generate the GSRs properly, the Translator
needs as input both the policy information to be refined and
the information about the system that is being managed. For
this second issue, DESEREC relies on the SDL language.
Since the SDL model is also included as a part of the
Operational Plan, this model is available to the translation
process.

It is worth noting that the Translator module is composed
of smaller and specific translation submodules, as many as
different kinds of policies are supported by the DESEREC
framework; i.e., HTTP, DNS, filtering, etc. Thus, each
submodule is specialized on translating each kind of policy,
taking into account its idiosyncrasy. This fact leads our
approach to be easily extended with new kinds of policies.
This refinement process is based on the one defined in [30].

<gsr:GSR xmlns:gsr=”http://www.deserec.eu/xsd/gsr”>
<gsr:xDESEREC DNSServerSettingData>

<InstanceID>publicdns policy</InstanceID>
<Forwarders>198.41.0.4</Forwarders>

</gsr:xDESEREC DNSServerSettingData>
<gsr:xDESEREC DNSZoneSettingData>

<InstanceID>publicdns policy.zone1</InstanceID>
<Domain>example.org</Domain>
<Type>1</Type>
<TimeToRefresh>7200</TimeToRefresh>
...

</gsr:xDESEREC DNSZoneSettingData>
<gsr:xDESEREC DNSRecordSettingData>

<InstanceID>publicdns policy.zone1.record3</InstanceID>
<ElementName>publicdns policy.zone1.record3</ElementName>
<Query>signaling</Query>
<Type>1</Type>
<Response>192.168.1.11</Response>

</gsr:xDESEREC DNSRecordSettingData>
<gsr:xCIM ConcreteComponent>

<GroupComponent>DESEREC DNSZoneSettingData.InstanceID=
’publicdns policy.zone1’</GroupComponent>

<PartComponent>DESEREC DNSRecordSettingData.InstanceID=
’publicdns policy.zone1.record1’</PartComponent>

</gsr:xCIM ConcreteComponent>
...
<gsr:xDESEREC GSRHeader>

<TransportationMethod>COPS−PR</TransportationMethod>
<GSRTarget>system.netw.servers.M2.DNSServer.dnsd1</GSRTarget>
<GSRTargetSoftware>

system.netw.servers.M2.DNSServer.dnsd1.PublicDNSAGTsw
</GSRTargetSoftware>
<MoleculeID>system.netw.servers.M2</MoleculeID>

</gsr:xDESEREC GSRHeader>
</gsr:GSR>

Listing 2. xCIM representation of the DNS policy

Listing 2 shows how the translation process works, based
on the running example defined in Section IV. It shows a
fragment of a GSR that represents the aforementioned DNS
policy, but now translated into xCIM format. The Translator
generates this GSR document taking into account the SCL
policy, the allocation information and the system description
in SDL.

At first sight, it can be noticed that the xCIM language
is more complex and, therefore, harder to understand than
SCL. For instance, it codifies different kinds of SCL options
by means of numbers. In order to understand this point, let us
compare the Listing 2 with its equivalent specified in SCL,
and shown in Listing 1. The DNS zone typed as Master in
the SCL policy is now codified as < Type > 1 < /Type >
inside the xCIM class xDESEREC DNSZoneSettingData.

Furthermore, it is important to note how the Translator
resolves the BSC references in the DNS policy to IP
addresses; e.g., the previous A record response reference
called example.signaling mgment has been replaced by its
corresponding IP according to the allocations defined in
HOC1.LOP1.LOC1 of the running example. Note that it
is possible since the allocation process is done before the
translation process takes place.

Additionally, every GSR maintains some control infor-
mation which is later used by the DESEREC framework
to perform the enforcement and other operations. Thus, the
xCIM class xDESEREC GSRHeader contains some useful
parameters, such as the reference to the target element where
the GSR is going to be enforced or the transportation method
used in such an enforcement.

Listing 3 shows another GSR, but now with respect to the
access control policies that can be also found in SCL, and
shown in Listing 1.
<gsr:GSR xmlns:gsr=”http://www.deserec.eu/xsd/gsr”>

<gsr:xCIM Role>
<CreationClassName>CIM Role</CreationClassName>
<Name>authorization policy.role.signaling admins</Name>
<CommonName>signaling admins</CommonName>
<ElementName>signaling admins</ElementName>

</gsr:xCIM Role>
<gsr:xCIM Identity>

<InstanceID>authorization policy.role.signaling admins.identity.
user1@example.org</InstanceID>

<ElementName>user1@deserec.org</ElementName>
</gsr:xCIM Identity>
<gsr:xCIM MemberOfCollection>

<Collection>CIM Role.CreationClassName=’CIM Role’,
Name=’authorization policy.role.signaling admins’</Collection>

<Member>CIM Identity.InstanceID=’authorization policy.role.
signaling admins.identity.user1@example.org’</Member>

</gsr:xCIM MemberOfCollection>
<gsr:xCIM Privilege>

<InstanceID>authorization policy.allow signaling mgment.
signaling mgment access</InstanceID>

<PrivilegeGranted>true</PrivilegeGranted>
<Activities>5</Activities>
<Activities>6</Activities>
<QualifierFormats>11</QualifierFormats>

</gsr:xCIM Privilege>
<gsr:xCIM AuthorizationRuleAppliesToPrivilege>

<PolicySet>
CIM AuthorizationRule.SystemCreationClassName=’CIM AdminDomain’,
SystemName=’system.netw.servers.M1’,PolicyRuleName=’
authorization policy.allow signaling mgment’</PolicySet>

<ManagedElement>CIM Privilege.InstanceID=’authorization policy.
allow signaling mgment.signaling mgment access’</ManagedElement>

</gsr:xCIM AuthorizationRuleAppliesToPrivilege>
<gsr:xCIM AuthorizationRuleAppliesToTarget>

<PolicySet>
CIM AuthorizationRule.SystemCreationClassName=’CIM AdminDomain’,
SystemName=’system.netw.servers.M1’,PolicyRuleName=’
authorization policy.allow signaling mgment’</PolicySet>

<ManagedElement>signaling.example.org</ManagedElement>
</gsr:xCIM AuthorizationRuleAppliesToTarget>

299

International Journal on Advances in Internet Technology, vol 2 no 4, year 2009, http://www.iariajournals.org/internet_technology/

...
<gsr:xCIM AuthorizationRule>

<SystemCreationClassName>
CIM AdminDomain

</SystemCreationClassName>
<SystemName>system.netw.servers.M1</SystemName>
<CreationClassName>CIM AuthenticationRule</CreationClassName>
<PolicyRuleName>

authorization policy.allow signaling mgment
</PolicyRuleName>

</gsr:xCIM AuthorizationRule>
<gsr:xCIM AuthorizationRuleAppliesToRole>

<PolicySet>CIM AuthorizationRule.SystemCreationClassName=
’CIM AdminDomain’,SystemName=’system.netw.servers.M1’,
PolicyRuleName=’authorization policy.
allow signaling mgment’</PolicySet>

<ManagedElement>CIM Role.CreationClassName=’CIM Role’,
Name=’authorization policy.role.
signaling admins’</ManagedElement>

</gsr:xCIM AuthorizationRuleAppliesToRole>
<gsr:xCIM PolicyRuleInSystem>

<Antecedent>CIM AdminDomain.CreationClassName=’CIM AdminDomain’,
Name=’system.netw.servers.M1’</Antecedent>

<Dependent>CIM AuthorizationRule.SystemCreationClassName=
’CIM AdminDomain’,SystemName=’system.netw.servers.M1’,
PolicyRuleName=’authorization policy.
allow signaling mgment’</Dependent>

</gsr:xCIM PolicyRuleInSystem>

<!−− Authentication Policy −−>

<gsr:xCIM AuthenticationRule>
<SystemCreationClassName>

CIM AdminDomain
</SystemCreationClassName>
<SystemName>system.netw.servers.M1</SystemName>
<CreationClassName>CIM AuthenticationRule</CreationClassName>
<PolicyRuleName>authentication policy.user1 id</PolicyRuleName>

</gsr:xCIM AuthenticationRule>
...

<gsr:xDESEREC GSRHeader>
<TransportationMethod>COPS−PR</TransportationMethod>
<GSRTarget>system.netw.servers.M1.Apache2</GSRTarget>
<GSRTargetSoftware>

system.netw.servers.M1.Apache2.AAAsw
</GSRTargetSoftware>
<MoleculeID>system.netw.servers.M1</MoleculeID>

</gsr:xDESEREC GSRHeader>
</gsr:GSR>

Listing 3. xCIM representation of the access control policy

At the sight of the above fragment of XML document,
both authentication and authorization policies share the same
target element in this GSR and, therefore, the GSR header
is unique for both of them. It means that this configuration
will be enforced in the same software of the same machine
for a given molecule. Please bear in mind that the Translator
module will generate some other GSRs, which are able to
configure other target elements according to the allocations
established before, always taking the same SCL access
control policies as input. Moreover, as can be seen, the
xCIM language is still defined as a generic configuration
and it is not linked to any implementation or particular
software. It will be the enforcing mechanisms, described in
section VII-D, the ones in charge of generating the actual
configuration files depending on the concrete software.

As before, and for the sake of clarity, the authentication
policy has been nearly omitted from the GSR and it is not
shown in Listing 3.

VII. RECONFIGURATION FRAMEWORK

This section introduces an in-depth explanation of the
reconfiguration framework, its modules and components. We
also present a complete illustrative example as demonstration
of the proposed framework.

A. General Requirements

In this subsection we summarize the general requirements
that have been identified by DESEREC, and that our frame-
work should fulfill. Among them, we include scalability,
language interoperability, security assurance, autonomy and,
finally, issues related to service continuity and reliability
of reconfiguration. These requirements are summarized as
follows:
• Only well-characterized incidents shall be treated, and

their analysis needs to be very fast and non ambiguous
for detecting an incident in runtime.

• The reaction process shall be automatically carried out
as soon as possible after the detection of an incident.
Therefore, human interaction cannot take place in this
process, although the system administrator could be
alerted with high priority.

• Strong mechanisms must be provided and supported to
avoid intrusion.

• It is necessary to use as much standard languages as
possible to exchange consistent information between
heterogeneous managed components (target system
components and the DESEREC framework).

• A distributed solution should be designed since large
systems will produce a great amount of events that must
be processed.

• The detection and reaction processes should take a
maximum time interval of a few minutes in order to
maintain the service continuity.

• This framework must provide mechanisms to guarantee
the integrity of the requested reconfiguration since it
could provoke a breakdown of the service if it is
corrupted.

B. Workflow of the Reconfiguration Framework

Once the configuration information is released, by us-
ing the planning tools described above, the reconfigura-
tion framework works autonomously without human inter-
vention. This information must be deployed through the
DESEREC architecture and applied both in the correspond-
ing technical services, for configuring them properly, and in
the different modules of the architecture for detection and
decision purposes.

Figure 7 depicts the complete workflow inside this frame-
work, labeled with the information exchanged between the
modules. This exchange is done using SOAP-based Web
service interfaces. Please note that only the local reconfig-
uration framework is shown in Figure 7, although it could
be extended to the global one since both levels (global and

300

International Journal on Advances in Internet Technology, vol 2 no 4, year 2009, http://www.iariajournals.org/internet_technology/

raw data

Local Event Management

(filtering and aggregation)

Local Detection

(serious incidents)
L

o
c
a

l
e

v
e

n
ts

It
e

m
 e

v
e

n
ts

Local

alarms

Local deployment

results

D
L

o
c

a
lA

g
e

n
t

D
It

e
m

A
g

e
n

t

Target Event Collection

Target System

Local deployment

orders

IO
D

E
F

ra
w

 d
a

ta

IODEF

DCentralAgent

(GSR + SDL) OR

abstract commands

LDS entry’s ID

Local Reaction

Scenario (LRS)

Local Detection

Scenario (LDS) Local

database

Enforcement

via SSH

Local Deployment

Ite
m

 re
c
o

n
f.

o
rd

e
rs

It
e

m
 r

e
c
o

n
f.

re
s
u

lt
s

Target Enforcement

PDP

PEP

COPS

GSR’s ® ECO

BSM

Local Reaction

(scheduling)

Local Decision

(conflict resolution)

L
o

c
a

l re
a

c
tio

n

o
rd

e
rs

L
o

c
a

l
re

a
c
ti
o

n

re
s
u

lt
s

Local alarms

and events

Local Operational

Plan (LOP)

Local Operational

Configuration (LOC)

ECO

Figure 7. Local reconfiguration framework

local) work in a similar way to be composed of the same
modules.

Through the Target Event Collection, which collects raw
events from the target elements, the Local Event Manage-
ment is continuously gathering item events, filtering and
aggregating them to provide higher level events to the upper
modules. This will avoid overloading these modules and will
reduce the bandwidth occupation. Furthermore, the Local
Event Management module also transforms the collected
item events into a normalized format and sends them to
the Local Detection. In our case, the chosen exchange
format is IODEF [31] since it is a W3C standard format
defined to represent and exchange operational and statistical
information between components.

The Detection modules are constantly receiving events
from the lower levels. DLocalAgents retrieve them from the
target system through the DItemAgents, whereas the DCen-
tralAgent retrieves them from the DLocalAgents. These
events are matched against the possible problems defined
in the Detection Scenario (GDS or LDS, depending on the
level or agent) with the help of a set of signature-based rules
included in that scenario. If there is a coincidence, it means
that this module has detected a fault in the system and a
response is required.

The Detection module notifies to the Decision one which
alarm has occurred; that is, the problem that has been
detected. In addition, if the problem has been detected at
local level, the Local Detection module also forwards the

appropriate alarm, i.e., the IODEF itself and some additional
information about the problem, to the DCentralAgent.

The Decision module retrieves from the Reaction Sce-
nario (GRS or LRS, depending on the level or agent) a list
of possible reactions to solve the previously raised problem.
Note that for each problem or alarm we have a list of [1..n]
reactions. This module will decide the most suitable reaction
to carry out taking into account the statistical data harvested
from the target system. The current system situation could
also be taken into account for this decision-making process
to choose the best reaction in a particular moment. When
taking this decision it will always first try to apply a local
reaction, which will be faster and less costly; otherwise, the
DCentralAgent will be informed to take the corresponding
global reconfiguration, if necessary.

At global level, the Global Decision module sends to the
Global Reaction the HOC identifier with the new configu-
ration to deploy in the system. On the other hand, at local
level, the Local Decision module sends to the Local Reaction
the XML-based reaction to apply, which includes either the
LOC identifier with the new local configuration or a set of
abstract commands to be executed to fix the problem.

The Reaction module retrieves the appropriate Opera-
tional Configuration (HOC or LOC) from its local database
using the identifier (HOC ID or LOC ID) sent by the
Decision module. Note that if the reaction is to apply a set
of abstract commands, the Reaction module does not need to
retrieve any information since these commands are already

301

International Journal on Advances in Internet Technology, vol 2 no 4, year 2009, http://www.iariajournals.org/internet_technology/

included in the XML-based reaction instance itself. Later
on, this last module queues the set of deployment orders
and sends them progressively to the Deployment module;
until an order is not correctly deployed and enforced, the
next one is not sent. In the Global Reaction these orders
will be the LOPs contained in the new HOC, whereas in the
Local Reaction they will be the GSRs contained in the LOC
(one GSR per service to be configured).

The Deployment module delivers the reconfiguration or-
ders to the lower agents which will process them in a
different way, depending on the agent level involved:
• At global level, each LOP sent by the Global Reac-

tion module (one per molecule) is forwarded to the
corresponding molecule associated with that LOP. This
process is repeated for each molecule, in which each
LOP is stored in its own repository. Then, the Local
Decision module launches the deployment of the first
configuration for the new LOP with the best possible
LOC. During this phase, the Local Detection and the
Local Decision modules are automatically reconfigured
with the new scenarios specified in the new LOP as
well.

• At local level, the GSR received by the Local Deploy-
ment module is sent to the appropriate Target Enforce-
ment module which manages the underlying software.
Each GSR will be translated to End COnfigurations
(ECOs), thanks to the Block Service Module (BSM)
submodule, see Section VII-D, just before enforcing
it in the target system. It is worth noting that a lo-
cal deployment order could also be a set of abstract
commands, which also have to be translated to target-
specific commands for being enforced in the system.

It is worth mentioning that during all this process, as
can be seen in Figure 7, feedback information is sent to
upper modules and/or layers for reporting the sending and
proper execution of the requested orders. If a deployment
error is reported, e.g., an Operational Configuration becomes
unfeasible in that moment, the upper layers will then have
to decide which of the rest of available Operational Config-
urations could be deployed as valid, taking into account the
current system situation.

C. PBNM Approach for Deployment

The last action in the reconfiguration framework is to
distribute and enforce the GSRs into the final technical
services. By this, the deployment phase is based on a Policy-
Based Network Management (PBNM) approach [23], which
allows deploying, installing and enforcing policies in the
target devices.

This architecture is basically composed of the following
four elements:

1) Policy Decision Point (PDP). The PDP processes the
policies of the system, along with other data such as

network state information, and takes policy decisions
regarding which policies should be enforced, and how
and when this will happen. These policies are sent as
configuration data to the appropriate PEPs.

2) Policy Enforcement Point (PEP). The PEP is commu-
nicated to the managed devices and it is responsible
for installing and enforcing the policies sent by the
corresponding PDP.

3) Policy repository. This is a policy database which the
PDP uses for its decision-making process.

4) Target system. The final target device or element in
which the above policies will be enforced.

Regarding the communication protocol between the PDP
and its PEPs, the IETF has been focused on the definition
of the Common Open Policy Service (COPS) protocol [32].
COPS is a simple query and response protocol based on
a client-server model that can be used to exchange policy
information between a policy server (PDP) and its clients
(PEPs).

The inclusion of such a policy-based framework in the
DESEREC architecture has been performed as follows: one
PDP is included in each DLocalAgent, i.e., one PDP per
molecule, whereas one PEP is placed in each DItemAgent.
The policy repository is a database (local to the PDP) which
receives policy information from the Local Reaction module
and caches it for both performance and autonomy purposes.

When a new configuration needs to be deployed, the PEP
can get the appropriate policy information from its PDP,
adapt it (if needed) to the particular device which is being
managed and, lastly, enforce it. This model also supports
enforcement feedback, via the COPS reports which PEPs
can send back to their corresponding PDP.

D. Block Service Module

The policy data provided by a PDP to one of its PEPs
may need to be tuned for a specific managed device. This
may include not only a change in the notation, but also other
specific information; for example, updating the configuration
of a service might require different steps to be taken,
depending on the particular implementation of that service.

In the DESEREC architecture, just before enforcing the
GSRs by the PEP, they should be translated according to
the final software installed on the system, e.g., product,
version, etc., since the GSRs represent software-independent
configurations. This translation is performed by the Block
Service Module (BSM) [20], using specific translation tem-
plates which generate the final device-specific configura-
tions, called End COnfigurations (ECO). Finally, these con-
figurations are enforced in the target device by the PEP that
manages it through enforcement protocols like SSH/SCP or
SNMP. The framework also allows the usage of proprietary
protocols, depending on the managed software.

302

International Journal on Advances in Internet Technology, vol 2 no 4, year 2009, http://www.iariajournals.org/internet_technology/

E. Illustrative Example Scenario

This section shows how the DESEREC framework, ex-
plained above, is used as a proof of concept to react at
runtime when a problem in the system turns up. It describes
a set of problematic situations that could cause different
dependability and security problems which the DESEREC
framework should fix, taking the testbed description in
Section IV-B as the design and lab implementation.

Situation 0: everything is fine

This situation shows the whole system working properly
in a nominal case. That is, interactions with the railway
signaling and control system are made through the provided
Web service and administrators can access the management
website to request statistics and monitoring information.

Initially, during the first configuration of the DESEREC-
managed system, the Global Detection and Reaction Sce-
narios (GDS and GRS) are automatically stored in the
Global Detection and Decision modules, respectively, in
order to provide detection and reaction logic at global level.
As can be seen in Figure 5, the GDS contains at this
level a signature-based rule of the type “Web service goes
down”. The associated reaction, defined in the GRS, will be
switching between high-level configurations; in this case,
from HOC1 to HOC2.

Then, the most suitable global configuration (HOC1 in this
case) is released and distributed through all the DESEREC
components, until configuring the technical services as the
configuration policies dictate. At global level, the DCen-
tralAgent extracts from HOC1 each LOP that will configure
each of the defined molecules; that is, HOC1.LOP1 will
be addressed to molecule-1 and HOC1.LOP2 to molecule-
2. In both cases, the corresponding LOP is stored into the
local database of each DLocalAgent. The local detection
and reaction logic (LDS and LRS) included in each LOP,
is automatically stored in the Local Detection and Decision
modules. In this example, both local scenarios are empty
without defining any reaction capacity.

The most suitable configurations (HOC1.LOP1.LOC1
in molecule-1 and HOC1.LOP2.LOC1 in molecule-2) at
local level are then deployed to the corresponding target
software, with the aim of configuring them properly. In this
example, and according to the service allocations defined
above, the HOC1.LOP1.LOC1 contains the GSR belonging
to the BSC signaling mgment, which is delivered to the
DItemAgent that manages the apache-2.2.4 software, and
the GSR of the BSC firewall, which is delivered to the
DItemAgent that manages the iptables-1.3.5 software. Note
that each DItemAgent will translate these GSRs to ECOs
(final configurations) just before enforcing them in the
underlying technical service.

On the other hand, the HOC1.LOP2.LOC1 contains

the GSR associated to the BSC name resolver, which is
delivered to the DItemAgent that manages the bind-9.3.4
software. That DItemAgent will translate it to BIND format
before finally enforcing it. This last GSR can be seen in
Listing 2, which contains the entire required DNS con-
figuration at high level: information about the zone for
the example.org domain; and an “A” record to resolve
the signaling name to a specific IP address for pointing
out that the railway control Web service is running on
192.168.1.11.

Note that although the BSCs timing and access control
have not been included in Figure 5, their GSRs are also
deployed together with the previous ones. The GSR for the
BSC timing will be always delivered to the DItemAgent
that manages the ntpd-4.1.1 software, independently of the
operational plan and configuration, since this is the only
technical service that can provide it. On the other hand, the
GSR for the BSC access control (see Listing 3) will be
delivered to the DItemAgent that manages the apache-2.2.4
software as defined by the service allocation.

As can be seen, two GSRs are addressed to the same
apache-2.2.4 software for configuring, in the same technical
service, the BSCs signaling mgment and access control.

After all this process, the final configuration of the system
is as the one depicted in Figure 8a), labeled with the running
OCs and scenarios for each agent.

Situation 1 (reallocation): the Web service has become
unavailable

This situation shows a global reconfiguration process, i.e.,
the DCentralAgent is involved on it, when the Web service
becomes down and needs to be reallocated. This could be
due to the fact that a DoS attack has been performed from
a compromised host in the Intranet, an internal error of the
Web server itself, etc. As a consequence, the Web server
goes down.

Through the left-hand side of the framework, i.e., the
monitoring part, shown in Figure 7, different local events
harvested from the target system are going up on both
molecules until their Local Detection modules.

Suddenly, one of these events in DLocalAgent-1 carries
a possible problem of the type “the Web service has be-
come unavailable”. Since the Local Detection module in
DLocalAgent-1 has no rule in its LDS, as can be seen in
Figure 8a), this event is forwarded directly to the DCentralA-
gent for being managed at global level if necessary. Once the
DCentralAgent receives the above event including the actual
problem, sent in this case by the DLocalAgent-1 where the
service was running, it is capable of detecting that a possible
problem has occurred by mapping the event against its GDS.
In this example, the GDS includes a global detection rule
of the type “Web service goes down” and the framework
needs to react for fixing it. The associated reaction is to

303

International Journal on Advances in Internet Technology, vol 2 no 4, year 2009, http://www.iariajournals.org/internet_technology/

DLocalAgent-2

bind-9.3.4

host-4

tomcat-5.5.20

host-3

molecule-2

DLocalAgent-1

apache-2.2.4

host-1

molecule-1

DCentralAgent

iptables-1.3.5

host-2

HOC2

HOC2.LOP1.LOC1 HOC2.LOP2.LOC1

DLocalAgent-2

bind-9.3.4

host-4

tomcat-5.5.20

host-3

molecule-2

DLocalAgent-1

apache-2.2.4

host-1

molecule-1

DCentralAgent

iptables-1.3.5

host-2

HOC1

HOC1.LOP1.LOC1 HOC1.LOP2.LOC1

a) b)

GDS={“Web service goes down”}

GRS={switch from HOC1 to HOC2}

GDS={“Web service goes down”}

GRS={switch from HOC1 to HOC2}

LDS={}

LRS={}

LDS={}

LRS={}

LDS={“unauthorized access”}

LRS={switch from LOC1 to LOC2}

LDS={“files removed”}

LRS={COPY FROM /backup TO /webapps}

BSC=signaling_mgment

Ports: 5486+443

BSC=firewall

Allow ports: 5486+443+53

Deny the rest

BSC=signaling_mgment

Ports: 5486+443

BSC=name_resolver

signaling →

 192.168.1.21

BSC=firewall

Allow ports: 5486+443+53

Deny the rest

BSC=name_resolver

signaling →

 192.168.1.11

Figure 8. System status: a) initial configuration, situation 0; and b) after a reallocation, situation 1

move (reallocate) that service to another place where it is
able to be provided again; in this case, by switching from the
current global configuration (HOC1) to a new one (HOC2)
as is defined in the GRS.

As in the previous situation, the new global configu-
ration (HOC2) is distributed through all the DESEREC
components. Because of this, two new LOPs (HOC2.LOP1
for molecule-1 and HOC2.LOP2 for molecule-2) are sent
to their corresponding DLocalAgents for deploying a new
configuration. After being stored into their local databases,
the local detection and reaction logic is updated as the
new LOPs dictate. Looking again at Figure 5, the LDS
of HOC2.LOP1 contains a local detection rule of the
type “unauthorized access” whose reaction (which is later
used in Situation 2) is to switch from HOC2.LOP1.LOC1
to HOC2.LOP1.LOC2. On the other hand, the LDS of
HOC2.LOP2 contains another local detection rule of the
type “files removed” whose reaction (which is later used in
Situation 3) is to execute an abstract command to COPY
these files FROM a backup folder TO the appropriate place.

After this, the most suitable local configurations for both
LOPs are then deployed (HOC2.LOP1.LOC1 in molecule-1
and HOC2.LOP2.LOC1 in molecule-2) in a similar way as
the one described in Situation 0, letting the system as shown
in Figure 8b): the railway control Web service running again,
but now in a different allocation (namely, in the tomcat-
5.5.20 software); the BSC firewall remains unchanged as
before; and a new configuration has been applied in the
bind-9.3.4 software reflecting the reallocation change of
the BSC signaling mgment (this service is now running on
192.168.1.21).

It is worth pointing out that, at global level, the GDS and
GRS remain the same that before, although they will have no
effect since the rules included in them are only applicable to
HOC1, and the current running configuration after executing
this situation is HOC2.

Situation 2 (reconfiguration): unauthorized access to a
private resource

In this situation we show how the DESEREC framework
is able to reconfigure a service. In this sense, we suppose
that an unauthorized user gains access to the website. The
response of the framework will be to put into quarantine the
website by establishing a more restrictive configuration in
the firewall component.

Only the DLocalAgent-1 will be into play in this case
since, after locally receiving a possible problem of the type
“a user has made an unauthorized access to a resource”, the
Local Detection module in DLocalAgent-1 has a location
detection rule in its LDS, as can be seen in Figure 8b),
that will throw a local alarm. The reaction associated to
this incident, defined in the LRS, is to deploy a new local
configuration (by switching between HOC2.LOP1.LOC1
and HOC2.LOP1.LOC2) to reconfigure the firewall with
a more restrictive filtering rules. In this new configuration,
the firewall will only permit connections on ports 5486 and
53, blocking the access to the 443 (HTTPS) port.

Note that, despite reconfiguring a service, the alloca-
tions are maintained as before since the BSC firewall still
continues to run on the same technical service, but now
with a different configuration. As seen in this situation, the
molecule-2 remains the same since the reaction has been
carried out locally in molecule-1 without involving the rest.

Situation 3 (abstract command execution): some impor-
tant files have been removed

In this last situation we show a third sort of reaction
that the DESEREC framework is capable of managing by
means of executing a set of abstract commands. Due to a
temporal hard disk fail, important Web service files have
been removed and the Web service becomes inconsistent. In

304

International Journal on Advances in Internet Technology, vol 2 no 4, year 2009, http://www.iariajournals.org/internet_technology/

this case, when a request is made to the Web service, it will
trigger an internal error.

Once the DESEREC framework catches that internal
error by means of the events received from the target
system, a possible problem of the type “some files have
been either removed or modified” is detected. In this last
situation, the associated reaction to this alarm (defined
in the LRS) is sending of an abstract command which
will copy the removed files from a backup folder to the
appropriate place in the Web server. This abstract com-
mand is generically defined as COPY FROM <source>
TO <destination>, which will have to be translated
to the specific command depending on the system where
it will be enforced. For example, in Linux systems this
abstract command will be translated to cp -r /backup
/webapps.

As before, this situation does not suppose any change in
the allocation map, although in this case neither in the con-
figurations. The reaction is only a very slight adjustment in
the target system without changing anything in the running
allocations and configurations.

VIII. DEPLOYMENT AND VALIDATION

In this section we summarize how to design a dependable
system following the proposed framework, as well as our
experience in its deployment and how it has been validated
and tested in existing mission critical systems.

A. Deployment of the DESEREC framework

The administrator(s) of the system, where the proposed
framework has to be installed, must initially provide the
molecule breakdown of the system. This will usually be
done from scratch, although it could be also done in a non-
intrusive mode by starting from an existing CIS. In both
cases, the system administrator knows the Business Services
that should be provided, for making them secure and thereby
ensuring a given QoS. These Business Services have to be
decomposed into Business Service Components for which
the system administrator should define a list of constraints or
policies using SCL. On the other hand, a system description
should be provided by means of SDL, containing subsets of
the whole CIS that are able to support technical services; that
is, molecules to provide the required Business Services. In
turn, these molecules have to be decomposed into software
and network components, up to the level where they can be
monitored, configured and deployed.

In this process, the administrator defines a synthetic and
graphical view of the technical services, as well as the
linked molecules. With them, and thanks to the Planning
tools, the administrator can simulate errors, crashes, security
attacks, etc., which means that few molecules could become
unavailable. In each case, our framework is able to compute
the best allocation of available molecules (according to the

defined high-level policies), with the minimum number of
reconfiguration steps involving molecule instances.

From the above defined molecule type description, the
system administrator can generate and deploy the global and
local configurations, together with their reaction plans. From
this moment, it starts the runtime execution of the reconfig-
uration framework, in an autonomous way, as presented in
Section VII.

B. Validation in real environments

The fulfillment of the DESEREC objectives have been
evaluated by taking three typical cases of critical systems,
which were provided by three end-user partners belong to
the DESEREC consortium; namely:

• Hellenic Telecommunications Organization (OTE) [33].
OTE is the leading telecommunication operator in
Greece and the Balkan area and, as such, operates most
of the critical telecom infrastructures installed in that
country. Therefore, securing its telecom infrastructure
is a critical issue. The exploitation of the DESEREC
project results has been very interesting in its lab
testbed through a TV over IP (IPTV) scenario. It is
worth mentioning that on this testbed the DESEREC
consortium presented its results to the European Com-
mission through a final demonstration at OTE premises.

• EADS Defence & Security Systems (DS) [34]. This
partner provided to the consortium its Security Com-
mand and Control System, as main provider for the
French Army. The main goal in this testbed was to
minimize the risk exposure through protecting people
and territories. In this case, EADS proposed a scenario
where a border guard checks the passport of a person
which is detected as blacklisted. Then, the border guard
creates an alarm in the Web application in order to sig-
nal the problem, which is dispatched to the Command
and Control application thanks to the Enterprise Ser-
vice Bus (ESB). However, the border security employee
plugs a USB key on the computer that hosts the ESB
and it executes a malicious code which is present on his
key. The code triggers an anomaly in the ESB service,
which goes down and is no more able to forward client
requests to the access control system. The DESEREC
framework was successfully deployed to compute and
execute the appropriate reaction, by making the service
available again.

• RENFE-Operadora [35]. RENFE is the national railway
operator in Spain, providing public service of train
transportation for both passengers and trade goods. In
this case, the DESEREC partners used the RENFE
testbed to test a first approach of the proposed frame-
work. These tests were focused on the railway signaling
and control system, presented along with this paper, as
well as the management of the Ticket Selling service.

305

International Journal on Advances in Internet Technology, vol 2 no 4, year 2009, http://www.iariajournals.org/internet_technology/

IX. CONCLUSION AND FUTURE WORK

In this paper we have presented a specific framework for
managing service dependability in a policy based fashion.
The concept of policy based management has been around
in the research scene for several years now, with proven
validity as an intuitive and scalable way for administrators
to keep large information systems under control, ensuring
the continuous enforcement of domain directives. Here we
have checked how building a dependability management
framework on a policy based core has indeed achieved
to leverage the potential of this paradigm, applying it to
a novel field. The proposed framework allows using the
same abstract approach inherent to policy based solutions
for managing also the automatic, on-demand configuration
of system services.

Lastly, the tools developed for administrator interaction
have allowed putting this proposal into practice, serving
as further validation of the claimed achievements. By this,
a complete example has been developed throughout this
paper to stage how the proposed framework works in a fully
autonomous way without human intervention.

As future work, some extensions remain to be taken into
account which would improve this framework considerably.
The current configuration policies that govern the system
should be extended to include also setting up in a similar
manner our own modules belonging to the framework; for
example, the collection of sensors needed for a concrete
operational plan, indicating the configuration for each of
them.

ACKNOWLEDGMENT

This work has been funded by the DESEREC EU IST
Project (IST-2004-026600), within the EC Sixth Framework
Programme (FP6). Thanks also to the Funding Program
for Research Groups of Excellence granted by the Seneca
Foundation with code 04552/GERM/06.

REFERENCES

[1] J. Bernal Bernabé, J.M. Marı́n Pérez, D.J. Martı́nez Manzano,
M. Gil Pérez, and A.F. Gómez Skarmeta. “Towards a Policy-
driven Framework for Managing Service Dependability”. In
DEPEND ’09: Proceedings of the 2nd International Confer-
ence on Dependability, pages 66–72, 2009.

[2] E. Amidi. “System and Method for Providing a Backup-
Restore Solution for Active-Standby Service Management
Systems”. U.S. Patent Application 20060078092, April 2006.

[3] A. Avizienis, J. Laprie, and B. Randell. “Fundamental
Concepts of Dependability”. Research Report 1145, LAAS-
CNRS, April 2001.

[4] The SERENITY EU-IST Project (System Engineering for
Security & Dependability). http://www.serenity-project.org
[22 February 2010].

[5] R. Sterritt and D. Bustard. “Towards an Autonomic Com-
puting Environment”. In DEXA ’03: Proceedings of the
14th International Workshop on Database and Expert Systems
Applications, pages 699–703, 2003.

[6] R. Sterritt and D. Bustard. “Autonomic Computing-a Means
of Achieving Dependability?”. In ECBS ’03: Proceedings
of IEEE International Conference on the Engineering of
Computer Based Systems, pages 247–251, 2003.

[7] D.C. Verma. “Simplifying Network Administration us-
ing Policy-based Management”. IEEE Network Magazine,
16(2):20–26, 2002.

[8] J. Schönwälder, A. Pras, and J.P. Martin-Flatin. “On the
Future of Internet Management Technologies”. IEEE Com-
munications Magazine, 41(10):90–97, 2003.

[9] The DESEREC EU-IST Project (Dependability and Security
by Enhanced Reconfigurability). http://www.deserec.eu [22
February 2010].

[10] L. Ardissono, A. Felfernig, G. Friedrich, A. Goy, D. Jannach,
G. Petrone, R. Schäfer, and M. Zanker. “A Framework
for the Development of Personalized, Distributed Web-based
Configuration Systems”. AI Magazine, 24(3):93–108, 2003.

[11] A. Felfernig, G.E. Friedrich, and D. Jannach. “UML
as Domain-Specific Language for the Construction of
Knowledge-based Configuration Systems”. International
Journal of Software Engineering and Knowledge Engineer-
ing, 10:449–469, 2000.

[12] M. Caporuscio, A. Di Marco, and P. Inverardi. “Model-
Based System Reconfiguration for Dynamic Performance
Management”. Journal of Systems and Software, 80(4):455–
473, 2007.

[13] M. Mikic-rakic, S. Malek, and N. Medvidovic. “Improving
Availability in Large, Distributed, Component-Based Systems
via Redeployment”. In CD ’05: Proceedings of the 3rd In-
ternational Working Conference on Component Deployment,
pages 83–98, 2005.

[14] G. Spanoudakis, A. Maa Gomez, and S. Kokolakis. “Secu-
rity and Dependability for Ambient Intelligence”. Springer
Publishing Company, Incorporated, 2009.

[15] “Willow Survivability Architecture”, Depend-
ability Research Group, University of Virginia.
http://dependability.cs.virginia.edu/research/willow [22
February 2010].

[16] Z. Hill, J. Rowanhill, A. Nguyen-Tuong, G. Wasson,
J. Knight, J. Basney, and M. Humphrey. “Meeting Vir-
tual Organization Performance Goals through Adaptive Grid
Reconfiguration”. In GRID ’07: Proceedings of the 8th
IEEE/ACM International Conference on Grid Computing,
pages 177–184, 2007.

[17] Z. Hill and M. Humphrey. “Applicability of the Willow Archi-
tecture for Cloud Management”. In ACDC ’09: Proceedings
of the 1st Workshop on Automated Control for Datacenters
and Clouds, pages 31–36, 2009.

306

International Journal on Advances in Internet Technology, vol 2 no 4, year 2009, http://www.iariajournals.org/internet_technology/

[18] D.J. Martı́nez Manzano, M. Gil Pérez, G. López Millán, and
A.F. Gómez Skarmeta. “A Proposal for the Definition of
Operational Plans to provide Dependability and Security”. In
CRITIS ’07: Proceedings of the 2nd International Workshop
on Critical Information Infrastructures Security, pages 223–
234, 2007.

[19] A. Cotton, M. Israël, and J. Borgel. “Molecular Approach
Paves the Way towards High Resilience for Large Mission-
Critical Information Systems”. In SECURWARE ’08: Pro-
ceedings of the 2nd International Conference on Emerging
Security Information, Systems and Technologies, pages 332–
337, 2008.

[20] The DESEREC EU-IST Project. Deliverable D2.1, “Policy
and System Models”, March 2007.

[21] M.D. Aime, P.C. Pomi, and M. Vallini. “Policy-Driven
System Configuration for Dependability”. In SECURWARE
’08: Proceedings of the 2nd International Conference on
Emerging Security Information, Systems and Technologies,
pages 420–425, 2008.

[22] “Web Services Choreography Description Language v1.0”.
W3C Candidate Recommendation 9, November 2005.
http://www.w3.org/TR/ws-cdl-10 [22 February 2010].

[23] G. Martı́nez Pérez, A.F. Gómez Skarmeta, S. Zeber, J. Spag-
nolo, and T. Symchych. “Dynamic Policy-Based Network
Management for a Secure Coalition Environment”. IEEE
Communications Magazine, 44(11):58–64, 2006.

[24] “Common Information Model (CIM) Standards”,
Distributed Management Task Force, Inc.
http://www.dmtf.org/standards/cim [22 February 2010].

[25] M. Debusmann and A. Keller. “SLA-driven Management of
Distributed Systems using the Common Information Model”.
In IM ’03: Proceeding of the 8th IFIP/IEEE International
Symposium on Integrated Network Management, pages 563–
576, 2003.

[26] H. Mao, L. Huang, and M. Li. “Web Resource Monitoring
Based on Common Information Model”. In APSCC ’06:
Proceedings of the 2006 IEEE Asia-Pacific Conference on
Services Computing, pages 520–525, 2006.

[27] C. Hobbs. “A Practical Approach to WBEM/CIM Manage-
ment”. CRC Press, April 2004.

[28] “SCL Console and User Manual v1.0”, University of Murcia.
http://deserec.inf.um.es/console [22 February 2010].

[29] J. Rubio Loyola. “A Methodological Approach to Policy
Refinement in Policy-based Management Systems”. PhD
thesis, Technical University of Catalonia, Spain, April 2007.

[30] J.M. Marı́n Pérez, J. Bernal Bernabé, J.D. Jiménez Re,
G. Martı́nez Pérez, and A.F. Gómez Skarmeta. “A Proposal
for Translating from High-Level Security Objectives to Low-
Level Configurations”. In SVM ’07: Proceedings of the
1st International DMTF Academic Alliance Workshop on
Systems and Virtualization Management: Standards and New
Technologies, 2007.

[31] R. Danyliw, J. Meijer, and Y. Demchenko. “The Incident
Object Description Exchange Format”. IETF RFC 5070,
December 2007.

[32] D. Durham, J. Boyle, R. Cohen, S. Herzog, R. Rajan, and
A. Sastry. “The COPS (Common Open Policy Service)
Protocol”. IETF RFC 2748, January 2000.

[33] Hellenic Telecommunications Organization (OTE).
http://www.ote.gr [22 February 2010].

[34] EADS Defence & Security Systems (DS).
http://www.eads.com [22 February 2010].

[35] RENFE-Operadora. http://www.renfe.es [22 February 2010].

307

International Journal on Advances in Internet Technology, vol 2 no 4, year 2009, http://www.iariajournals.org/internet_technology/

